numam-dpdk/examples/ipsec-secgw/ipsec.h
Praveen Shetty 6738c0a956 examples/ipsec-secgw: support flow director
Support load distribution in security gateway application using
NIC load distribution feature (Flow Director).
Flow Director is used to redirect the specified inbound ipsec flow
to a specified queue. This is achieved by extending the SA rule syntax
to support specification by adding new action_type of <flow-direction>
to a specified <port_id> <queue_id>.

Signed-off-by: Praveen Shetty <praveen.shetty@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2020-04-19 17:15:14 +02:00

420 lines
9.1 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#ifndef __IPSEC_H__
#define __IPSEC_H__
#include <stdint.h>
#include <rte_byteorder.h>
#include <rte_crypto.h>
#include <rte_security.h>
#include <rte_flow.h>
#include <rte_ipsec.h>
#include "ipsec-secgw.h"
#define RTE_LOGTYPE_IPSEC_ESP RTE_LOGTYPE_USER2
#define RTE_LOGTYPE_IPSEC_IPIP RTE_LOGTYPE_USER3
#define MAX_INFLIGHT 128
#define MAX_QP_PER_LCORE 256
#define MAX_DIGEST_SIZE 32 /* Bytes -- 256 bits */
#define IPSEC_OFFLOAD_ESN_SOFTLIMIT 0xffffff00
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op))
#define uint32_t_to_char(ip, a, b, c, d) do {\
*a = (uint8_t)(ip >> 24 & 0xff);\
*b = (uint8_t)(ip >> 16 & 0xff);\
*c = (uint8_t)(ip >> 8 & 0xff);\
*d = (uint8_t)(ip & 0xff);\
} while (0)
#define DEFAULT_MAX_CATEGORIES 1
#define INVALID_SPI (0)
#define DISCARD INVALID_SPI
#define BYPASS UINT32_MAX
#define IPSEC_XFORM_MAX 2
#define IP6_VERSION (6)
struct rte_crypto_xform;
struct ipsec_xform;
struct rte_mbuf;
struct ipsec_sa;
/*
* Keeps number of configured SA's for each address family:
*/
struct ipsec_sa_cnt {
uint32_t nb_v4;
uint32_t nb_v6;
};
typedef int32_t (*ipsec_xform_fn)(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop);
struct ip_addr {
union {
uint32_t ip4;
union {
uint64_t ip6[2];
uint8_t ip6_b[16];
} ip6;
} ip;
};
#define MAX_KEY_SIZE 36
/*
* application wide SA parameters
*/
struct app_sa_prm {
uint32_t enable; /* use librte_ipsec API for ipsec pkt processing */
uint32_t window_size; /* replay window size */
uint32_t enable_esn; /* enable/disable ESN support */
uint32_t cache_sz; /* per lcore SA cache size */
uint64_t flags; /* rte_ipsec_sa_prm.flags */
};
extern struct app_sa_prm app_sa_prm;
struct flow_info {
struct rte_flow *rx_def_flow;
};
extern struct flow_info flow_info_tbl[RTE_MAX_ETHPORTS];
enum {
IPSEC_SESSION_PRIMARY = 0,
IPSEC_SESSION_FALLBACK = 1,
IPSEC_SESSION_MAX
};
#define IPSEC_SA_OFFLOAD_FALLBACK_FLAG (1)
static inline struct ipsec_sa *
ipsec_mask_saptr(void *ptr)
{
uintptr_t i = (uintptr_t)ptr;
static const uintptr_t mask = IPSEC_SA_OFFLOAD_FALLBACK_FLAG;
i &= ~mask;
return (struct ipsec_sa *)i;
}
struct ipsec_sa {
struct rte_ipsec_session sessions[IPSEC_SESSION_MAX];
uint32_t spi;
uint32_t cdev_id_qp;
uint64_t seq;
uint32_t salt;
uint32_t fallback_sessions;
enum rte_crypto_cipher_algorithm cipher_algo;
enum rte_crypto_auth_algorithm auth_algo;
enum rte_crypto_aead_algorithm aead_algo;
uint16_t digest_len;
uint16_t iv_len;
uint16_t block_size;
uint16_t flags;
#define IP4_TUNNEL (1 << 0)
#define IP6_TUNNEL (1 << 1)
#define TRANSPORT (1 << 2)
#define IP4_TRANSPORT (1 << 3)
#define IP6_TRANSPORT (1 << 4)
struct ip_addr src;
struct ip_addr dst;
uint8_t cipher_key[MAX_KEY_SIZE];
uint16_t cipher_key_len;
uint8_t auth_key[MAX_KEY_SIZE];
uint16_t auth_key_len;
uint16_t aad_len;
union {
struct rte_crypto_sym_xform *xforms;
struct rte_security_ipsec_xform *sec_xform;
};
enum rte_security_ipsec_sa_direction direction;
uint16_t portid;
uint8_t fdir_qid;
uint8_t fdir_flag;
#define MAX_RTE_FLOW_PATTERN (4)
#define MAX_RTE_FLOW_ACTIONS (3)
struct rte_flow_item pattern[MAX_RTE_FLOW_PATTERN];
struct rte_flow_action action[MAX_RTE_FLOW_ACTIONS];
struct rte_flow_attr attr;
union {
struct rte_flow_item_ipv4 ipv4_spec;
struct rte_flow_item_ipv6 ipv6_spec;
};
struct rte_flow_item_esp esp_spec;
struct rte_flow *flow;
struct rte_security_session_conf sess_conf;
} __rte_cache_aligned;
struct ipsec_xf {
struct rte_crypto_sym_xform a;
struct rte_crypto_sym_xform b;
};
struct ipsec_sad {
struct rte_ipsec_sad *sad_v4;
struct rte_ipsec_sad *sad_v6;
};
struct sa_ctx {
void *satbl; /* pointer to array of rte_ipsec_sa objects*/
struct ipsec_sad sad;
struct ipsec_xf *xf;
uint32_t nb_sa;
struct ipsec_sa sa[];
};
struct ipsec_mbuf_metadata {
struct ipsec_sa *sa;
struct rte_crypto_op cop;
struct rte_crypto_sym_op sym_cop;
uint8_t buf[32];
} __rte_cache_aligned;
#define IS_TRANSPORT(flags) ((flags) & TRANSPORT)
#define IS_TUNNEL(flags) ((flags) & (IP4_TUNNEL | IP6_TUNNEL))
#define IS_IP4(flags) ((flags) & (IP4_TUNNEL | IP4_TRANSPORT))
#define IS_IP6(flags) ((flags) & (IP6_TUNNEL | IP6_TRANSPORT))
#define IS_IP4_TUNNEL(flags) ((flags) & IP4_TUNNEL)
#define IS_IP6_TUNNEL(flags) ((flags) & IP6_TUNNEL)
/*
* Macro for getting ipsec_sa flags statuses without version of protocol
* used for transport (IP4_TRANSPORT and IP6_TRANSPORT flags).
*/
#define WITHOUT_TRANSPORT_VERSION(flags) \
((flags) & (IP4_TUNNEL | \
IP6_TUNNEL | \
TRANSPORT))
struct cdev_qp {
uint16_t id;
uint16_t qp;
uint16_t in_flight;
uint16_t len;
struct rte_crypto_op *buf[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
};
struct ipsec_ctx {
struct rte_hash *cdev_map;
struct sp_ctx *sp4_ctx;
struct sp_ctx *sp6_ctx;
struct sa_ctx *sa_ctx;
uint16_t nb_qps;
uint16_t last_qp;
struct cdev_qp tbl[MAX_QP_PER_LCORE];
struct rte_mempool *session_pool;
struct rte_mempool *session_priv_pool;
struct rte_mbuf *ol_pkts[MAX_PKT_BURST] __rte_aligned(sizeof(void *));
uint16_t ol_pkts_cnt;
uint64_t ipv4_offloads;
uint64_t ipv6_offloads;
};
struct cdev_key {
uint16_t lcore_id;
uint8_t cipher_algo;
uint8_t auth_algo;
uint8_t aead_algo;
};
struct socket_ctx {
struct sa_ctx *sa_in;
struct sa_ctx *sa_out;
struct sp_ctx *sp_ip4_in;
struct sp_ctx *sp_ip4_out;
struct sp_ctx *sp_ip6_in;
struct sp_ctx *sp_ip6_out;
struct rt_ctx *rt_ip4;
struct rt_ctx *rt_ip6;
struct rte_mempool *mbuf_pool;
struct rte_mempool *mbuf_pool_indir;
struct rte_mempool *session_pool;
struct rte_mempool *session_priv_pool;
};
struct cnt_blk {
uint32_t salt;
uint64_t iv;
uint32_t cnt;
} __rte_packed;
/* Socket ctx */
extern struct socket_ctx socket_ctx[NB_SOCKETS];
void
ipsec_poll_mode_worker(void);
int
ipsec_launch_one_lcore(void *args);
extern struct ipsec_sa *sa_out;
extern uint32_t nb_sa_out;
extern struct ipsec_sa *sa_in;
extern uint32_t nb_sa_in;
uint16_t
ipsec_inbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t nb_pkts, uint16_t len);
uint16_t
ipsec_outbound(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint32_t sa_idx[], uint16_t nb_pkts, uint16_t len);
uint16_t
ipsec_inbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t len);
uint16_t
ipsec_outbound_cqp_dequeue(struct ipsec_ctx *ctx, struct rte_mbuf *pkts[],
uint16_t len);
void
ipsec_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf);
void
ipsec_cqp_process(struct ipsec_ctx *ctx, struct ipsec_traffic *trf);
static inline uint16_t
ipsec_metadata_size(void)
{
return sizeof(struct ipsec_mbuf_metadata);
}
static inline struct ipsec_mbuf_metadata *
get_priv(struct rte_mbuf *m)
{
return rte_mbuf_to_priv(m);
}
static inline void *
get_cnt_blk(struct rte_mbuf *m)
{
struct ipsec_mbuf_metadata *priv = get_priv(m);
return &priv->buf[0];
}
static inline void *
get_aad(struct rte_mbuf *m)
{
struct ipsec_mbuf_metadata *priv = get_priv(m);
return &priv->buf[16];
}
static inline void *
get_sym_cop(struct rte_crypto_op *cop)
{
return (cop + 1);
}
static inline struct rte_ipsec_session *
ipsec_get_primary_session(struct ipsec_sa *sa)
{
return &sa->sessions[IPSEC_SESSION_PRIMARY];
}
static inline struct rte_ipsec_session *
ipsec_get_fallback_session(struct ipsec_sa *sa)
{
return &sa->sessions[IPSEC_SESSION_FALLBACK];
}
static inline enum rte_security_session_action_type
ipsec_get_action_type(struct ipsec_sa *sa)
{
struct rte_ipsec_session *ips;
ips = ipsec_get_primary_session(sa);
return ips->type;
}
int
inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx);
void
inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
void *sa[], uint16_t nb_pkts);
void
outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
void *sa[], uint16_t nb_pkts);
void
sp4_init(struct socket_ctx *ctx, int32_t socket_id);
void
sp6_init(struct socket_ctx *ctx, int32_t socket_id);
/*
* Search through SP rules for given SPI.
* Returns first rule index if found(greater or equal then zero),
* or -ENOENT otherwise.
*/
int
sp4_spi_present(uint32_t spi, int inbound, struct ip_addr ip_addr[2],
uint32_t mask[2]);
int
sp6_spi_present(uint32_t spi, int inbound, struct ip_addr ip_addr[2],
uint32_t mask[2]);
/*
* Search through SA entries for given SPI.
* Returns first entry index if found(greater or equal then zero),
* or -ENOENT otherwise.
*/
int
sa_spi_present(struct sa_ctx *sa_ctx, uint32_t spi, int inbound);
void
sa_init(struct socket_ctx *ctx, int32_t socket_id);
void
rt_init(struct socket_ctx *ctx, int32_t socket_id);
int
sa_check_offloads(uint16_t port_id, uint64_t *rx_offloads,
uint64_t *tx_offloads);
int
add_dst_ethaddr(uint16_t port, const struct rte_ether_addr *addr);
void
enqueue_cop_burst(struct cdev_qp *cqp);
int
create_lookaside_session(struct ipsec_ctx *ipsec_ctx, struct ipsec_sa *sa,
struct rte_ipsec_session *ips);
int
create_inline_session(struct socket_ctx *skt_ctx, struct ipsec_sa *sa,
struct rte_ipsec_session *ips);
int
check_flow_params(uint16_t fdir_portid, uint8_t fdir_qid);
int
create_ipsec_esp_flow(struct ipsec_sa *sa);
#endif /* __IPSEC_H__ */