Viacheslav Ovsiienko 4940344dab app/testpmd: add Tx scheduling command
This commit adds testpmd capability to provide timestamps on the packets
being sent in the txonly mode. This includes:

 - SEND_ON_TIMESTAMP support
   new device Tx offload capability support added, example:

     testpmd> port config 0 tx_offload send_on_timestamp on

 - set txtimes, registers field and flag, example:

     testpmd> set txtimes 1000000,0

   This command enables the packet send scheduling on timestamps if
   the first parameter is not zero, generic format:

     testpmd> set txtimes (inter),(intra)

   where:

     inter - is the delay between the bursts in the device clock units.
     If "intra" (next parameter) is zero, this is the time between the
     beginnings of the first packets in the neighbour bursts, if "intra"
     is not zero, "inter" specifies the time between the beginning of
     the first packet of the current burst and the beginning of the last
     packet of the previous burst. If "inter"parameter is zero the send
     scheduling on timestamps is disabled (default).

     intra - is the delay between the packets within the burst specified
     in the device clock units. The number of packets in the burst is
     defined by regular burst setting. If "intra" parameter is zero no
     timestamps provided in the packets excepting  the first one in the
     burst.

     As the result the bursts of packet will be transmitted with
     specific delay between the packets within the burst and specific
     delay between the bursts. The rte_eth_read_clock() is supposed to
     be engaged to get the current device clock value and provide the
     reference for the timestamps. If there is no supported
     rte_eth_read_clock() there will be no provided send scheduling on
     the device.

 - show txtimes, displays the timing settings
 - txonly burst time pattern

Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-07-11 06:18:54 +02:00

437 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include "testpmd.h"
/* use RFC863 Discard Protocol */
uint16_t tx_udp_src_port = 9;
uint16_t tx_udp_dst_port = 9;
/* use RFC5735 / RFC2544 reserved network test addresses */
uint32_t tx_ip_src_addr = (198U << 24) | (18 << 16) | (0 << 8) | 1;
uint32_t tx_ip_dst_addr = (198U << 24) | (18 << 16) | (0 << 8) | 2;
#define IP_DEFTTL 64 /* from RFC 1340. */
static struct rte_ipv4_hdr pkt_ip_hdr; /**< IP header of transmitted packets. */
RTE_DEFINE_PER_LCORE(uint8_t, _ip_var); /**< IP address variation */
static struct rte_udp_hdr pkt_udp_hdr; /**< UDP header of tx packets. */
RTE_DEFINE_PER_LCORE(uint64_t, timestamp_qskew);
/**< Timestamp offset per queue */
static uint64_t timestamp_mask; /**< Timestamp dynamic flag mask */
static int32_t timestamp_off; /**< Timestamp dynamic field offset */
static bool timestamp_enable; /**< Timestamp enable */
static uint64_t timestamp_initial[RTE_MAX_ETHPORTS];
static void
copy_buf_to_pkt_segs(void* buf, unsigned len, struct rte_mbuf *pkt,
unsigned offset)
{
struct rte_mbuf *seg;
void *seg_buf;
unsigned copy_len;
seg = pkt;
while (offset >= seg->data_len) {
offset -= seg->data_len;
seg = seg->next;
}
copy_len = seg->data_len - offset;
seg_buf = rte_pktmbuf_mtod_offset(seg, char *, offset);
while (len > copy_len) {
rte_memcpy(seg_buf, buf, (size_t) copy_len);
len -= copy_len;
buf = ((char*) buf + copy_len);
seg = seg->next;
seg_buf = rte_pktmbuf_mtod(seg, char *);
copy_len = seg->data_len;
}
rte_memcpy(seg_buf, buf, (size_t) len);
}
static inline void
copy_buf_to_pkt(void* buf, unsigned len, struct rte_mbuf *pkt, unsigned offset)
{
if (offset + len <= pkt->data_len) {
rte_memcpy(rte_pktmbuf_mtod_offset(pkt, char *, offset),
buf, (size_t) len);
return;
}
copy_buf_to_pkt_segs(buf, len, pkt, offset);
}
static void
setup_pkt_udp_ip_headers(struct rte_ipv4_hdr *ip_hdr,
struct rte_udp_hdr *udp_hdr,
uint16_t pkt_data_len)
{
uint16_t *ptr16;
uint32_t ip_cksum;
uint16_t pkt_len;
/*
* Initialize UDP header.
*/
pkt_len = (uint16_t) (pkt_data_len + sizeof(struct rte_udp_hdr));
udp_hdr->src_port = rte_cpu_to_be_16(tx_udp_src_port);
udp_hdr->dst_port = rte_cpu_to_be_16(tx_udp_dst_port);
udp_hdr->dgram_len = RTE_CPU_TO_BE_16(pkt_len);
udp_hdr->dgram_cksum = 0; /* No UDP checksum. */
/*
* Initialize IP header.
*/
pkt_len = (uint16_t) (pkt_len + sizeof(struct rte_ipv4_hdr));
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = IP_DEFTTL;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = RTE_CPU_TO_BE_16(pkt_len);
ip_hdr->src_addr = rte_cpu_to_be_32(tx_ip_src_addr);
ip_hdr->dst_addr = rte_cpu_to_be_32(tx_ip_dst_addr);
/*
* Compute IP header checksum.
*/
ptr16 = (unaligned_uint16_t*) ip_hdr;
ip_cksum = 0;
ip_cksum += ptr16[0]; ip_cksum += ptr16[1];
ip_cksum += ptr16[2]; ip_cksum += ptr16[3];
ip_cksum += ptr16[4];
ip_cksum += ptr16[6]; ip_cksum += ptr16[7];
ip_cksum += ptr16[8]; ip_cksum += ptr16[9];
/*
* Reduce 32 bit checksum to 16 bits and complement it.
*/
ip_cksum = ((ip_cksum & 0xFFFF0000) >> 16) +
(ip_cksum & 0x0000FFFF);
if (ip_cksum > 65535)
ip_cksum -= 65535;
ip_cksum = (~ip_cksum) & 0x0000FFFF;
if (ip_cksum == 0)
ip_cksum = 0xFFFF;
ip_hdr->hdr_checksum = (uint16_t) ip_cksum;
}
static inline bool
pkt_burst_prepare(struct rte_mbuf *pkt, struct rte_mempool *mbp,
struct rte_ether_hdr *eth_hdr, const uint16_t vlan_tci,
const uint16_t vlan_tci_outer, const uint64_t ol_flags,
const uint16_t idx, const struct fwd_stream *fs)
{
struct rte_mbuf *pkt_segs[RTE_MAX_SEGS_PER_PKT];
struct rte_mbuf *pkt_seg;
uint32_t nb_segs, pkt_len;
uint8_t i;
if (unlikely(tx_pkt_split == TX_PKT_SPLIT_RND))
nb_segs = rte_rand() % tx_pkt_nb_segs + 1;
else
nb_segs = tx_pkt_nb_segs;
if (nb_segs > 1) {
if (rte_mempool_get_bulk(mbp, (void **)pkt_segs, nb_segs - 1))
return false;
}
rte_pktmbuf_reset_headroom(pkt);
pkt->data_len = tx_pkt_seg_lengths[0];
pkt->ol_flags &= EXT_ATTACHED_MBUF;
pkt->ol_flags |= ol_flags;
pkt->vlan_tci = vlan_tci;
pkt->vlan_tci_outer = vlan_tci_outer;
pkt->l2_len = sizeof(struct rte_ether_hdr);
pkt->l3_len = sizeof(struct rte_ipv4_hdr);
pkt_len = pkt->data_len;
pkt_seg = pkt;
for (i = 1; i < nb_segs; i++) {
pkt_seg->next = pkt_segs[i - 1];
pkt_seg = pkt_seg->next;
pkt_seg->data_len = tx_pkt_seg_lengths[i];
pkt_len += pkt_seg->data_len;
}
pkt_seg->next = NULL; /* Last segment of packet. */
/*
* Copy headers in first packet segment(s).
*/
copy_buf_to_pkt(eth_hdr, sizeof(*eth_hdr), pkt, 0);
copy_buf_to_pkt(&pkt_ip_hdr, sizeof(pkt_ip_hdr), pkt,
sizeof(struct rte_ether_hdr));
if (txonly_multi_flow) {
uint8_t ip_var = RTE_PER_LCORE(_ip_var);
struct rte_ipv4_hdr *ip_hdr;
uint32_t addr;
ip_hdr = rte_pktmbuf_mtod_offset(pkt,
struct rte_ipv4_hdr *,
sizeof(struct rte_ether_hdr));
/*
* Generate multiple flows by varying IP src addr. This
* enables packets are well distributed by RSS in
* receiver side if any and txonly mode can be a decent
* packet generator for developer's quick performance
* regression test.
*/
addr = (tx_ip_dst_addr | (ip_var++ << 8)) + rte_lcore_id();
ip_hdr->src_addr = rte_cpu_to_be_32(addr);
RTE_PER_LCORE(_ip_var) = ip_var;
}
copy_buf_to_pkt(&pkt_udp_hdr, sizeof(pkt_udp_hdr), pkt,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr));
if (unlikely(timestamp_enable)) {
uint64_t skew = RTE_PER_LCORE(timestamp_qskew);
struct {
rte_be32_t signature;
rte_be16_t pkt_idx;
rte_be16_t queue_idx;
rte_be64_t ts;
} timestamp_mark;
if (unlikely(!skew)) {
struct rte_eth_dev *dev = &rte_eth_devices[fs->tx_port];
unsigned int txqs_n = dev->data->nb_tx_queues;
uint64_t phase = tx_pkt_times_inter * fs->tx_queue /
(txqs_n ? txqs_n : 1);
/*
* Initialize the scheduling time phase shift
* depending on queue index.
*/
skew = timestamp_initial[fs->tx_port] +
tx_pkt_times_inter + phase;
RTE_PER_LCORE(timestamp_qskew) = skew;
}
timestamp_mark.pkt_idx = rte_cpu_to_be_16(idx);
timestamp_mark.queue_idx = rte_cpu_to_be_16(fs->tx_queue);
timestamp_mark.signature = rte_cpu_to_be_32(0xBEEFC0DE);
if (unlikely(!idx)) {
skew += tx_pkt_times_inter;
pkt->ol_flags |= timestamp_mask;
*RTE_MBUF_DYNFIELD
(pkt, timestamp_off, uint64_t *) = skew;
RTE_PER_LCORE(timestamp_qskew) = skew;
timestamp_mark.ts = rte_cpu_to_be_64(skew);
} else if (tx_pkt_times_intra) {
skew += tx_pkt_times_intra;
pkt->ol_flags |= timestamp_mask;
*RTE_MBUF_DYNFIELD
(pkt, timestamp_off, uint64_t *) = skew;
RTE_PER_LCORE(timestamp_qskew) = skew;
timestamp_mark.ts = rte_cpu_to_be_64(skew);
} else {
timestamp_mark.ts = RTE_BE64(0);
}
copy_buf_to_pkt(&timestamp_mark, sizeof(timestamp_mark), pkt,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(pkt_udp_hdr));
}
/*
* Complete first mbuf of packet and append it to the
* burst of packets to be transmitted.
*/
pkt->nb_segs = nb_segs;
pkt->pkt_len = pkt_len;
return true;
}
/*
* Transmit a burst of multi-segments packets.
*/
static void
pkt_burst_transmit(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *txp;
struct rte_mbuf *pkt;
struct rte_mempool *mbp;
struct rte_ether_hdr eth_hdr;
uint16_t nb_tx;
uint16_t nb_pkt;
uint16_t vlan_tci, vlan_tci_outer;
uint32_t retry;
uint64_t ol_flags = 0;
uint64_t tx_offloads;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t start_tsc;
uint64_t end_tsc;
uint64_t core_cycles;
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
start_tsc = rte_rdtsc();
#endif
mbp = current_fwd_lcore()->mbp;
txp = &ports[fs->tx_port];
tx_offloads = txp->dev_conf.txmode.offloads;
vlan_tci = txp->tx_vlan_id;
vlan_tci_outer = txp->tx_vlan_id_outer;
if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT)
ol_flags = PKT_TX_VLAN_PKT;
if (tx_offloads & DEV_TX_OFFLOAD_QINQ_INSERT)
ol_flags |= PKT_TX_QINQ_PKT;
if (tx_offloads & DEV_TX_OFFLOAD_MACSEC_INSERT)
ol_flags |= PKT_TX_MACSEC;
/*
* Initialize Ethernet header.
*/
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], &eth_hdr.d_addr);
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, &eth_hdr.s_addr);
eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
if (rte_mempool_get_bulk(mbp, (void **)pkts_burst,
nb_pkt_per_burst) == 0) {
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
if (unlikely(!pkt_burst_prepare(pkts_burst[nb_pkt], mbp,
&eth_hdr, vlan_tci,
vlan_tci_outer,
ol_flags,
nb_pkt, fs))) {
rte_mempool_put_bulk(mbp,
(void **)&pkts_burst[nb_pkt],
nb_pkt_per_burst - nb_pkt);
break;
}
}
} else {
for (nb_pkt = 0; nb_pkt < nb_pkt_per_burst; nb_pkt++) {
pkt = rte_mbuf_raw_alloc(mbp);
if (pkt == NULL)
break;
if (unlikely(!pkt_burst_prepare(pkt, mbp, &eth_hdr,
vlan_tci,
vlan_tci_outer,
ol_flags,
nb_pkt, fs))) {
rte_pktmbuf_free(pkt);
break;
}
pkts_burst[nb_pkt] = pkt;
}
}
if (nb_pkt == 0)
return;
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_pkt);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_pkt) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_pkt && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts_burst[nb_tx], nb_pkt - nb_tx);
}
}
fs->tx_packets += nb_tx;
if (txonly_multi_flow)
RTE_PER_LCORE(_ip_var) -= nb_pkt - nb_tx;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
if (unlikely(nb_tx < nb_pkt)) {
if (verbose_level > 0 && fs->fwd_dropped == 0)
printf("port %d tx_queue %d - drop "
"(nb_pkt:%u - nb_tx:%u)=%u packets\n",
fs->tx_port, fs->tx_queue,
(unsigned) nb_pkt, (unsigned) nb_tx,
(unsigned) (nb_pkt - nb_tx));
fs->fwd_dropped += (nb_pkt - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_pkt);
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
end_tsc = rte_rdtsc();
core_cycles = (end_tsc - start_tsc);
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}
static void
tx_only_begin(portid_t pi)
{
uint16_t pkt_data_len;
int dynf;
pkt_data_len = (uint16_t) (tx_pkt_length - (
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr)));
setup_pkt_udp_ip_headers(&pkt_ip_hdr, &pkt_udp_hdr, pkt_data_len);
timestamp_enable = false;
timestamp_mask = 0;
timestamp_off = -1;
RTE_PER_LCORE(timestamp_qskew) = 0;
dynf = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
if (dynf >= 0)
timestamp_mask = 1ULL << dynf;
dynf = rte_mbuf_dynfield_lookup
(RTE_MBUF_DYNFIELD_TIMESTAMP_NAME, NULL);
if (dynf >= 0)
timestamp_off = dynf;
timestamp_enable = tx_pkt_times_inter &&
timestamp_mask &&
timestamp_off >= 0 &&
!rte_eth_read_clock(pi, &timestamp_initial[pi]);
}
struct fwd_engine tx_only_engine = {
.fwd_mode_name = "txonly",
.port_fwd_begin = tx_only_begin,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_transmit,
};