Bruce Richardson e07a3ed786 event/opdl: fix license header and SPDX tags
This patch ensures that the OPDL files all contain correct SPDX tags.
The following changes were made to achieve this:
* replace license text with SPDX tag
* correct occurences where SPDX tag was not on first line of file
* ensure license years were correct

Fixes: 4236ce9bf5bf ("event/opdl: add OPDL ring infrastructure library")
Fixes: 3c7f3dcfb099 ("event/opdl: add PMD main body and helper function")
Fixes: d548ef513cd7 ("event/opdl: add unit tests")

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Liang Ma <liang.j.ma@intel.com>
2018-02-01 02:48:55 +01:00

1058 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <unistd.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_debug.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_eventdev.h>
#include <rte_bus_vdev.h>
#include <rte_pause.h>
#include "opdl_evdev.h"
#include "opdl_log.h"
#define MAX_PORTS 16
#define MAX_QIDS 16
#define NUM_PACKETS (1<<18)
#define NUM_EVENTS 256
#define BURST_SIZE 32
static int evdev;
struct test {
struct rte_mempool *mbuf_pool;
uint8_t port[MAX_PORTS];
uint8_t qid[MAX_QIDS];
int nb_qids;
};
static struct rte_mempool *eventdev_func_mempool;
static __rte_always_inline struct rte_mbuf *
rte_gen_arp(int portid, struct rte_mempool *mp)
{
/*
* len = 14 + 46
* ARP, Request who-has 10.0.0.1 tell 10.0.0.2, length 46
*/
static const uint8_t arp_request[] = {
/*0x0000:*/ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xec, 0xa8,
0x6b, 0xfd, 0x02, 0x29, 0x08, 0x06, 0x00, 0x01,
/*0x0010:*/ 0x08, 0x00, 0x06, 0x04, 0x00, 0x01, 0xec, 0xa8,
0x6b, 0xfd, 0x02, 0x29, 0x0a, 0x00, 0x00, 0x01,
/*0x0020:*/ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/*0x0030:*/ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
struct rte_mbuf *m;
int pkt_len = sizeof(arp_request) - 1;
m = rte_pktmbuf_alloc(mp);
if (!m)
return 0;
memcpy((void *)((uintptr_t)m->buf_addr + m->data_off),
arp_request, pkt_len);
rte_pktmbuf_pkt_len(m) = pkt_len;
rte_pktmbuf_data_len(m) = pkt_len;
RTE_SET_USED(portid);
return m;
}
/* initialization and config */
static __rte_always_inline int
init(struct test *t, int nb_queues, int nb_ports)
{
struct rte_event_dev_config config = {
.nb_event_queues = nb_queues,
.nb_event_ports = nb_ports,
.nb_event_queue_flows = 1024,
.nb_events_limit = 4096,
.nb_event_port_dequeue_depth = 128,
.nb_event_port_enqueue_depth = 128,
};
int ret;
void *temp = t->mbuf_pool; /* save and restore mbuf pool */
memset(t, 0, sizeof(*t));
t->mbuf_pool = temp;
ret = rte_event_dev_configure(evdev, &config);
if (ret < 0)
PMD_DRV_LOG(ERR, "%d: Error configuring device\n", __LINE__);
return ret;
};
static __rte_always_inline int
create_ports(struct test *t, int num_ports)
{
int i;
static const struct rte_event_port_conf conf = {
.new_event_threshold = 1024,
.dequeue_depth = 32,
.enqueue_depth = 32,
};
if (num_ports > MAX_PORTS)
return -1;
for (i = 0; i < num_ports; i++) {
if (rte_event_port_setup(evdev, i, &conf) < 0) {
PMD_DRV_LOG(ERR, "Error setting up port %d\n", i);
return -1;
}
t->port[i] = i;
}
return 0;
};
static __rte_always_inline int
create_queues_type(struct test *t, int num_qids, enum queue_type flags)
{
int i;
uint8_t type;
switch (flags) {
case OPDL_Q_TYPE_ORDERED:
type = RTE_SCHED_TYPE_ORDERED;
break;
case OPDL_Q_TYPE_ATOMIC:
type = RTE_SCHED_TYPE_ATOMIC;
break;
default:
type = 0;
}
/* Q creation */
const struct rte_event_queue_conf conf = {
.event_queue_cfg =
(flags == OPDL_Q_TYPE_SINGLE_LINK ?
RTE_EVENT_QUEUE_CFG_SINGLE_LINK : 0),
.schedule_type = type,
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
.nb_atomic_flows = 1024,
.nb_atomic_order_sequences = 1024,
};
for (i = t->nb_qids ; i < t->nb_qids + num_qids; i++) {
if (rte_event_queue_setup(evdev, i, &conf) < 0) {
PMD_DRV_LOG(ERR, "%d: error creating qid %d\n ",
__LINE__, i);
return -1;
}
t->qid[i] = i;
}
t->nb_qids += num_qids;
if (t->nb_qids > MAX_QIDS)
return -1;
return 0;
}
/* destruction */
static __rte_always_inline int
cleanup(struct test *t __rte_unused)
{
rte_event_dev_stop(evdev);
rte_event_dev_close(evdev);
PMD_DRV_LOG(ERR, "clean up for test done\n");
return 0;
};
static int
ordered_basic(struct test *t)
{
const uint8_t rx_port = 0;
const uint8_t w1_port = 1;
const uint8_t w3_port = 3;
const uint8_t tx_port = 4;
int err;
uint32_t i;
uint32_t deq_pkts;
struct rte_mbuf *mbufs[3];
const uint32_t MAGIC_SEQN = 1234;
/* Create instance with 5 ports */
if (init(t, 2, tx_port+1) < 0 ||
create_ports(t, tx_port+1) < 0 ||
create_queues_type(t, 2, OPDL_Q_TYPE_ORDERED)) {
PMD_DRV_LOG(ERR, "%d: Error initializing device\n", __LINE__);
return -1;
}
/*
* CQ mapping to QID
* We need three ports, all mapped to the same ordered qid0. Then we'll
* take a packet out to each port, re-enqueue in reverse order,
* then make sure the reordering has taken place properly when we
* dequeue from the tx_port.
*
* Simplified test setup diagram:
*
* rx_port w1_port
* \ / \
* qid0 - w2_port - qid1
* \ / \
* w3_port tx_port
*/
/* CQ mapping to QID for LB ports (directed mapped on create) */
for (i = w1_port; i <= w3_port; i++) {
err = rte_event_port_link(evdev, t->port[i], &t->qid[0], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error mapping lb qid\n",
__LINE__);
cleanup(t);
return -1;
}
}
err = rte_event_port_link(evdev, t->port[tx_port], &t->qid[1], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error mapping TX qid\n", __LINE__);
cleanup(t);
return -1;
}
if (rte_event_dev_start(evdev) < 0) {
PMD_DRV_LOG(ERR, "%d: Error with start call\n", __LINE__);
return -1;
}
/* Enqueue 3 packets to the rx port */
for (i = 0; i < 3; i++) {
struct rte_event ev;
mbufs[i] = rte_gen_arp(0, t->mbuf_pool);
if (!mbufs[i]) {
PMD_DRV_LOG(ERR, "%d: gen of pkt failed\n", __LINE__);
return -1;
}
ev.queue_id = t->qid[0];
ev.op = RTE_EVENT_OP_NEW;
ev.mbuf = mbufs[i];
mbufs[i]->seqn = MAGIC_SEQN + i;
/* generate pkt and enqueue */
err = rte_event_enqueue_burst(evdev, t->port[rx_port], &ev, 1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: Failed to enqueue pkt %u, retval = %u\n",
__LINE__, i, err);
return -1;
}
}
/* use extra slot to make logic in loops easier */
struct rte_event deq_ev[w3_port + 1];
uint32_t seq = 0;
/* Dequeue the 3 packets, one from each worker port */
for (i = w1_port; i <= w3_port; i++) {
deq_pkts = rte_event_dequeue_burst(evdev, t->port[i],
&deq_ev[i], 1, 0);
if (deq_pkts != 1) {
PMD_DRV_LOG(ERR, "%d: Failed to deq\n", __LINE__);
rte_event_dev_dump(evdev, stdout);
return -1;
}
seq = deq_ev[i].mbuf->seqn - MAGIC_SEQN;
if (seq != (i-1)) {
PMD_DRV_LOG(ERR, " seq test failed ! eq is %d , "
"port number is %u\n", seq, i);
return -1;
}
}
/* Enqueue each packet in reverse order, flushing after each one */
for (i = w3_port; i >= w1_port; i--) {
deq_ev[i].op = RTE_EVENT_OP_FORWARD;
deq_ev[i].queue_id = t->qid[1];
err = rte_event_enqueue_burst(evdev, t->port[i], &deq_ev[i], 1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: Failed to enqueue\n", __LINE__);
return -1;
}
}
/* dequeue from the tx ports, we should get 3 packets */
deq_pkts = rte_event_dequeue_burst(evdev, t->port[tx_port], deq_ev,
3, 0);
/* Check to see if we've got all 3 packets */
if (deq_pkts != 3) {
PMD_DRV_LOG(ERR, "%d: expected 3 pkts at tx port got %d from port %d\n",
__LINE__, deq_pkts, tx_port);
rte_event_dev_dump(evdev, stdout);
return 1;
}
/* Destroy the instance */
cleanup(t);
return 0;
}
static int
atomic_basic(struct test *t)
{
const uint8_t rx_port = 0;
const uint8_t w1_port = 1;
const uint8_t w3_port = 3;
const uint8_t tx_port = 4;
int err;
int i;
uint32_t deq_pkts;
struct rte_mbuf *mbufs[3];
const uint32_t MAGIC_SEQN = 1234;
/* Create instance with 5 ports */
if (init(t, 2, tx_port+1) < 0 ||
create_ports(t, tx_port+1) < 0 ||
create_queues_type(t, 2, OPDL_Q_TYPE_ATOMIC)) {
PMD_DRV_LOG(ERR, "%d: Error initializing device\n", __LINE__);
return -1;
}
/*
* CQ mapping to QID
* We need three ports, all mapped to the same ordered qid0. Then we'll
* take a packet out to each port, re-enqueue in reverse order,
* then make sure the reordering has taken place properly when we
* dequeue from the tx_port.
*
* Simplified test setup diagram:
*
* rx_port w1_port
* \ / \
* qid0 - w2_port - qid1
* \ / \
* w3_port tx_port
*/
/* CQ mapping to QID for Atomic ports (directed mapped on create) */
for (i = w1_port; i <= w3_port; i++) {
err = rte_event_port_link(evdev, t->port[i], &t->qid[0], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error mapping lb qid\n",
__LINE__);
cleanup(t);
return -1;
}
}
err = rte_event_port_link(evdev, t->port[tx_port], &t->qid[1], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error mapping TX qid\n", __LINE__);
cleanup(t);
return -1;
}
if (rte_event_dev_start(evdev) < 0) {
PMD_DRV_LOG(ERR, "%d: Error with start call\n", __LINE__);
return -1;
}
/* Enqueue 3 packets to the rx port */
for (i = 0; i < 3; i++) {
struct rte_event ev;
mbufs[i] = rte_gen_arp(0, t->mbuf_pool);
if (!mbufs[i]) {
PMD_DRV_LOG(ERR, "%d: gen of pkt failed\n", __LINE__);
return -1;
}
ev.queue_id = t->qid[0];
ev.op = RTE_EVENT_OP_NEW;
ev.flow_id = 1;
ev.mbuf = mbufs[i];
mbufs[i]->seqn = MAGIC_SEQN + i;
/* generate pkt and enqueue */
err = rte_event_enqueue_burst(evdev, t->port[rx_port], &ev, 1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: Failed to enqueue pkt %u, retval = %u\n",
__LINE__, i, err);
return -1;
}
}
/* use extra slot to make logic in loops easier */
struct rte_event deq_ev[w3_port + 1];
/* Dequeue the 3 packets, one from each worker port */
for (i = w1_port; i <= w3_port; i++) {
deq_pkts = rte_event_dequeue_burst(evdev, t->port[i],
deq_ev, 3, 0);
if (t->port[i] != 2) {
if (deq_pkts != 0) {
PMD_DRV_LOG(ERR, "%d: deq none zero !\n",
__LINE__);
rte_event_dev_dump(evdev, stdout);
return -1;
}
} else {
if (deq_pkts != 3) {
PMD_DRV_LOG(ERR, "%d: deq not eqal to 3 %u !\n",
__LINE__, deq_pkts);
rte_event_dev_dump(evdev, stdout);
return -1;
}
int j;
for (j = 0; j < 3; j++) {
deq_ev[j].op = RTE_EVENT_OP_FORWARD;
deq_ev[j].queue_id = t->qid[1];
}
err = rte_event_enqueue_burst(evdev, t->port[i],
deq_ev, 3);
if (err != 3) {
PMD_DRV_LOG(ERR, "port %d: Failed to enqueue pkt %u, "
"retval = %u\n",
t->port[i], 3, err);
return -1;
}
}
}
/* dequeue from the tx ports, we should get 3 packets */
deq_pkts = rte_event_dequeue_burst(evdev, t->port[tx_port], deq_ev,
3, 0);
/* Check to see if we've got all 3 packets */
if (deq_pkts != 3) {
PMD_DRV_LOG(ERR, "%d: expected 3 pkts at tx port got %d from port %d\n",
__LINE__, deq_pkts, tx_port);
rte_event_dev_dump(evdev, stdout);
return 1;
}
cleanup(t);
return 0;
}
static __rte_always_inline int
check_qid_stats(uint32_t id[], int index)
{
if (index == 0) {
if (id[0] != 3 || id[1] != 3
|| id[2] != 3)
return -1;
} else if (index == 1) {
if (id[0] != 5 || id[1] != 5
|| id[2] != 2)
return -1;
} else if (index == 2) {
if (id[0] != 3 || id[1] != 1
|| id[2] != 1)
return -1;
}
return 0;
}
static int
check_statistics(void)
{
int num_ports = 3; /* Hard-coded for this app */
int i;
for (i = 0; i < num_ports; i++) {
int num_stats, num_stats_returned;
num_stats = rte_event_dev_xstats_names_get(0,
RTE_EVENT_DEV_XSTATS_PORT,
i,
NULL,
NULL,
0);
if (num_stats > 0) {
uint32_t id[num_stats];
struct rte_event_dev_xstats_name names[num_stats];
uint64_t values[num_stats];
num_stats_returned = rte_event_dev_xstats_names_get(0,
RTE_EVENT_DEV_XSTATS_PORT,
i,
names,
id,
num_stats);
if (num_stats == num_stats_returned) {
num_stats_returned = rte_event_dev_xstats_get(0,
RTE_EVENT_DEV_XSTATS_PORT,
i,
id,
values,
num_stats);
if (num_stats == num_stats_returned) {
int err;
err = check_qid_stats(id, i);
if (err)
return err;
} else {
return -1;
}
} else {
return -1;
}
} else {
return -1;
}
}
return 0;
}
#define OLD_NUM_PACKETS 3
#define NEW_NUM_PACKETS 2
static int
single_link_w_stats(struct test *t)
{
const uint8_t rx_port = 0;
const uint8_t w1_port = 1;
const uint8_t tx_port = 2;
int err;
int i;
uint32_t deq_pkts;
struct rte_mbuf *mbufs[3];
RTE_SET_USED(mbufs);
/* Create instance with 3 ports */
if (init(t, 2, tx_port + 1) < 0 ||
create_ports(t, 3) < 0 || /* 0,1,2 */
create_queues_type(t, 1, OPDL_Q_TYPE_SINGLE_LINK) < 0 ||
create_queues_type(t, 1, OPDL_Q_TYPE_ORDERED) < 0) {
PMD_DRV_LOG(ERR, "%d: Error initializing device\n", __LINE__);
return -1;
}
/*
*
* Simplified test setup diagram:
*
* rx_port(0)
* \
* qid0 - w1_port(1) - qid1
* \
* tx_port(2)
*/
err = rte_event_port_link(evdev, t->port[1], &t->qid[0], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error linking port:[%u] to queue:[%u]\n",
__LINE__,
t->port[1],
t->qid[0]);
cleanup(t);
return -1;
}
err = rte_event_port_link(evdev, t->port[2], &t->qid[1], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error linking port:[%u] to queue:[%u]\n",
__LINE__,
t->port[2],
t->qid[1]);
cleanup(t);
return -1;
}
if (rte_event_dev_start(evdev) != 0) {
PMD_DRV_LOG(ERR, "%d: failed to start device\n", __LINE__);
cleanup(t);
return -1;
}
/*
* Enqueue 3 packets to the rx port
*/
for (i = 0; i < 3; i++) {
struct rte_event ev;
mbufs[i] = rte_gen_arp(0, t->mbuf_pool);
if (!mbufs[i]) {
PMD_DRV_LOG(ERR, "%d: gen of pkt failed\n", __LINE__);
return -1;
}
ev.queue_id = t->qid[0];
ev.op = RTE_EVENT_OP_NEW;
ev.mbuf = mbufs[i];
mbufs[i]->seqn = 1234 + i;
/* generate pkt and enqueue */
err = rte_event_enqueue_burst(evdev, t->port[rx_port], &ev, 1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: Failed to enqueue pkt %u, retval = %u\n",
__LINE__,
t->port[rx_port],
err);
return -1;
}
}
/* Dequeue the 3 packets, from SINGLE_LINK worker port */
struct rte_event deq_ev[3];
deq_pkts = rte_event_dequeue_burst(evdev,
t->port[w1_port],
deq_ev, 3, 0);
if (deq_pkts != 3) {
PMD_DRV_LOG(ERR, "%d: deq not 3 !\n", __LINE__);
cleanup(t);
return -1;
}
/* Just enqueue 2 onto new ring */
for (i = 0; i < NEW_NUM_PACKETS; i++)
deq_ev[i].queue_id = t->qid[1];
deq_pkts = rte_event_enqueue_burst(evdev,
t->port[w1_port],
deq_ev,
NEW_NUM_PACKETS);
if (deq_pkts != 2) {
PMD_DRV_LOG(ERR, "%d: enq not 2 but %u!\n", __LINE__, deq_pkts);
cleanup(t);
return -1;
}
/* dequeue from the tx ports, we should get 2 packets */
deq_pkts = rte_event_dequeue_burst(evdev,
t->port[tx_port],
deq_ev,
3,
0);
/* Check to see if we've got all 2 packets */
if (deq_pkts != 2) {
PMD_DRV_LOG(ERR, "%d: expected 2 pkts at tx port got %d from port %d\n",
__LINE__, deq_pkts, tx_port);
cleanup(t);
return -1;
}
if (!check_statistics()) {
PMD_DRV_LOG(ERR, "xstats check failed");
cleanup(t);
return -1;
}
cleanup(t);
return 0;
}
static int
single_link(struct test *t)
{
/* const uint8_t rx_port = 0; */
/* const uint8_t w1_port = 1; */
/* const uint8_t w3_port = 3; */
const uint8_t tx_port = 2;
int err;
struct rte_mbuf *mbufs[3];
RTE_SET_USED(mbufs);
/* Create instance with 5 ports */
if (init(t, 2, tx_port+1) < 0 ||
create_ports(t, 3) < 0 || /* 0,1,2 */
create_queues_type(t, 1, OPDL_Q_TYPE_SINGLE_LINK) < 0 ||
create_queues_type(t, 1, OPDL_Q_TYPE_ORDERED) < 0) {
PMD_DRV_LOG(ERR, "%d: Error initializing device\n", __LINE__);
return -1;
}
/*
*
* Simplified test setup diagram:
*
* rx_port(0)
* \
* qid0 - w1_port(1) - qid1
* \
* tx_port(2)
*/
err = rte_event_port_link(evdev, t->port[1], &t->qid[0], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error mapping lb qid\n", __LINE__);
cleanup(t);
return -1;
}
err = rte_event_port_link(evdev, t->port[2], &t->qid[0], NULL,
1);
if (err != 1) {
PMD_DRV_LOG(ERR, "%d: error mapping lb qid\n", __LINE__);
cleanup(t);
return -1;
}
if (rte_event_dev_start(evdev) == 0) {
PMD_DRV_LOG(ERR, "%d: start DIDN'T FAIL with more than 1 "
"SINGLE_LINK PORT\n", __LINE__);
cleanup(t);
return -1;
}
cleanup(t);
return 0;
}
static __rte_always_inline void
populate_event_burst(struct rte_event ev[],
uint8_t qid,
uint16_t num_events)
{
uint16_t i;
for (i = 0; i < num_events; i++) {
ev[i].flow_id = 1;
ev[i].op = RTE_EVENT_OP_NEW;
ev[i].sched_type = RTE_SCHED_TYPE_ORDERED;
ev[i].queue_id = qid;
ev[i].event_type = RTE_EVENT_TYPE_ETHDEV;
ev[i].sub_event_type = 0;
ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
ev[i].mbuf = (struct rte_mbuf *)0xdead0000;
}
}
#define NUM_QUEUES 3
#define BATCH_SIZE 32
static int
qid_basic(struct test *t)
{
int err = 0;
uint8_t q_id = 0;
uint8_t p_id = 0;
uint32_t num_events;
uint32_t i;
struct rte_event ev[BATCH_SIZE];
/* Create instance with 4 ports */
if (init(t, NUM_QUEUES, NUM_QUEUES+1) < 0 ||
create_ports(t, NUM_QUEUES+1) < 0 ||
create_queues_type(t, NUM_QUEUES, OPDL_Q_TYPE_ORDERED)) {
PMD_DRV_LOG(ERR, "%d: Error initializing device\n", __LINE__);
return -1;
}
for (i = 0; i < NUM_QUEUES; i++) {
int nb_linked;
q_id = i;
nb_linked = rte_event_port_link(evdev,
i+1, /* port = q_id + 1*/
&q_id,
NULL,
1);
if (nb_linked != 1) {
PMD_DRV_LOG(ERR, "%s:%d: error mapping port:%u to queue:%u\n",
__FILE__,
__LINE__,
i + 1,
q_id);
err = -1;
break;
}
}
/* Try and link to the same port again */
if (!err) {
uint8_t t_qid = 0;
if (rte_event_port_link(evdev,
1,
&t_qid,
NULL,
1) > 0) {
PMD_DRV_LOG(ERR, "%s:%d: Second call to port link on same port DID NOT fail\n",
__FILE__,
__LINE__);
err = -1;
}
uint32_t test_num_events;
if (!err) {
test_num_events = rte_event_dequeue_burst(evdev,
p_id,
ev,
BATCH_SIZE,
0);
if (test_num_events != 0) {
PMD_DRV_LOG(ERR, "%s:%d: Error dequeuing 0 packets from port %u on stopped device\n",
__FILE__,
__LINE__,
p_id);
err = -1;
}
}
if (!err) {
test_num_events = rte_event_enqueue_burst(evdev,
p_id,
ev,
BATCH_SIZE);
if (test_num_events != 0) {
PMD_DRV_LOG(ERR, "%s:%d: Error enqueuing 0 packets to port %u on stopped device\n",
__FILE__,
__LINE__,
p_id);
err = -1;
}
}
}
/* Start the devicea */
if (!err) {
if (rte_event_dev_start(evdev) < 0) {
PMD_DRV_LOG(ERR, "%s:%d: Error with start call\n",
__FILE__,
__LINE__);
err = -1;
}
}
/* Check we can't do any more links now that device is started.*/
if (!err) {
uint8_t t_qid = 0;
if (rte_event_port_link(evdev,
1,
&t_qid,
NULL,
1) > 0) {
PMD_DRV_LOG(ERR, "%s:%d: Call to port link on started device DID NOT fail\n",
__FILE__,
__LINE__);
err = -1;
}
}
if (!err) {
q_id = 0;
populate_event_burst(ev,
q_id,
BATCH_SIZE);
num_events = rte_event_enqueue_burst(evdev,
p_id,
ev,
BATCH_SIZE);
if (num_events != BATCH_SIZE) {
PMD_DRV_LOG(ERR, "%s:%d: Error enqueuing rx packets\n",
__FILE__,
__LINE__);
err = -1;
}
}
if (!err) {
while (++p_id < NUM_QUEUES) {
num_events = rte_event_dequeue_burst(evdev,
p_id,
ev,
BATCH_SIZE,
0);
if (num_events != BATCH_SIZE) {
PMD_DRV_LOG(ERR, "%s:%d: Error dequeuing packets from port %u\n",
__FILE__,
__LINE__,
p_id);
err = -1;
break;
}
if (ev[0].queue_id != q_id) {
PMD_DRV_LOG(ERR, "%s:%d: Error event portid[%u] q_id:[%u] does not match expected:[%u]\n",
__FILE__,
__LINE__,
p_id,
ev[0].queue_id,
q_id);
err = -1;
break;
}
populate_event_burst(ev,
++q_id,
BATCH_SIZE);
num_events = rte_event_enqueue_burst(evdev,
p_id,
ev,
BATCH_SIZE);
if (num_events != BATCH_SIZE) {
PMD_DRV_LOG(ERR, "%s:%d: Error enqueuing packets from port:%u to queue:%u\n",
__FILE__,
__LINE__,
p_id,
q_id);
err = -1;
break;
}
}
}
if (!err) {
num_events = rte_event_dequeue_burst(evdev,
p_id,
ev,
BATCH_SIZE,
0);
if (num_events != BATCH_SIZE) {
PMD_DRV_LOG(ERR, "%s:%d: Error dequeuing packets from tx port %u\n",
__FILE__,
__LINE__,
p_id);
err = -1;
}
}
cleanup(t);
return err;
}
int
opdl_selftest(void)
{
struct test *t = malloc(sizeof(struct test));
int ret;
const char *eventdev_name = "event_opdl0";
evdev = rte_event_dev_get_dev_id(eventdev_name);
if (evdev < 0) {
PMD_DRV_LOG(ERR, "%d: Eventdev %s not found - creating.\n",
__LINE__, eventdev_name);
/* turn on stats by default */
if (rte_vdev_init(eventdev_name, "do_validation=1") < 0) {
PMD_DRV_LOG(ERR, "Error creating eventdev\n");
free(t);
return -1;
}
evdev = rte_event_dev_get_dev_id(eventdev_name);
if (evdev < 0) {
PMD_DRV_LOG(ERR, "Error finding newly created eventdev\n");
free(t);
return -1;
}
}
/* Only create mbuf pool once, reuse for each test run */
if (!eventdev_func_mempool) {
eventdev_func_mempool = rte_pktmbuf_pool_create(
"EVENTDEV_SW_SA_MBUF_POOL",
(1<<12), /* 4k buffers */
32 /*MBUF_CACHE_SIZE*/,
0,
512, /* use very small mbufs */
rte_socket_id());
if (!eventdev_func_mempool) {
PMD_DRV_LOG(ERR, "ERROR creating mempool\n");
free(t);
return -1;
}
}
t->mbuf_pool = eventdev_func_mempool;
PMD_DRV_LOG(ERR, "*** Running Ordered Basic test...\n");
ret = ordered_basic(t);
PMD_DRV_LOG(ERR, "*** Running Atomic Basic test...\n");
ret = atomic_basic(t);
PMD_DRV_LOG(ERR, "*** Running QID Basic test...\n");
ret = qid_basic(t);
PMD_DRV_LOG(ERR, "*** Running SINGLE LINK failure test...\n");
ret = single_link(t);
PMD_DRV_LOG(ERR, "*** Running SINGLE LINK w stats test...\n");
ret = single_link_w_stats(t);
/*
* Free test instance, free mempool
*/
rte_mempool_free(t->mbuf_pool);
free(t);
if (ret != 0)
return ret;
return 0;
}