numam-dpdk/lib/librte_cryptodev/rte_crypto_sym.h
Deepak Kumar Jain a59ffe7eb9 cryptodev: add bit-wise handling for SNOW 3G
Wireless algorithms like Snow3G needs input in bits.
In this patch, changes have been made to incorporate this requirement
in both QAT and SW PMD.

Signed-off-by: Deepak Kumar Jain <deepak.k.jain@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2016-03-11 00:18:01 +01:00

659 lines
22 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_CRYPTO_SYM_H_
#define _RTE_CRYPTO_SYM_H_
/**
* @file rte_crypto_sym.h
*
* RTE Definitions for Symmetric Cryptography
*
* Defines symmetric cipher and authentication algorithms and modes, as well
* as supported symmetric crypto operation combinations.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <string.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_mempool.h>
/** Symmetric Cipher Algorithms */
enum rte_crypto_cipher_algorithm {
RTE_CRYPTO_CIPHER_NULL = 1,
/**< NULL cipher algorithm. No mode applies to the NULL algorithm. */
RTE_CRYPTO_CIPHER_3DES_CBC,
/**< Triple DES algorithm in CBC mode */
RTE_CRYPTO_CIPHER_3DES_CTR,
/**< Triple DES algorithm in CTR mode */
RTE_CRYPTO_CIPHER_3DES_ECB,
/**< Triple DES algorithm in ECB mode */
RTE_CRYPTO_CIPHER_AES_CBC,
/**< AES algorithm in CBC mode */
RTE_CRYPTO_CIPHER_AES_CCM,
/**< AES algorithm in CCM mode. When this cipher algorithm is used the
* *RTE_CRYPTO_AUTH_AES_CCM* element of the
* *rte_crypto_hash_algorithm* enum MUST be used to set up the related
* *rte_crypto_auth_xform* structure in the session context or in
* the op_params of the crypto operation structure in the case of a
* session-less crypto operation
*/
RTE_CRYPTO_CIPHER_AES_CTR,
/**< AES algorithm in Counter mode */
RTE_CRYPTO_CIPHER_AES_ECB,
/**< AES algorithm in ECB mode */
RTE_CRYPTO_CIPHER_AES_F8,
/**< AES algorithm in F8 mode */
RTE_CRYPTO_CIPHER_AES_GCM,
/**< AES algorithm in GCM mode. When this cipher algorithm is used the
* *RTE_CRYPTO_AUTH_AES_GCM* element of the
* *rte_crypto_auth_algorithm* enum MUST be used to set up the related
* *rte_crypto_auth_setup_data* structure in the session context or in
* the op_params of the crypto operation structure in the case of a
* session-less crypto operation.
*/
RTE_CRYPTO_CIPHER_AES_XTS,
/**< AES algorithm in XTS mode */
RTE_CRYPTO_CIPHER_ARC4,
/**< (A)RC4 cipher algorithm */
RTE_CRYPTO_CIPHER_KASUMI_F8,
/**< Kasumi algorithm in F8 mode */
RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
/**< SNOW3G algorithm in UEA2 mode */
RTE_CRYPTO_CIPHER_ZUC_EEA3
/**< ZUC algorithm in EEA3 mode */
};
/** Symmetric Cipher Direction */
enum rte_crypto_cipher_operation {
RTE_CRYPTO_CIPHER_OP_ENCRYPT,
/**< Encrypt cipher operation */
RTE_CRYPTO_CIPHER_OP_DECRYPT
/**< Decrypt cipher operation */
};
/**
* Symmetric Cipher Setup Data.
*
* This structure contains data relating to Cipher (Encryption and Decryption)
* use to create a session.
*/
struct rte_crypto_cipher_xform {
enum rte_crypto_cipher_operation op;
/**< This parameter determines if the cipher operation is an encrypt or
* a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
* only encrypt operations are valid.
*/
enum rte_crypto_cipher_algorithm algo;
/**< Cipher algorithm */
struct {
uint8_t *data; /**< pointer to key data */
size_t length; /**< key length in bytes */
} key;
/**< Cipher key
*
* For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
* point to a concatenation of the AES encryption key followed by a
* keymask. As per RFC3711, the keymask should be padded with trailing
* bytes to match the length of the encryption key used.
*
* For AES-XTS mode of operation, two keys must be provided and
* key.data must point to the two keys concatenated together (Key1 ||
* Key2). The cipher key length will contain the total size of both
* keys.
*
* Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
* 192 bits (24 bytes) or 256 bits (32 bytes).
*
* For the CCM mode of operation, the only supported key length is 128
* bits (16 bytes).
*
* For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
* should be set to the combined length of the encryption key and the
* keymask. Since the keymask and the encryption key are the same size,
* key.length should be set to 2 x the AES encryption key length.
*
* For the AES-XTS mode of operation:
* - Two keys must be provided and key.length refers to total length of
* the two keys.
* - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
* - Both keys must have the same size.
**/
};
/** Symmetric Authentication / Hash Algorithms */
enum rte_crypto_auth_algorithm {
RTE_CRYPTO_AUTH_NULL = 1,
/**< NULL hash algorithm. */
RTE_CRYPTO_AUTH_AES_CBC_MAC,
/**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
RTE_CRYPTO_AUTH_AES_CCM,
/**< AES algorithm in CCM mode. This is an authenticated cipher. When
* this hash algorithm is used, the *RTE_CRYPTO_CIPHER_AES_CCM*
* element of the *rte_crypto_cipher_algorithm* enum MUST be used to
* set up the related rte_crypto_cipher_setup_data structure in the
* session context or the corresponding parameter in the crypto
* operation data structures op_params parameter MUST be set for a
* session-less crypto operation.
*/
RTE_CRYPTO_AUTH_AES_CMAC,
/**< AES CMAC algorithm. */
RTE_CRYPTO_AUTH_AES_GCM,
/**< AES algorithm in GCM mode. When this hash algorithm
* is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the
* rte_crypto_cipher_algorithm enum MUST be used to set up the related
* rte_crypto_cipher_setup_data structure in the session context, or
* the corresponding parameter in the crypto operation data structures
* op_params parameter MUST be set for a session-less crypto operation.
*/
RTE_CRYPTO_AUTH_AES_GMAC,
/**< AES GMAC algorithm. When this hash algorithm
* is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the
* rte_crypto_cipher_algorithm enum MUST be used to set up the related
* rte_crypto_cipher_setup_data structure in the session context, or
* the corresponding parameter in the crypto operation data structures
* op_params parameter MUST be set for a session-less crypto operation.
*/
RTE_CRYPTO_AUTH_AES_XCBC_MAC,
/**< AES XCBC algorithm. */
RTE_CRYPTO_AUTH_KASUMI_F9,
/**< Kasumi algorithm in F9 mode. */
RTE_CRYPTO_AUTH_MD5,
/**< MD5 algorithm */
RTE_CRYPTO_AUTH_MD5_HMAC,
/**< HMAC using MD5 algorithm */
RTE_CRYPTO_AUTH_SHA1,
/**< 128 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA1_HMAC,
/**< HMAC using 128 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA224,
/**< 224 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA224_HMAC,
/**< HMAC using 224 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA256,
/**< 256 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA256_HMAC,
/**< HMAC using 256 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA384,
/**< 384 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA384_HMAC,
/**< HMAC using 384 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA512,
/**< 512 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SHA512_HMAC,
/**< HMAC using 512 bit SHA algorithm. */
RTE_CRYPTO_AUTH_SNOW3G_UIA2,
/**< SNOW3G algorithm in UIA2 mode. */
RTE_CRYPTO_AUTH_ZUC_EIA3,
/**< ZUC algorithm in EIA3 mode */
};
/** Symmetric Authentication / Hash Operations */
enum rte_crypto_auth_operation {
RTE_CRYPTO_AUTH_OP_VERIFY, /**< Verify authentication digest */
RTE_CRYPTO_AUTH_OP_GENERATE /**< Generate authentication digest */
};
/**
* Authentication / Hash transform data.
*
* This structure contains data relating to an authentication/hash crypto
* transforms. The fields op, algo and digest_length are common to all
* authentication transforms and MUST be set.
*/
struct rte_crypto_auth_xform {
enum rte_crypto_auth_operation op;
/**< Authentication operation type */
enum rte_crypto_auth_algorithm algo;
/**< Authentication algorithm selection */
struct {
uint8_t *data; /**< pointer to key data */
size_t length; /**< key length in bytes */
} key;
/**< Authentication key data.
* The authentication key length MUST be less than or equal to the
* block size of the algorithm. It is the callers responsibility to
* ensure that the key length is compliant with the standard being used
* (for example RFC 2104, FIPS 198a).
*/
uint32_t digest_length;
/**< Length of the digest to be returned. If the verify option is set,
* this specifies the length of the digest to be compared for the
* session.
*
* If the value is less than the maximum length allowed by the hash,
* the result shall be truncated. If the value is greater than the
* maximum length allowed by the hash then an error will be generated
* by *rte_cryptodev_sym_session_create* or by the
* *rte_cryptodev_sym_enqueue_burst* if using session-less APIs.
*/
uint32_t add_auth_data_length;
/**< The length of the additional authenticated data (AAD) in bytes.
* The maximum permitted value is 240 bytes, unless otherwise specified
* below.
*
* This field must be specified when the hash algorithm is one of the
* following:
*
* - For SNOW3G (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2), this is the
* length of the IV (which should be 16).
*
* - For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM). In this case, this is
* the length of the Additional Authenticated Data (called A, in NIST
* SP800-38D).
*
* - For CCM (@ref RTE_CRYPTO_AUTH_AES_CCM). In this case, this is
* the length of the associated data (called A, in NIST SP800-38C).
* Note that this does NOT include the length of any padding, or the
* 18 bytes reserved at the start of the above field to store the
* block B0 and the encoded length. The maximum permitted value in
* this case is 222 bytes.
*
* @note
* For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of operation
* this field is not used and should be set to 0. Instead the length
* of the AAD data is specified in the message length to hash field of
* the rte_crypto_sym_op_data structure.
*/
};
/** Crypto transformation types */
enum rte_crypto_sym_xform_type {
RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */
RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */
RTE_CRYPTO_SYM_XFORM_CIPHER /**< Cipher xform */
};
/**
* Symmetric crypto transform structure.
*
* This is used to specify the crypto transforms required, multiple transforms
* can be chained together to specify a chain transforms such as authentication
* then cipher, or cipher then authentication. Each transform structure can
* hold a single transform, the type field is used to specify which transform
* is contained within the union
*/
struct rte_crypto_sym_xform {
struct rte_crypto_sym_xform *next;
/**< next xform in chain */
enum rte_crypto_sym_xform_type type
; /**< xform type */
union {
struct rte_crypto_auth_xform auth;
/**< Authentication / hash xform */
struct rte_crypto_cipher_xform cipher;
/**< Cipher xform */
};
};
/**
* Crypto operation session type. This is used to specify whether a crypto
* operation has session structure attached for immutable parameters or if all
* operation information is included in the operation data structure.
*/
enum rte_crypto_sym_op_sess_type {
RTE_CRYPTO_SYM_OP_WITH_SESSION, /**< Session based crypto operation */
RTE_CRYPTO_SYM_OP_SESSIONLESS /**< Session-less crypto operation */
};
struct rte_cryptodev_sym_session;
/**
* Symmetric Cryptographic Operation.
*
* This structure contains data relating to performing symmetric cryptographic
* processing on a referenced mbuf data buffer.
*
* When a symmetric crypto operation is enqueued with the device for processing
* it must have a valid *rte_mbuf* structure attached, via m_src parameter,
* which contains the source data which the crypto operation is to be performed
* on.
*/
struct rte_crypto_sym_op {
struct rte_mbuf *m_src; /**< source mbuf */
struct rte_mbuf *m_dst; /**< destination mbuf */
enum rte_crypto_sym_op_sess_type type;
union {
struct rte_cryptodev_sym_session *session;
/**< Handle for the initialised session context */
struct rte_crypto_sym_xform *xform;
/**< Session-less API crypto operation parameters */
};
struct {
struct {
uint32_t offset;
/**< Starting point for cipher processing, specified
* as number of bytes from start of data in the source
* buffer. The result of the cipher operation will be
* written back into the output buffer starting at
* this location.
*
* @note
* For Snow3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
* this field should be in bits.
*/
uint32_t length;
/**< The message length, in bytes, of the source buffer
* on which the cryptographic operation will be
* computed. This must be a multiple of the block size
* if a block cipher is being used. This is also the
* same as the result length.
*
* @note
* In the case of CCM @ref RTE_CRYPTO_AUTH_AES_CCM,
* this value should not include the length of the
* padding or the length of the MAC; the driver will
* compute the actual number of bytes over which the
* encryption will occur, which will include these
* values.
*
* @note
* For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC, this
* field should be set to 0.
*
* @note
* For Snow3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2
* this field should be in bits.
*/
} data; /**< Data offsets and length for ciphering */
struct {
uint8_t *data;
/**< Initialisation Vector or Counter.
*
* - For block ciphers in CBC or F8 mode, or for Kasumi
* in F8 mode, or for SNOW3G in UEA2 mode, this is the
* Initialisation Vector (IV) value.
*
* - For block ciphers in CTR mode, this is the counter.
*
* - For GCM mode, this is either the IV (if the length
* is 96 bits) or J0 (for other sizes), where J0 is as
* defined by NIST SP800-38D. Regardless of the IV
* length, a full 16 bytes needs to be allocated.
*
* - For CCM mode, the first byte is reserved, and the
* nonce should be written starting at &iv[1] (to allow
* space for the implementation to write in the flags
* in the first byte). Note that a full 16 bytes should
* be allocated, even though the length field will
* have a value less than this.
*
* - For AES-XTS, this is the 128bit tweak, i, from
* IEEE Std 1619-2007.
*
* For optimum performance, the data pointed to SHOULD
* be 8-byte aligned.
*/
phys_addr_t phys_addr;
uint16_t length;
/**< Length of valid IV data.
*
* - For block ciphers in CBC or F8 mode, or for Kasumi
* in F8 mode, or for SNOW3G in UEA2 mode, this is the
* length of the IV (which must be the same as the
* block length of the cipher).
*
* - For block ciphers in CTR mode, this is the length
* of the counter (which must be the same as the block
* length of the cipher).
*
* - For GCM mode, this is either 12 (for 96-bit IVs)
* or 16, in which case data points to J0.
*
* - For CCM mode, this is the length of the nonce,
* which can be in the range 7 to 13 inclusive.
*/
} iv; /**< Initialisation vector parameters */
} cipher;
struct {
struct {
uint32_t offset;
/**< Starting point for hash processing, specified as
* number of bytes from start of packet in source
* buffer.
*
* @note
* For CCM and GCM modes of operation, this field is
* ignored. The field @ref aad field
* should be set instead.
*
* @note For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC)
* mode of operation, this field specifies the start
* of the AAD data in the source buffer.
*
* @note
* For Snow3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2
* this field should be in bits.
*/
uint32_t length;
/**< The message length, in bytes, of the source
* buffer that the hash will be computed on.
*
* @note
* For CCM and GCM modes of operation, this field is
* ignored. The field @ref aad field should be set
* instead.
*
* @note
* For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC mode
* of operation, this field specifies the length of
* the AAD data in the source buffer.
*
* @note
* For Snow3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2
* this field should be in bits.
*/
} data; /**< Data offsets and length for authentication */
struct {
uint8_t *data;
/**< If this member of this structure is set this is a
* pointer to the location where the digest result
* should be inserted (in the case of digest generation)
* or where the purported digest exists (in the case of
* digest verification).
*
* At session creation time, the client specified the
* digest result length with the digest_length member
* of the @ref rte_crypto_auth_xform structure. For
* physical crypto devices the caller must allocate at
* least digest_length of physically contiguous memory
* at this location.
*
* For digest generation, the digest result will
* overwrite any data at this location.
*
* @note
* For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), for
* "digest result" read "authentication tag T".
*
* If this member is not set the digest result is
* understood to be in the destination buffer for
* digest generation, and in the source buffer for
* digest verification. The location of the digest
* result in this case is immediately following the
* region over which the digest is computed.
*/
phys_addr_t phys_addr;
/**< Physical address of digest */
uint16_t length;
/**< Length of digest */
} digest; /**< Digest parameters */
struct {
uint8_t *data;
/**< Pointer to Additional Authenticated Data (AAD)
* needed for authenticated cipher mechanisms (CCM and
* GCM), and to the IV for SNOW3G authentication
* (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2). For other
* authentication mechanisms this pointer is ignored.
*
* The length of the data pointed to by this field is
* set up for the session in the @ref
* rte_crypto_auth_xform structure as part of the @ref
* rte_cryptodev_sym_session_create function call.
* This length must not exceed 240 bytes.
*
* Specifically for CCM (@ref RTE_CRYPTO_AUTH_AES_CCM),
* the caller should setup this field as follows:
*
* - the nonce should be written starting at an offset
* of one byte into the array, leaving room for the
* implementation to write in the flags to the first
* byte.
*
* - the additional authentication data itself should
* be written starting at an offset of 18 bytes into
* the array, leaving room for the length encoding in
* the first two bytes of the second block.
*
* - the array should be big enough to hold the above
* fields, plus any padding to round this up to the
* nearest multiple of the block size (16 bytes).
* Padding will be added by the implementation.
*
* Finally, for GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), the
* caller should setup this field as follows:
*
* - the AAD is written in starting at byte 0
* - the array must be big enough to hold the AAD, plus
* any space to round this up to the nearest multiple
* of the block size (16 bytes).
*
* @note
* For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of
* operation, this field is not used and should be set
* to 0. Instead the AAD data should be placed in the
* source buffer.
*/
phys_addr_t phys_addr; /**< physical address */
uint16_t length; /**< Length of digest */
} aad;
/**< Additional authentication parameters */
} auth;
} __rte_cache_aligned;
/**
* Reset the fields of a symmetric operation to their default values.
*
* @param op The crypto operation to be reset.
*/
static inline void
__rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
{
memset(op, 0, sizeof(*op));
op->type = RTE_CRYPTO_SYM_OP_SESSIONLESS;
}
/**
* Allocate space for symmetric crypto xforms in the private data space of the
* crypto operation. This also defaults the crypto xform type to
* RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
* in the crypto operation
*
* @return
* - On success returns pointer to first crypto xform in crypto operations chain
* - On failure returns NULL
*/
static inline struct rte_crypto_sym_xform *
__rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
void *priv_data, uint8_t nb_xforms)
{
struct rte_crypto_sym_xform *xform;
sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;
do {
xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
} while (xform);
return sym_op->xform;
}
/**
* Attach a session to a symmetric crypto operation
*
* @param sym_op crypto operation
* @param sess cryptodev session
*/
static inline int
__rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
struct rte_cryptodev_sym_session *sess)
{
sym_op->session = sess;
sym_op->type = RTE_CRYPTO_SYM_OP_WITH_SESSION;
return 0;
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_CRYPTO_SYM_H_ */