a7cb2e20d2
Previously, to get MFN address in dom0, this API is a wrapper to obtain the "physical address". As we will removed xen dom0 support, this API is not necessary. Signed-off-by: Jianfeng Tan <jianfeng.tan@intel.com> Acked-by: Bruce Richardson <bruce.richardson@intel.com>
5513 lines
162 KiB
C
5513 lines
162 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
|
* Copyright 2014 6WIND S.A.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_byteorder.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_net.h>
|
|
|
|
#include "ixgbe_logs.h"
|
|
#include "base/ixgbe_api.h"
|
|
#include "base/ixgbe_vf.h"
|
|
#include "ixgbe_ethdev.h"
|
|
#include "base/ixgbe_dcb.h"
|
|
#include "base/ixgbe_common.h"
|
|
#include "ixgbe_rxtx.h"
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
#define IXGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
|
|
#else
|
|
#define IXGBE_TX_IEEE1588_TMST 0
|
|
#endif
|
|
/* Bit Mask to indicate what bits required for building TX context */
|
|
#define IXGBE_TX_OFFLOAD_MASK ( \
|
|
PKT_TX_VLAN_PKT | \
|
|
PKT_TX_IP_CKSUM | \
|
|
PKT_TX_L4_MASK | \
|
|
PKT_TX_TCP_SEG | \
|
|
PKT_TX_MACSEC | \
|
|
PKT_TX_OUTER_IP_CKSUM | \
|
|
IXGBE_TX_IEEE1588_TMST)
|
|
|
|
#define IXGBE_TX_OFFLOAD_NOTSUP_MASK \
|
|
(PKT_TX_OFFLOAD_MASK ^ IXGBE_TX_OFFLOAD_MASK)
|
|
|
|
#if 1
|
|
#define RTE_PMD_USE_PREFETCH
|
|
#endif
|
|
|
|
#ifdef RTE_PMD_USE_PREFETCH
|
|
/*
|
|
* Prefetch a cache line into all cache levels.
|
|
*/
|
|
#define rte_ixgbe_prefetch(p) rte_prefetch0(p)
|
|
#else
|
|
#define rte_ixgbe_prefetch(p) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef RTE_IXGBE_INC_VECTOR
|
|
uint16_t ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts);
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
/*
|
|
* Check for descriptors with their DD bit set and free mbufs.
|
|
* Return the total number of buffers freed.
|
|
*/
|
|
static __rte_always_inline int
|
|
ixgbe_tx_free_bufs(struct ixgbe_tx_queue *txq)
|
|
{
|
|
struct ixgbe_tx_entry *txep;
|
|
uint32_t status;
|
|
int i, nb_free = 0;
|
|
struct rte_mbuf *m, *free[RTE_IXGBE_TX_MAX_FREE_BUF_SZ];
|
|
|
|
/* check DD bit on threshold descriptor */
|
|
status = txq->tx_ring[txq->tx_next_dd].wb.status;
|
|
if (!(status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD)))
|
|
return 0;
|
|
|
|
/*
|
|
* first buffer to free from S/W ring is at index
|
|
* tx_next_dd - (tx_rs_thresh-1)
|
|
*/
|
|
txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
|
|
|
|
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
|
/* free buffers one at a time */
|
|
m = rte_pktmbuf_prefree_seg(txep->mbuf);
|
|
txep->mbuf = NULL;
|
|
|
|
if (unlikely(m == NULL))
|
|
continue;
|
|
|
|
if (nb_free >= RTE_IXGBE_TX_MAX_FREE_BUF_SZ ||
|
|
(nb_free > 0 && m->pool != free[0]->pool)) {
|
|
rte_mempool_put_bulk(free[0]->pool,
|
|
(void **)free, nb_free);
|
|
nb_free = 0;
|
|
}
|
|
|
|
free[nb_free++] = m;
|
|
}
|
|
|
|
if (nb_free > 0)
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
|
|
|
|
/* buffers were freed, update counters */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
|
|
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
return txq->tx_rs_thresh;
|
|
}
|
|
|
|
/* Populate 4 descriptors with data from 4 mbufs */
|
|
static inline void
|
|
tx4(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t buf_dma_addr;
|
|
uint32_t pkt_len;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i, ++txdp, ++pkts) {
|
|
buf_dma_addr = rte_mbuf_data_dma_addr(*pkts);
|
|
pkt_len = (*pkts)->data_len;
|
|
|
|
/* write data to descriptor */
|
|
txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
|
|
txdp->read.cmd_type_len =
|
|
rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
|
|
|
|
txdp->read.olinfo_status =
|
|
rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
|
|
|
|
rte_prefetch0(&(*pkts)->pool);
|
|
}
|
|
}
|
|
|
|
/* Populate 1 descriptor with data from 1 mbuf */
|
|
static inline void
|
|
tx1(volatile union ixgbe_adv_tx_desc *txdp, struct rte_mbuf **pkts)
|
|
{
|
|
uint64_t buf_dma_addr;
|
|
uint32_t pkt_len;
|
|
|
|
buf_dma_addr = rte_mbuf_data_dma_addr(*pkts);
|
|
pkt_len = (*pkts)->data_len;
|
|
|
|
/* write data to descriptor */
|
|
txdp->read.buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
txdp->read.cmd_type_len =
|
|
rte_cpu_to_le_32((uint32_t)DCMD_DTYP_FLAGS | pkt_len);
|
|
txdp->read.olinfo_status =
|
|
rte_cpu_to_le_32(pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
|
|
rte_prefetch0(&(*pkts)->pool);
|
|
}
|
|
|
|
/*
|
|
* Fill H/W descriptor ring with mbuf data.
|
|
* Copy mbuf pointers to the S/W ring.
|
|
*/
|
|
static inline void
|
|
ixgbe_tx_fill_hw_ring(struct ixgbe_tx_queue *txq, struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile union ixgbe_adv_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
|
|
struct ixgbe_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
|
|
const int N_PER_LOOP = 4;
|
|
const int N_PER_LOOP_MASK = N_PER_LOOP-1;
|
|
int mainpart, leftover;
|
|
int i, j;
|
|
|
|
/*
|
|
* Process most of the packets in chunks of N pkts. Any
|
|
* leftover packets will get processed one at a time.
|
|
*/
|
|
mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
|
|
leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
|
|
for (i = 0; i < mainpart; i += N_PER_LOOP) {
|
|
/* Copy N mbuf pointers to the S/W ring */
|
|
for (j = 0; j < N_PER_LOOP; ++j) {
|
|
(txep + i + j)->mbuf = *(pkts + i + j);
|
|
}
|
|
tx4(txdp + i, pkts + i);
|
|
}
|
|
|
|
if (unlikely(leftover > 0)) {
|
|
for (i = 0; i < leftover; ++i) {
|
|
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
|
|
tx1(txdp + mainpart + i, pkts + mainpart + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint16_t
|
|
tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
|
|
volatile union ixgbe_adv_tx_desc *tx_r = txq->tx_ring;
|
|
uint16_t n = 0;
|
|
|
|
/*
|
|
* Begin scanning the H/W ring for done descriptors when the
|
|
* number of available descriptors drops below tx_free_thresh. For
|
|
* each done descriptor, free the associated buffer.
|
|
*/
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
ixgbe_tx_free_bufs(txq);
|
|
|
|
/* Only use descriptors that are available */
|
|
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
/* Use exactly nb_pkts descriptors */
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
|
|
|
/*
|
|
* At this point, we know there are enough descriptors in the
|
|
* ring to transmit all the packets. This assumes that each
|
|
* mbuf contains a single segment, and that no new offloads
|
|
* are expected, which would require a new context descriptor.
|
|
*/
|
|
|
|
/*
|
|
* See if we're going to wrap-around. If so, handle the top
|
|
* of the descriptor ring first, then do the bottom. If not,
|
|
* the processing looks just like the "bottom" part anyway...
|
|
*/
|
|
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
|
|
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
|
|
ixgbe_tx_fill_hw_ring(txq, tx_pkts, n);
|
|
|
|
/*
|
|
* We know that the last descriptor in the ring will need to
|
|
* have its RS bit set because tx_rs_thresh has to be
|
|
* a divisor of the ring size
|
|
*/
|
|
tx_r[txq->tx_next_rs].read.cmd_type_len |=
|
|
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
txq->tx_tail = 0;
|
|
}
|
|
|
|
/* Fill H/W descriptor ring with mbuf data */
|
|
ixgbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
|
|
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
|
|
|
|
/*
|
|
* Determine if RS bit should be set
|
|
* This is what we actually want:
|
|
* if ((txq->tx_tail - 1) >= txq->tx_next_rs)
|
|
* but instead of subtracting 1 and doing >=, we can just do
|
|
* greater than without subtracting.
|
|
*/
|
|
if (txq->tx_tail > txq->tx_next_rs) {
|
|
tx_r[txq->tx_next_rs].read.cmd_type_len |=
|
|
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
|
|
txq->tx_rs_thresh);
|
|
if (txq->tx_next_rs >= txq->nb_tx_desc)
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
}
|
|
|
|
/*
|
|
* Check for wrap-around. This would only happen if we used
|
|
* up to the last descriptor in the ring, no more, no less.
|
|
*/
|
|
if (txq->tx_tail >= txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
|
|
/* update tail pointer */
|
|
rte_wmb();
|
|
IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, txq->tx_tail);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
uint16_t
|
|
ixgbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx;
|
|
|
|
/* Try to transmit at least chunks of TX_MAX_BURST pkts */
|
|
if (likely(nb_pkts <= RTE_PMD_IXGBE_TX_MAX_BURST))
|
|
return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts);
|
|
|
|
/* transmit more than the max burst, in chunks of TX_MAX_BURST */
|
|
nb_tx = 0;
|
|
while (nb_pkts) {
|
|
uint16_t ret, n;
|
|
|
|
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_TX_MAX_BURST);
|
|
ret = tx_xmit_pkts(tx_queue, &(tx_pkts[nb_tx]), n);
|
|
nb_tx = (uint16_t)(nb_tx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < n)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
#ifdef RTE_IXGBE_INC_VECTOR
|
|
static uint16_t
|
|
ixgbe_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_tx = 0;
|
|
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
|
|
|
|
while (nb_pkts) {
|
|
uint16_t ret, num;
|
|
|
|
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
|
|
ret = ixgbe_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx],
|
|
num);
|
|
nb_tx += ret;
|
|
nb_pkts -= ret;
|
|
if (ret < num)
|
|
break;
|
|
}
|
|
|
|
return nb_tx;
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
ixgbe_set_xmit_ctx(struct ixgbe_tx_queue *txq,
|
|
volatile struct ixgbe_adv_tx_context_desc *ctx_txd,
|
|
uint64_t ol_flags, union ixgbe_tx_offload tx_offload)
|
|
{
|
|
uint32_t type_tucmd_mlhl;
|
|
uint32_t mss_l4len_idx = 0;
|
|
uint32_t ctx_idx;
|
|
uint32_t vlan_macip_lens;
|
|
union ixgbe_tx_offload tx_offload_mask;
|
|
uint32_t seqnum_seed = 0;
|
|
|
|
ctx_idx = txq->ctx_curr;
|
|
tx_offload_mask.data[0] = 0;
|
|
tx_offload_mask.data[1] = 0;
|
|
type_tucmd_mlhl = 0;
|
|
|
|
/* Specify which HW CTX to upload. */
|
|
mss_l4len_idx |= (ctx_idx << IXGBE_ADVTXD_IDX_SHIFT);
|
|
|
|
if (ol_flags & PKT_TX_VLAN_PKT) {
|
|
tx_offload_mask.vlan_tci |= ~0;
|
|
}
|
|
|
|
/* check if TCP segmentation required for this packet */
|
|
if (ol_flags & PKT_TX_TCP_SEG) {
|
|
/* implies IP cksum in IPv4 */
|
|
if (ol_flags & PKT_TX_IP_CKSUM)
|
|
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4 |
|
|
IXGBE_ADVTXD_TUCMD_L4T_TCP |
|
|
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
|
|
else
|
|
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV6 |
|
|
IXGBE_ADVTXD_TUCMD_L4T_TCP |
|
|
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
|
|
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
tx_offload_mask.l4_len |= ~0;
|
|
tx_offload_mask.tso_segsz |= ~0;
|
|
mss_l4len_idx |= tx_offload.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT;
|
|
mss_l4len_idx |= tx_offload.l4_len << IXGBE_ADVTXD_L4LEN_SHIFT;
|
|
} else { /* no TSO, check if hardware checksum is needed */
|
|
if (ol_flags & PKT_TX_IP_CKSUM) {
|
|
type_tucmd_mlhl = IXGBE_ADVTXD_TUCMD_IPV4;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
}
|
|
|
|
switch (ol_flags & PKT_TX_L4_MASK) {
|
|
case PKT_TX_UDP_CKSUM:
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP |
|
|
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
|
|
mss_l4len_idx |= sizeof(struct udp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
case PKT_TX_TCP_CKSUM:
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP |
|
|
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
|
|
mss_l4len_idx |= sizeof(struct tcp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP |
|
|
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
|
|
mss_l4len_idx |= sizeof(struct sctp_hdr) << IXGBE_ADVTXD_L4LEN_SHIFT;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
tx_offload_mask.l3_len |= ~0;
|
|
break;
|
|
default:
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_RSV |
|
|
IXGBE_ADVTXD_DTYP_CTXT | IXGBE_ADVTXD_DCMD_DEXT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
|
|
tx_offload_mask.outer_l2_len |= ~0;
|
|
tx_offload_mask.outer_l3_len |= ~0;
|
|
tx_offload_mask.l2_len |= ~0;
|
|
seqnum_seed |= tx_offload.outer_l3_len
|
|
<< IXGBE_ADVTXD_OUTER_IPLEN;
|
|
seqnum_seed |= tx_offload.l2_len
|
|
<< IXGBE_ADVTXD_TUNNEL_LEN;
|
|
}
|
|
|
|
txq->ctx_cache[ctx_idx].flags = ol_flags;
|
|
txq->ctx_cache[ctx_idx].tx_offload.data[0] =
|
|
tx_offload_mask.data[0] & tx_offload.data[0];
|
|
txq->ctx_cache[ctx_idx].tx_offload.data[1] =
|
|
tx_offload_mask.data[1] & tx_offload.data[1];
|
|
txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask;
|
|
|
|
ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
|
|
vlan_macip_lens = tx_offload.l3_len;
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
vlan_macip_lens |= (tx_offload.outer_l2_len <<
|
|
IXGBE_ADVTXD_MACLEN_SHIFT);
|
|
else
|
|
vlan_macip_lens |= (tx_offload.l2_len <<
|
|
IXGBE_ADVTXD_MACLEN_SHIFT);
|
|
vlan_macip_lens |= ((uint32_t)tx_offload.vlan_tci << IXGBE_ADVTXD_VLAN_SHIFT);
|
|
ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
|
|
ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
|
|
ctx_txd->seqnum_seed = seqnum_seed;
|
|
}
|
|
|
|
/*
|
|
* Check which hardware context can be used. Use the existing match
|
|
* or create a new context descriptor.
|
|
*/
|
|
static inline uint32_t
|
|
what_advctx_update(struct ixgbe_tx_queue *txq, uint64_t flags,
|
|
union ixgbe_tx_offload tx_offload)
|
|
{
|
|
/* If match with the current used context */
|
|
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
|
|
& tx_offload.data[0])) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
|
|
& tx_offload.data[1]))))
|
|
return txq->ctx_curr;
|
|
|
|
/* What if match with the next context */
|
|
txq->ctx_curr ^= 1;
|
|
if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0]
|
|
& tx_offload.data[0])) &&
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] ==
|
|
(txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1]
|
|
& tx_offload.data[1]))))
|
|
return txq->ctx_curr;
|
|
|
|
/* Mismatch, use the previous context */
|
|
return IXGBE_CTX_NUM;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
|
|
{
|
|
uint32_t tmp = 0;
|
|
|
|
if ((ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM)
|
|
tmp |= IXGBE_ADVTXD_POPTS_TXSM;
|
|
if (ol_flags & PKT_TX_IP_CKSUM)
|
|
tmp |= IXGBE_ADVTXD_POPTS_IXSM;
|
|
if (ol_flags & PKT_TX_TCP_SEG)
|
|
tmp |= IXGBE_ADVTXD_POPTS_TXSM;
|
|
return tmp;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags)
|
|
{
|
|
uint32_t cmdtype = 0;
|
|
|
|
if (ol_flags & PKT_TX_VLAN_PKT)
|
|
cmdtype |= IXGBE_ADVTXD_DCMD_VLE;
|
|
if (ol_flags & PKT_TX_TCP_SEG)
|
|
cmdtype |= IXGBE_ADVTXD_DCMD_TSE;
|
|
if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
|
|
cmdtype |= (1 << IXGBE_ADVTXD_OUTERIPCS_SHIFT);
|
|
if (ol_flags & PKT_TX_MACSEC)
|
|
cmdtype |= IXGBE_ADVTXD_MAC_LINKSEC;
|
|
return cmdtype;
|
|
}
|
|
|
|
/* Default RS bit threshold values */
|
|
#ifndef DEFAULT_TX_RS_THRESH
|
|
#define DEFAULT_TX_RS_THRESH 32
|
|
#endif
|
|
#ifndef DEFAULT_TX_FREE_THRESH
|
|
#define DEFAULT_TX_FREE_THRESH 32
|
|
#endif
|
|
|
|
/* Reset transmit descriptors after they have been used */
|
|
static inline int
|
|
ixgbe_xmit_cleanup(struct ixgbe_tx_queue *txq)
|
|
{
|
|
struct ixgbe_tx_entry *sw_ring = txq->sw_ring;
|
|
volatile union ixgbe_adv_tx_desc *txr = txq->tx_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
uint32_t status;
|
|
|
|
/* Determine the last descriptor needing to be cleaned */
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
/* Check to make sure the last descriptor to clean is done */
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
status = txr[desc_to_clean_to].wb.status;
|
|
if (!(status & rte_cpu_to_le_32(IXGBE_TXD_STAT_DD))) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"TX descriptor %4u is not done"
|
|
"(port=%d queue=%d)",
|
|
desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
/* Failed to clean any descriptors, better luck next time */
|
|
return -(1);
|
|
}
|
|
|
|
/* Figure out how many descriptors will be cleaned */
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Cleaning %4u TX descriptors: %4u to %4u "
|
|
"(port=%d queue=%d)",
|
|
nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
/*
|
|
* The last descriptor to clean is done, so that means all the
|
|
* descriptors from the last descriptor that was cleaned
|
|
* up to the last descriptor with the RS bit set
|
|
* are done. Only reset the threshold descriptor.
|
|
*/
|
|
txr[desc_to_clean_to].wb.status = 0;
|
|
|
|
/* Update the txq to reflect the last descriptor that was cleaned */
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
|
|
|
|
/* No Error */
|
|
return 0;
|
|
}
|
|
|
|
uint16_t
|
|
ixgbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ixgbe_tx_queue *txq;
|
|
struct ixgbe_tx_entry *sw_ring;
|
|
struct ixgbe_tx_entry *txe, *txn;
|
|
volatile union ixgbe_adv_tx_desc *txr;
|
|
volatile union ixgbe_adv_tx_desc *txd, *txp;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint64_t buf_dma_addr;
|
|
uint32_t olinfo_status;
|
|
uint32_t cmd_type_len;
|
|
uint32_t pkt_len;
|
|
uint16_t slen;
|
|
uint64_t ol_flags;
|
|
uint16_t tx_id;
|
|
uint16_t tx_last;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_used;
|
|
uint64_t tx_ol_req;
|
|
uint32_t ctx = 0;
|
|
uint32_t new_ctx;
|
|
union ixgbe_tx_offload tx_offload;
|
|
|
|
tx_offload.data[0] = 0;
|
|
tx_offload.data[1] = 0;
|
|
txq = tx_queue;
|
|
sw_ring = txq->sw_ring;
|
|
txr = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
txp = NULL;
|
|
|
|
/* Determine if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
ixgbe_xmit_cleanup(txq);
|
|
|
|
rte_prefetch0(&txe->mbuf->pool);
|
|
|
|
/* TX loop */
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
new_ctx = 0;
|
|
tx_pkt = *tx_pkts++;
|
|
pkt_len = tx_pkt->pkt_len;
|
|
|
|
/*
|
|
* Determine how many (if any) context descriptors
|
|
* are needed for offload functionality.
|
|
*/
|
|
ol_flags = tx_pkt->ol_flags;
|
|
|
|
/* If hardware offload required */
|
|
tx_ol_req = ol_flags & IXGBE_TX_OFFLOAD_MASK;
|
|
if (tx_ol_req) {
|
|
tx_offload.l2_len = tx_pkt->l2_len;
|
|
tx_offload.l3_len = tx_pkt->l3_len;
|
|
tx_offload.l4_len = tx_pkt->l4_len;
|
|
tx_offload.vlan_tci = tx_pkt->vlan_tci;
|
|
tx_offload.tso_segsz = tx_pkt->tso_segsz;
|
|
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
|
|
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
|
|
|
|
/* If new context need be built or reuse the exist ctx. */
|
|
ctx = what_advctx_update(txq, tx_ol_req,
|
|
tx_offload);
|
|
/* Only allocate context descriptor if required*/
|
|
new_ctx = (ctx == IXGBE_CTX_NUM);
|
|
ctx = txq->ctx_curr;
|
|
}
|
|
|
|
/*
|
|
* Keep track of how many descriptors are used this loop
|
|
* This will always be the number of segments + the number of
|
|
* Context descriptors required to transmit the packet
|
|
*/
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
|
|
|
|
if (txp != NULL &&
|
|
nb_used + txq->nb_tx_used >= txq->tx_rs_thresh)
|
|
/* set RS on the previous packet in the burst */
|
|
txp->read.cmd_type_len |=
|
|
rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
|
|
|
|
/*
|
|
* The number of descriptors that must be allocated for a
|
|
* packet is the number of segments of that packet, plus 1
|
|
* Context Descriptor for the hardware offload, if any.
|
|
* Determine the last TX descriptor to allocate in the TX ring
|
|
* for the packet, starting from the current position (tx_id)
|
|
* in the ring.
|
|
*/
|
|
tx_last = (uint16_t) (tx_id + nb_used - 1);
|
|
|
|
/* Circular ring */
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
|
|
" tx_first=%u tx_last=%u",
|
|
(unsigned) txq->port_id,
|
|
(unsigned) txq->queue_id,
|
|
(unsigned) pkt_len,
|
|
(unsigned) tx_id,
|
|
(unsigned) tx_last);
|
|
|
|
/*
|
|
* Make sure there are enough TX descriptors available to
|
|
* transmit the entire packet.
|
|
* nb_used better be less than or equal to txq->tx_rs_thresh
|
|
*/
|
|
if (nb_used > txq->nb_tx_free) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Not enough free TX descriptors "
|
|
"nb_used=%4u nb_free=%4u "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
if (ixgbe_xmit_cleanup(txq) != 0) {
|
|
/* Could not clean any descriptors */
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
|
|
/* nb_used better be <= txq->tx_rs_thresh */
|
|
if (unlikely(nb_used > txq->tx_rs_thresh)) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"The number of descriptors needed to "
|
|
"transmit the packet exceeds the "
|
|
"RS bit threshold. This will impact "
|
|
"performance."
|
|
"nb_used=%4u nb_free=%4u "
|
|
"tx_rs_thresh=%4u. "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->tx_rs_thresh,
|
|
txq->port_id, txq->queue_id);
|
|
/*
|
|
* Loop here until there are enough TX
|
|
* descriptors or until the ring cannot be
|
|
* cleaned.
|
|
*/
|
|
while (nb_used > txq->nb_tx_free) {
|
|
if (ixgbe_xmit_cleanup(txq) != 0) {
|
|
/*
|
|
* Could not clean any
|
|
* descriptors
|
|
*/
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By now there are enough free TX descriptors to transmit
|
|
* the packet.
|
|
*/
|
|
|
|
/*
|
|
* Set common flags of all TX Data Descriptors.
|
|
*
|
|
* The following bits must be set in all Data Descriptors:
|
|
* - IXGBE_ADVTXD_DTYP_DATA
|
|
* - IXGBE_ADVTXD_DCMD_DEXT
|
|
*
|
|
* The following bits must be set in the first Data Descriptor
|
|
* and are ignored in the other ones:
|
|
* - IXGBE_ADVTXD_DCMD_IFCS
|
|
* - IXGBE_ADVTXD_MAC_1588
|
|
* - IXGBE_ADVTXD_DCMD_VLE
|
|
*
|
|
* The following bits must only be set in the last Data
|
|
* Descriptor:
|
|
* - IXGBE_TXD_CMD_EOP
|
|
*
|
|
* The following bits can be set in any Data Descriptor, but
|
|
* are only set in the last Data Descriptor:
|
|
* - IXGBE_TXD_CMD_RS
|
|
*/
|
|
cmd_type_len = IXGBE_ADVTXD_DTYP_DATA |
|
|
IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (ol_flags & PKT_TX_IEEE1588_TMST)
|
|
cmd_type_len |= IXGBE_ADVTXD_MAC_1588;
|
|
#endif
|
|
|
|
olinfo_status = 0;
|
|
if (tx_ol_req) {
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG) {
|
|
/* when TSO is on, paylen in descriptor is the
|
|
* not the packet len but the tcp payload len */
|
|
pkt_len -= (tx_offload.l2_len +
|
|
tx_offload.l3_len + tx_offload.l4_len);
|
|
}
|
|
|
|
/*
|
|
* Setup the TX Advanced Context Descriptor if required
|
|
*/
|
|
if (new_ctx) {
|
|
volatile struct ixgbe_adv_tx_context_desc *
|
|
ctx_txd;
|
|
|
|
ctx_txd = (volatile struct
|
|
ixgbe_adv_tx_context_desc *)
|
|
&txr[tx_id];
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
rte_prefetch0(&txn->mbuf->pool);
|
|
|
|
if (txe->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
ixgbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
|
|
tx_offload);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
/*
|
|
* Setup the TX Advanced Data Descriptor,
|
|
* This path will go through
|
|
* whatever new/reuse the context descriptor
|
|
*/
|
|
cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags);
|
|
olinfo_status |= tx_desc_cksum_flags_to_olinfo(ol_flags);
|
|
olinfo_status |= ctx << IXGBE_ADVTXD_IDX_SHIFT;
|
|
}
|
|
|
|
olinfo_status |= (pkt_len << IXGBE_ADVTXD_PAYLEN_SHIFT);
|
|
|
|
m_seg = tx_pkt;
|
|
do {
|
|
txd = &txr[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
rte_prefetch0(&txn->mbuf->pool);
|
|
|
|
if (txe->mbuf != NULL)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/*
|
|
* Set up Transmit Data Descriptor.
|
|
*/
|
|
slen = m_seg->data_len;
|
|
buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
|
|
txd->read.buffer_addr =
|
|
rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->read.cmd_type_len =
|
|
rte_cpu_to_le_32(cmd_type_len | slen);
|
|
txd->read.olinfo_status =
|
|
rte_cpu_to_le_32(olinfo_status);
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->next;
|
|
} while (m_seg != NULL);
|
|
|
|
/*
|
|
* The last packet data descriptor needs End Of Packet (EOP)
|
|
*/
|
|
cmd_type_len |= IXGBE_TXD_CMD_EOP;
|
|
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
|
|
|
|
/* Set RS bit only on threshold packets' last descriptor */
|
|
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Setting RS bit on TXD id="
|
|
"%4u (port=%d queue=%d)",
|
|
tx_last, txq->port_id, txq->queue_id);
|
|
|
|
cmd_type_len |= IXGBE_TXD_CMD_RS;
|
|
|
|
/* Update txq RS bit counters */
|
|
txq->nb_tx_used = 0;
|
|
txp = NULL;
|
|
} else
|
|
txp = txd;
|
|
|
|
txd->read.cmd_type_len |= rte_cpu_to_le_32(cmd_type_len);
|
|
}
|
|
|
|
end_of_tx:
|
|
/* set RS on last packet in the burst */
|
|
if (txp != NULL)
|
|
txp->read.cmd_type_len |= rte_cpu_to_le_32(IXGBE_TXD_CMD_RS);
|
|
|
|
rte_wmb();
|
|
|
|
/*
|
|
* Set the Transmit Descriptor Tail (TDT)
|
|
*/
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(unsigned) txq->port_id, (unsigned) txq->queue_id,
|
|
(unsigned) tx_id, (unsigned) nb_tx);
|
|
IXGBE_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX prep functions
|
|
*
|
|
**********************************************************************/
|
|
uint16_t
|
|
ixgbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
int i, ret;
|
|
uint64_t ol_flags;
|
|
struct rte_mbuf *m;
|
|
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
ol_flags = m->ol_flags;
|
|
|
|
/**
|
|
* Check if packet meets requirements for number of segments
|
|
*
|
|
* NOTE: for ixgbe it's always (40 - WTHRESH) for both TSO and
|
|
* non-TSO
|
|
*/
|
|
|
|
if (m->nb_segs > IXGBE_TX_MAX_SEG - txq->wthresh) {
|
|
rte_errno = -EINVAL;
|
|
return i;
|
|
}
|
|
|
|
if (ol_flags & IXGBE_TX_OFFLOAD_NOTSUP_MASK) {
|
|
rte_errno = -ENOTSUP;
|
|
return i;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = ret;
|
|
return i;
|
|
}
|
|
#endif
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = ret;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* RX functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
#define IXGBE_PACKET_TYPE_ETHER 0X00
|
|
#define IXGBE_PACKET_TYPE_IPV4 0X01
|
|
#define IXGBE_PACKET_TYPE_IPV4_TCP 0X11
|
|
#define IXGBE_PACKET_TYPE_IPV4_UDP 0X21
|
|
#define IXGBE_PACKET_TYPE_IPV4_SCTP 0X41
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT 0X03
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_TCP 0X13
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_UDP 0X23
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_SCTP 0X43
|
|
#define IXGBE_PACKET_TYPE_IPV6 0X04
|
|
#define IXGBE_PACKET_TYPE_IPV6_TCP 0X14
|
|
#define IXGBE_PACKET_TYPE_IPV6_UDP 0X24
|
|
#define IXGBE_PACKET_TYPE_IPV6_SCTP 0X44
|
|
#define IXGBE_PACKET_TYPE_IPV6_EXT 0X0C
|
|
#define IXGBE_PACKET_TYPE_IPV6_EXT_TCP 0X1C
|
|
#define IXGBE_PACKET_TYPE_IPV6_EXT_UDP 0X2C
|
|
#define IXGBE_PACKET_TYPE_IPV6_EXT_SCTP 0X4C
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6 0X05
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_TCP 0X15
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_UDP 0X25
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP 0X45
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6 0X07
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP 0X17
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP 0X27
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP 0X47
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT 0X0D
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
|
|
#define IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP 0X4D
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT 0X0F
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP 0X1F
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP 0X2F
|
|
#define IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP 0X4F
|
|
|
|
#define IXGBE_PACKET_TYPE_NVGRE 0X00
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4 0X01
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP 0X11
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP 0X21
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP 0X41
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT 0X03
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP 0X13
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP 0X23
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP 0X43
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6 0X04
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP 0X14
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP 0X24
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP 0X44
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT 0X0C
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP 0X1C
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP 0X2C
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP 0X4C
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6 0X05
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP 0X15
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP 0X25
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT 0X0D
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP 0X1D
|
|
#define IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP 0X2D
|
|
|
|
#define IXGBE_PACKET_TYPE_VXLAN 0X80
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4 0X81
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP 0x91
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP 0xA1
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP 0xC1
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT 0x83
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP 0X93
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP 0XA3
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP 0XC3
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6 0X84
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP 0X94
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP 0XA4
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP 0XC4
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT 0X8C
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP 0X9C
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP 0XAC
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP 0XCC
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6 0X85
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP 0X95
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP 0XA5
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT 0X8D
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP 0X9D
|
|
#define IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP 0XAD
|
|
|
|
/**
|
|
* Use 2 different table for normal packet and tunnel packet
|
|
* to save the space.
|
|
*/
|
|
const uint32_t
|
|
ptype_table[IXGBE_PACKET_TYPE_MAX] __rte_cache_aligned = {
|
|
[IXGBE_PACKET_TYPE_ETHER] = RTE_PTYPE_L2_ETHER,
|
|
[IXGBE_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6,
|
|
[IXGBE_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6_EXT,
|
|
[IXGBE_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV4_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_IPV4_EXT_IPV6_EXT_SCTP] =
|
|
RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_TUNNEL_IP |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
|
|
};
|
|
|
|
const uint32_t
|
|
ptype_table_tn[IXGBE_PACKET_TYPE_TN_MAX] __rte_cache_aligned = {
|
|
[IXGBE_PACKET_TYPE_NVGRE] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_TCP] =
|
|
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6 |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV6_EXT |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_IPV6_EXT_UDP] =
|
|
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_TUNNEL_GRE | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4 |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_NVGRE_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_TUNNEL_GRE |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4_EXT |
|
|
RTE_PTYPE_INNER_L4_UDP,
|
|
|
|
[IXGBE_PACKET_TYPE_VXLAN] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_TCP] =
|
|
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV6_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_IPV6_EXT_UDP] =
|
|
RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
RTE_PTYPE_L4_UDP | RTE_PTYPE_TUNNEL_VXLAN |
|
|
RTE_PTYPE_INNER_L2_ETHER | RTE_PTYPE_INNER_L3_IPV4,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4 | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_SCTP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_TCP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_TCP,
|
|
[IXGBE_PACKET_TYPE_VXLAN_IPV4_EXT_UDP] = RTE_PTYPE_L2_ETHER |
|
|
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP |
|
|
RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_INNER_L2_ETHER |
|
|
RTE_PTYPE_INNER_L3_IPV4_EXT | RTE_PTYPE_INNER_L4_UDP,
|
|
};
|
|
|
|
/* @note: fix ixgbe_dev_supported_ptypes_get() if any change here. */
|
|
static inline uint32_t
|
|
ixgbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptype_mask)
|
|
{
|
|
|
|
if (unlikely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
|
|
return RTE_PTYPE_UNKNOWN;
|
|
|
|
pkt_info = (pkt_info >> IXGBE_PACKET_TYPE_SHIFT) & ptype_mask;
|
|
|
|
/* For tunnel packet */
|
|
if (pkt_info & IXGBE_PACKET_TYPE_TUNNEL_BIT) {
|
|
/* Remove the tunnel bit to save the space. */
|
|
pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
|
|
return ptype_table_tn[pkt_info];
|
|
}
|
|
|
|
/**
|
|
* For x550, if it's not tunnel,
|
|
* tunnel type bit should be set to 0.
|
|
* Reuse 82599's mask.
|
|
*/
|
|
pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
|
|
|
|
return ptype_table[pkt_info];
|
|
}
|
|
|
|
static inline uint64_t
|
|
ixgbe_rxd_pkt_info_to_pkt_flags(uint16_t pkt_info)
|
|
{
|
|
static uint64_t ip_rss_types_map[16] __rte_cache_aligned = {
|
|
0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
|
|
0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
|
|
PKT_RX_RSS_HASH, 0, 0, 0,
|
|
0, 0, 0, PKT_RX_FDIR,
|
|
};
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
static uint64_t ip_pkt_etqf_map[8] = {
|
|
0, 0, 0, PKT_RX_IEEE1588_PTP,
|
|
0, 0, 0, 0,
|
|
};
|
|
|
|
if (likely(pkt_info & IXGBE_RXDADV_PKTTYPE_ETQF))
|
|
return ip_pkt_etqf_map[(pkt_info >> 4) & 0X07] |
|
|
ip_rss_types_map[pkt_info & 0XF];
|
|
else
|
|
return ip_rss_types_map[pkt_info & 0XF];
|
|
#else
|
|
return ip_rss_types_map[pkt_info & 0XF];
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags)
|
|
{
|
|
uint64_t pkt_flags;
|
|
|
|
/*
|
|
* Check if VLAN present only.
|
|
* Do not check whether L3/L4 rx checksum done by NIC or not,
|
|
* That can be found from rte_eth_rxmode.hw_ip_checksum flag
|
|
*/
|
|
pkt_flags = (rx_status & IXGBE_RXD_STAT_VP) ? vlan_flags : 0;
|
|
|
|
#ifdef RTE_LIBRTE_IEEE1588
|
|
if (rx_status & IXGBE_RXD_STAT_TMST)
|
|
pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
|
|
#endif
|
|
return pkt_flags;
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_error_to_pkt_flags(uint32_t rx_status)
|
|
{
|
|
uint64_t pkt_flags;
|
|
|
|
/*
|
|
* Bit 31: IPE, IPv4 checksum error
|
|
* Bit 30: L4I, L4I integrity error
|
|
*/
|
|
static uint64_t error_to_pkt_flags_map[4] = {
|
|
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
|
|
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
|
|
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
|
|
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
|
|
};
|
|
pkt_flags = error_to_pkt_flags_map[(rx_status >>
|
|
IXGBE_RXDADV_ERR_CKSUM_BIT) & IXGBE_RXDADV_ERR_CKSUM_MSK];
|
|
|
|
if ((rx_status & IXGBE_RXD_STAT_OUTERIPCS) &&
|
|
(rx_status & IXGBE_RXDADV_ERR_OUTERIPER)) {
|
|
pkt_flags |= PKT_RX_EIP_CKSUM_BAD;
|
|
}
|
|
|
|
return pkt_flags;
|
|
}
|
|
|
|
/*
|
|
* LOOK_AHEAD defines how many desc statuses to check beyond the
|
|
* current descriptor.
|
|
* It must be a pound define for optimal performance.
|
|
* Do not change the value of LOOK_AHEAD, as the ixgbe_rx_scan_hw_ring
|
|
* function only works with LOOK_AHEAD=8.
|
|
*/
|
|
#define LOOK_AHEAD 8
|
|
#if (LOOK_AHEAD != 8)
|
|
#error "PMD IXGBE: LOOK_AHEAD must be 8\n"
|
|
#endif
|
|
static inline int
|
|
ixgbe_rx_scan_hw_ring(struct ixgbe_rx_queue *rxq)
|
|
{
|
|
volatile union ixgbe_adv_rx_desc *rxdp;
|
|
struct ixgbe_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t pkt_len;
|
|
uint64_t pkt_flags;
|
|
int nb_dd;
|
|
uint32_t s[LOOK_AHEAD];
|
|
uint32_t pkt_info[LOOK_AHEAD];
|
|
int i, j, nb_rx = 0;
|
|
uint32_t status;
|
|
uint64_t vlan_flags = rxq->vlan_flags;
|
|
|
|
/* get references to current descriptor and S/W ring entry */
|
|
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
|
rxep = &rxq->sw_ring[rxq->rx_tail];
|
|
|
|
status = rxdp->wb.upper.status_error;
|
|
/* check to make sure there is at least 1 packet to receive */
|
|
if (!(status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
|
|
return 0;
|
|
|
|
/*
|
|
* Scan LOOK_AHEAD descriptors at a time to determine which descriptors
|
|
* reference packets that are ready to be received.
|
|
*/
|
|
for (i = 0; i < RTE_PMD_IXGBE_RX_MAX_BURST;
|
|
i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) {
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
for (j = 0; j < LOOK_AHEAD; j++)
|
|
s[j] = rte_le_to_cpu_32(rxdp[j].wb.upper.status_error);
|
|
|
|
rte_smp_rmb();
|
|
|
|
/* Compute how many status bits were set */
|
|
for (nb_dd = 0; nb_dd < LOOK_AHEAD &&
|
|
(s[nb_dd] & IXGBE_RXDADV_STAT_DD); nb_dd++)
|
|
;
|
|
|
|
for (j = 0; j < nb_dd; j++)
|
|
pkt_info[j] = rte_le_to_cpu_32(rxdp[j].wb.lower.
|
|
lo_dword.data);
|
|
|
|
nb_rx += nb_dd;
|
|
|
|
/* Translate descriptor info to mbuf format */
|
|
for (j = 0; j < nb_dd; ++j) {
|
|
mb = rxep[j].mbuf;
|
|
pkt_len = rte_le_to_cpu_16(rxdp[j].wb.upper.length) -
|
|
rxq->crc_len;
|
|
mb->data_len = pkt_len;
|
|
mb->pkt_len = pkt_len;
|
|
mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].wb.upper.vlan);
|
|
|
|
/* convert descriptor fields to rte mbuf flags */
|
|
pkt_flags = rx_desc_status_to_pkt_flags(s[j],
|
|
vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(s[j]);
|
|
pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags
|
|
((uint16_t)pkt_info[j]);
|
|
mb->ol_flags = pkt_flags;
|
|
mb->packet_type =
|
|
ixgbe_rxd_pkt_info_to_pkt_type
|
|
(pkt_info[j], rxq->pkt_type_mask);
|
|
|
|
if (likely(pkt_flags & PKT_RX_RSS_HASH))
|
|
mb->hash.rss = rte_le_to_cpu_32(
|
|
rxdp[j].wb.lower.hi_dword.rss);
|
|
else if (pkt_flags & PKT_RX_FDIR) {
|
|
mb->hash.fdir.hash = rte_le_to_cpu_16(
|
|
rxdp[j].wb.lower.hi_dword.csum_ip.csum) &
|
|
IXGBE_ATR_HASH_MASK;
|
|
mb->hash.fdir.id = rte_le_to_cpu_16(
|
|
rxdp[j].wb.lower.hi_dword.csum_ip.ip_id);
|
|
}
|
|
}
|
|
|
|
/* Move mbuf pointers from the S/W ring to the stage */
|
|
for (j = 0; j < LOOK_AHEAD; ++j) {
|
|
rxq->rx_stage[i + j] = rxep[j].mbuf;
|
|
}
|
|
|
|
/* stop if all requested packets could not be received */
|
|
if (nb_dd != LOOK_AHEAD)
|
|
break;
|
|
}
|
|
|
|
/* clear software ring entries so we can cleanup correctly */
|
|
for (i = 0; i < nb_rx; ++i) {
|
|
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
|
|
}
|
|
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
static inline int
|
|
ixgbe_rx_alloc_bufs(struct ixgbe_rx_queue *rxq, bool reset_mbuf)
|
|
{
|
|
volatile union ixgbe_adv_rx_desc *rxdp;
|
|
struct ixgbe_rx_entry *rxep;
|
|
struct rte_mbuf *mb;
|
|
uint16_t alloc_idx;
|
|
__le64 dma_addr;
|
|
int diag, i;
|
|
|
|
/* allocate buffers in bulk directly into the S/W ring */
|
|
alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1);
|
|
rxep = &rxq->sw_ring[alloc_idx];
|
|
diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
|
|
rxq->rx_free_thresh);
|
|
if (unlikely(diag != 0))
|
|
return -ENOMEM;
|
|
|
|
rxdp = &rxq->rx_ring[alloc_idx];
|
|
for (i = 0; i < rxq->rx_free_thresh; ++i) {
|
|
/* populate the static rte mbuf fields */
|
|
mb = rxep[i].mbuf;
|
|
if (reset_mbuf) {
|
|
mb->port = rxq->port_id;
|
|
}
|
|
|
|
rte_mbuf_refcnt_set(mb, 1);
|
|
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/* populate the descriptors */
|
|
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mb));
|
|
rxdp[i].read.hdr_addr = 0;
|
|
rxdp[i].read.pkt_addr = dma_addr;
|
|
}
|
|
|
|
/* update state of internal queue structure */
|
|
rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh;
|
|
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
|
rxq->rx_free_trigger = rxq->rx_free_thresh - 1;
|
|
|
|
/* no errors */
|
|
return 0;
|
|
}
|
|
|
|
static inline uint16_t
|
|
ixgbe_rx_fill_from_stage(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
|
int i;
|
|
|
|
/* how many packets are ready to return? */
|
|
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
|
|
|
/* copy mbuf pointers to the application's packet list */
|
|
for (i = 0; i < nb_pkts; ++i)
|
|
rx_pkts[i] = stage[i];
|
|
|
|
/* update internal queue state */
|
|
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
|
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static inline uint16_t
|
|
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ixgbe_rx_queue *rxq = (struct ixgbe_rx_queue *)rx_queue;
|
|
uint16_t nb_rx = 0;
|
|
|
|
/* Any previously recv'd pkts will be returned from the Rx stage */
|
|
if (rxq->rx_nb_avail)
|
|
return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
/* Scan the H/W ring for packets to receive */
|
|
nb_rx = (uint16_t)ixgbe_rx_scan_hw_ring(rxq);
|
|
|
|
/* update internal queue state */
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_nb_avail = nb_rx;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
|
|
|
/* if required, allocate new buffers to replenish descriptors */
|
|
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
|
uint16_t cur_free_trigger = rxq->rx_free_trigger;
|
|
|
|
if (ixgbe_rx_alloc_bufs(rxq, true) != 0) {
|
|
int i, j;
|
|
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", (unsigned) rxq->port_id,
|
|
(unsigned) rxq->queue_id);
|
|
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
|
rxq->rx_free_thresh;
|
|
|
|
/*
|
|
* Need to rewind any previous receives if we cannot
|
|
* allocate new buffers to replenish the old ones.
|
|
*/
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
|
for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j)
|
|
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* update tail pointer */
|
|
rte_wmb();
|
|
IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
|
|
cur_free_trigger);
|
|
}
|
|
|
|
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
|
rxq->rx_tail = 0;
|
|
|
|
/* received any packets this loop? */
|
|
if (rxq->rx_nb_avail)
|
|
return ixgbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* split requests into chunks of size RTE_PMD_IXGBE_RX_MAX_BURST */
|
|
uint16_t
|
|
ixgbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
uint16_t nb_rx;
|
|
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
if (likely(nb_pkts <= RTE_PMD_IXGBE_RX_MAX_BURST))
|
|
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
|
|
|
/* request is relatively large, chunk it up */
|
|
nb_rx = 0;
|
|
while (nb_pkts) {
|
|
uint16_t ret, n;
|
|
|
|
n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_IXGBE_RX_MAX_BURST);
|
|
ret = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
|
nb_rx = (uint16_t)(nb_rx + ret);
|
|
nb_pkts = (uint16_t)(nb_pkts - ret);
|
|
if (ret < n)
|
|
break;
|
|
}
|
|
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
ixgbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct ixgbe_rx_queue *rxq;
|
|
volatile union ixgbe_adv_rx_desc *rx_ring;
|
|
volatile union ixgbe_adv_rx_desc *rxdp;
|
|
struct ixgbe_rx_entry *sw_ring;
|
|
struct ixgbe_rx_entry *rxe;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
union ixgbe_adv_rx_desc rxd;
|
|
uint64_t dma_addr;
|
|
uint32_t staterr;
|
|
uint32_t pkt_info;
|
|
uint16_t pkt_len;
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint64_t pkt_flags;
|
|
uint64_t vlan_flags;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rxq = rx_queue;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
vlan_flags = rxq->vlan_flags;
|
|
while (nb_rx < nb_pkts) {
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rxdp->wb.upper.status_error;
|
|
if (!(staterr & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* End of packet.
|
|
*
|
|
* If the IXGBE_RXDADV_STAT_EOP flag is not set, the RX packet
|
|
* is likely to be invalid and to be dropped by the various
|
|
* validation checks performed by the network stack.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that RX descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the RX ring and return immediately.
|
|
*
|
|
* This policy do not drop the packet received in the RX
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding RX descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* RX ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"ext_err_stat=0x%08x pkt_len=%u",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) staterr,
|
|
(unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", (unsigned) rxq->port_id,
|
|
(unsigned) rxq->queue_id);
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_ixgbe_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_ixgbe_prefetch(&rx_ring[rx_id]);
|
|
rte_ixgbe_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
/*
|
|
* Initialize the returned mbuf.
|
|
* 1) setup generic mbuf fields:
|
|
* - number of segments,
|
|
* - next segment,
|
|
* - packet length,
|
|
* - RX port identifier.
|
|
* 2) integrate hardware offload data, if any:
|
|
* - RSS flag & hash,
|
|
* - IP checksum flag,
|
|
* - VLAN TCI, if any,
|
|
* - error flags.
|
|
*/
|
|
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
|
|
rxq->crc_len);
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = pkt_len;
|
|
rxm->data_len = pkt_len;
|
|
rxm->port = rxq->port_id;
|
|
|
|
pkt_info = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
|
|
/* Only valid if PKT_RX_VLAN_PKT set in pkt_flags */
|
|
rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
|
|
|
|
pkt_flags = rx_desc_status_to_pkt_flags(staterr, vlan_flags);
|
|
pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
|
|
pkt_flags = pkt_flags |
|
|
ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
|
|
rxm->ol_flags = pkt_flags;
|
|
rxm->packet_type =
|
|
ixgbe_rxd_pkt_info_to_pkt_type(pkt_info,
|
|
rxq->pkt_type_mask);
|
|
|
|
if (likely(pkt_flags & PKT_RX_RSS_HASH))
|
|
rxm->hash.rss = rte_le_to_cpu_32(
|
|
rxd.wb.lower.hi_dword.rss);
|
|
else if (pkt_flags & PKT_RX_FDIR) {
|
|
rxm->hash.fdir.hash = rte_le_to_cpu_16(
|
|
rxd.wb.lower.hi_dword.csum_ip.csum) &
|
|
IXGBE_ATR_HASH_MASK;
|
|
rxm->hash.fdir.id = rte_le_to_cpu_16(
|
|
rxd.wb.lower.hi_dword.csum_ip.ip_id);
|
|
}
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situtation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) nb_hold,
|
|
(unsigned) nb_rx);
|
|
rx_id = (uint16_t) ((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
/**
|
|
* Detect an RSC descriptor.
|
|
*/
|
|
static inline uint32_t
|
|
ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
|
|
{
|
|
return (rte_le_to_cpu_32(rx->wb.lower.lo_dword.data) &
|
|
IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_fill_cluster_head_buf - fill the first mbuf of the returned packet
|
|
*
|
|
* Fill the following info in the HEAD buffer of the Rx cluster:
|
|
* - RX port identifier
|
|
* - hardware offload data, if any:
|
|
* - RSS flag & hash
|
|
* - IP checksum flag
|
|
* - VLAN TCI, if any
|
|
* - error flags
|
|
* @head HEAD of the packet cluster
|
|
* @desc HW descriptor to get data from
|
|
* @rxq Pointer to the Rx queue
|
|
*/
|
|
static inline void
|
|
ixgbe_fill_cluster_head_buf(
|
|
struct rte_mbuf *head,
|
|
union ixgbe_adv_rx_desc *desc,
|
|
struct ixgbe_rx_queue *rxq,
|
|
uint32_t staterr)
|
|
{
|
|
uint32_t pkt_info;
|
|
uint64_t pkt_flags;
|
|
|
|
head->port = rxq->port_id;
|
|
|
|
/* The vlan_tci field is only valid when PKT_RX_VLAN_PKT is
|
|
* set in the pkt_flags field.
|
|
*/
|
|
head->vlan_tci = rte_le_to_cpu_16(desc->wb.upper.vlan);
|
|
pkt_info = rte_le_to_cpu_32(desc->wb.lower.lo_dword.data);
|
|
pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags);
|
|
pkt_flags |= rx_desc_error_to_pkt_flags(staterr);
|
|
pkt_flags |= ixgbe_rxd_pkt_info_to_pkt_flags((uint16_t)pkt_info);
|
|
head->ol_flags = pkt_flags;
|
|
head->packet_type =
|
|
ixgbe_rxd_pkt_info_to_pkt_type(pkt_info, rxq->pkt_type_mask);
|
|
|
|
if (likely(pkt_flags & PKT_RX_RSS_HASH))
|
|
head->hash.rss = rte_le_to_cpu_32(desc->wb.lower.hi_dword.rss);
|
|
else if (pkt_flags & PKT_RX_FDIR) {
|
|
head->hash.fdir.hash =
|
|
rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.csum)
|
|
& IXGBE_ATR_HASH_MASK;
|
|
head->hash.fdir.id =
|
|
rte_le_to_cpu_16(desc->wb.lower.hi_dword.csum_ip.ip_id);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ixgbe_recv_pkts_lro - receive handler for and LRO case.
|
|
*
|
|
* @rx_queue Rx queue handle
|
|
* @rx_pkts table of received packets
|
|
* @nb_pkts size of rx_pkts table
|
|
* @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling
|
|
*
|
|
* Handles the Rx HW ring completions when RSC feature is configured. Uses an
|
|
* additional ring of ixgbe_rsc_entry's that will hold the relevant RSC info.
|
|
*
|
|
* We use the same logic as in Linux and in FreeBSD ixgbe drivers:
|
|
* 1) When non-EOP RSC completion arrives:
|
|
* a) Update the HEAD of the current RSC aggregation cluster with the new
|
|
* segment's data length.
|
|
* b) Set the "next" pointer of the current segment to point to the segment
|
|
* at the NEXTP index.
|
|
* c) Pass the HEAD of RSC aggregation cluster on to the next NEXTP entry
|
|
* in the sw_rsc_ring.
|
|
* 2) When EOP arrives we just update the cluster's total length and offload
|
|
* flags and deliver the cluster up to the upper layers. In our case - put it
|
|
* in the rx_pkts table.
|
|
*
|
|
* Returns the number of received packets/clusters (according to the "bulk
|
|
* receive" interface).
|
|
*/
|
|
static inline uint16_t
|
|
ixgbe_recv_pkts_lro(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts,
|
|
bool bulk_alloc)
|
|
{
|
|
struct ixgbe_rx_queue *rxq = rx_queue;
|
|
volatile union ixgbe_adv_rx_desc *rx_ring = rxq->rx_ring;
|
|
struct ixgbe_rx_entry *sw_ring = rxq->sw_ring;
|
|
struct ixgbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring;
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
uint16_t nb_rx = 0;
|
|
uint16_t nb_hold = rxq->nb_rx_hold;
|
|
uint16_t prev_id = rxq->rx_tail;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
bool eop;
|
|
struct ixgbe_rx_entry *rxe;
|
|
struct ixgbe_scattered_rx_entry *sc_entry;
|
|
struct ixgbe_scattered_rx_entry *next_sc_entry;
|
|
struct ixgbe_rx_entry *next_rxe = NULL;
|
|
struct rte_mbuf *first_seg;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
union ixgbe_adv_rx_desc rxd;
|
|
uint16_t data_len;
|
|
uint16_t next_id;
|
|
volatile union ixgbe_adv_rx_desc *rxdp;
|
|
uint32_t staterr;
|
|
|
|
next_desc:
|
|
/*
|
|
* The code in this whole file uses the volatile pointer to
|
|
* ensure the read ordering of the status and the rest of the
|
|
* descriptor fields (on the compiler level only!!!). This is so
|
|
* UGLY - why not to just use the compiler barrier instead? DPDK
|
|
* even has the rte_compiler_barrier() for that.
|
|
*
|
|
* But most importantly this is just wrong because this doesn't
|
|
* ensure memory ordering in a general case at all. For
|
|
* instance, DPDK is supposed to work on Power CPUs where
|
|
* compiler barrier may just not be enough!
|
|
*
|
|
* I tried to write only this function properly to have a
|
|
* starting point (as a part of an LRO/RSC series) but the
|
|
* compiler cursed at me when I tried to cast away the
|
|
* "volatile" from rx_ring (yes, it's volatile too!!!). So, I'm
|
|
* keeping it the way it is for now.
|
|
*
|
|
* The code in this file is broken in so many other places and
|
|
* will just not work on a big endian CPU anyway therefore the
|
|
* lines below will have to be revisited together with the rest
|
|
* of the ixgbe PMD.
|
|
*
|
|
* TODO:
|
|
* - Get rid of "volatile" crap and let the compiler do its
|
|
* job.
|
|
* - Use the proper memory barrier (rte_rmb()) to ensure the
|
|
* memory ordering below.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
staterr = rte_le_to_cpu_32(rxdp->wb.upper.status_error);
|
|
|
|
if (!(staterr & IXGBE_RXDADV_STAT_DD))
|
|
break;
|
|
|
|
rxd = *rxdp;
|
|
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"staterr=0x%x data_len=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, staterr,
|
|
rte_le_to_cpu_16(rxd.wb.upper.length));
|
|
|
|
if (!bulk_alloc) {
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed "
|
|
"port_id=%u queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
|
|
rte_eth_devices[rxq->port_id].data->
|
|
rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
} else if (nb_hold > rxq->rx_free_thresh) {
|
|
uint16_t next_rdt = rxq->rx_free_trigger;
|
|
|
|
if (!ixgbe_rx_alloc_bufs(rxq, false)) {
|
|
rte_wmb();
|
|
IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr,
|
|
next_rdt);
|
|
nb_hold -= rxq->rx_free_thresh;
|
|
} else {
|
|
PMD_RX_LOG(DEBUG, "RX bulk alloc failed "
|
|
"port_id=%u queue_id=%u",
|
|
rxq->port_id, rxq->queue_id);
|
|
|
|
rte_eth_devices[rxq->port_id].data->
|
|
rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
eop = staterr & IXGBE_RXDADV_STAT_EOP;
|
|
|
|
next_id = rx_id + 1;
|
|
if (next_id == rxq->nb_rx_desc)
|
|
next_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_ixgbe_prefetch(sw_ring[next_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 4 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((next_id & 0x3) == 0) {
|
|
rte_ixgbe_prefetch(&rx_ring[next_id]);
|
|
rte_ixgbe_prefetch(&sw_ring[next_id]);
|
|
}
|
|
|
|
rxm = rxe->mbuf;
|
|
|
|
if (!bulk_alloc) {
|
|
__le64 dma =
|
|
rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
|
|
/*
|
|
* Update RX descriptor with the physical address of the
|
|
* new data buffer of the new allocated mbuf.
|
|
*/
|
|
rxe->mbuf = nmb;
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rxdp->read.hdr_addr = 0;
|
|
rxdp->read.pkt_addr = dma;
|
|
} else
|
|
rxe->mbuf = NULL;
|
|
|
|
/*
|
|
* Set data length & data buffer address of mbuf.
|
|
*/
|
|
data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
|
|
rxm->data_len = data_len;
|
|
|
|
if (!eop) {
|
|
uint16_t nextp_id;
|
|
/*
|
|
* Get next descriptor index:
|
|
* - For RSC it's in the NEXTP field.
|
|
* - For a scattered packet - it's just a following
|
|
* descriptor.
|
|
*/
|
|
if (ixgbe_rsc_count(&rxd))
|
|
nextp_id =
|
|
(staterr & IXGBE_RXDADV_NEXTP_MASK) >>
|
|
IXGBE_RXDADV_NEXTP_SHIFT;
|
|
else
|
|
nextp_id = next_id;
|
|
|
|
next_sc_entry = &sw_sc_ring[nextp_id];
|
|
next_rxe = &sw_ring[nextp_id];
|
|
rte_ixgbe_prefetch(next_rxe);
|
|
}
|
|
|
|
sc_entry = &sw_sc_ring[rx_id];
|
|
first_seg = sc_entry->fbuf;
|
|
sc_entry->fbuf = NULL;
|
|
|
|
/*
|
|
* If this is the first buffer of the received packet,
|
|
* set the pointer to the first mbuf of the packet and
|
|
* initialize its context.
|
|
* Otherwise, update the total length and the number of segments
|
|
* of the current scattered packet, and update the pointer to
|
|
* the last mbuf of the current packet.
|
|
*/
|
|
if (first_seg == NULL) {
|
|
first_seg = rxm;
|
|
first_seg->pkt_len = data_len;
|
|
first_seg->nb_segs = 1;
|
|
} else {
|
|
first_seg->pkt_len += data_len;
|
|
first_seg->nb_segs++;
|
|
}
|
|
|
|
prev_id = rx_id;
|
|
rx_id = next_id;
|
|
|
|
/*
|
|
* If this is not the last buffer of the received packet, update
|
|
* the pointer to the first mbuf at the NEXTP entry in the
|
|
* sw_sc_ring and continue to parse the RX ring.
|
|
*/
|
|
if (!eop && next_rxe) {
|
|
rxm->next = next_rxe->mbuf;
|
|
next_sc_entry->fbuf = first_seg;
|
|
goto next_desc;
|
|
}
|
|
|
|
/* Initialize the first mbuf of the returned packet */
|
|
ixgbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr);
|
|
|
|
/*
|
|
* Deal with the case, when HW CRC srip is disabled.
|
|
* That can't happen when LRO is enabled, but still could
|
|
* happen for scattered RX mode.
|
|
*/
|
|
first_seg->pkt_len -= rxq->crc_len;
|
|
if (unlikely(rxm->data_len <= rxq->crc_len)) {
|
|
struct rte_mbuf *lp;
|
|
|
|
for (lp = first_seg; lp->next != rxm; lp = lp->next)
|
|
;
|
|
|
|
first_seg->nb_segs--;
|
|
lp->data_len -= rxq->crc_len - rxm->data_len;
|
|
lp->next = NULL;
|
|
rte_pktmbuf_free_seg(rxm);
|
|
} else
|
|
rxm->data_len -= rxq->crc_len;
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_packet_prefetch((char *)first_seg->buf_addr +
|
|
first_seg->data_off);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
}
|
|
|
|
/*
|
|
* Record index of the next RX descriptor to probe.
|
|
*/
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situtation from the
|
|
* hardware point of view...
|
|
*/
|
|
if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx);
|
|
|
|
rte_wmb();
|
|
IXGBE_PCI_REG_WRITE_RELAXED(rxq->rdt_reg_addr, prev_id);
|
|
nb_hold = 0;
|
|
}
|
|
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
ixgbe_recv_pkts_lro_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, false);
|
|
}
|
|
|
|
uint16_t
|
|
ixgbe_recv_pkts_lro_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return ixgbe_recv_pkts_lro(rx_queue, rx_pkts, nb_pkts, true);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Queue management functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
static void __attribute__((cold))
|
|
ixgbe_tx_queue_release_mbufs(struct ixgbe_tx_queue *txq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (txq->sw_ring != NULL) {
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __attribute__((cold))
|
|
ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
|
|
{
|
|
if (txq != NULL &&
|
|
txq->sw_ring != NULL)
|
|
rte_free(txq->sw_ring);
|
|
}
|
|
|
|
static void __attribute__((cold))
|
|
ixgbe_tx_queue_release(struct ixgbe_tx_queue *txq)
|
|
{
|
|
if (txq != NULL && txq->ops != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->free_swring(txq);
|
|
rte_free(txq);
|
|
}
|
|
}
|
|
|
|
void __attribute__((cold))
|
|
ixgbe_dev_tx_queue_release(void *txq)
|
|
{
|
|
ixgbe_tx_queue_release(txq);
|
|
}
|
|
|
|
/* (Re)set dynamic ixgbe_tx_queue fields to defaults */
|
|
static void __attribute__((cold))
|
|
ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
|
|
{
|
|
static const union ixgbe_adv_tx_desc zeroed_desc = {{0}};
|
|
struct ixgbe_tx_entry *txe = txq->sw_ring;
|
|
uint16_t prev, i;
|
|
|
|
/* Zero out HW ring memory */
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
txq->tx_ring[i] = zeroed_desc;
|
|
}
|
|
|
|
/* Initialize SW ring entries */
|
|
prev = (uint16_t) (txq->nb_tx_desc - 1);
|
|
for (i = 0; i < txq->nb_tx_desc; i++) {
|
|
volatile union ixgbe_adv_tx_desc *txd = &txq->tx_ring[i];
|
|
|
|
txd->wb.status = rte_cpu_to_le_32(IXGBE_TXD_STAT_DD);
|
|
txe[i].mbuf = NULL;
|
|
txe[i].last_id = i;
|
|
txe[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
|
|
|
txq->tx_tail = 0;
|
|
txq->nb_tx_used = 0;
|
|
/*
|
|
* Always allow 1 descriptor to be un-allocated to avoid
|
|
* a H/W race condition
|
|
*/
|
|
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
|
|
txq->ctx_curr = 0;
|
|
memset((void *)&txq->ctx_cache, 0,
|
|
IXGBE_CTX_NUM * sizeof(struct ixgbe_advctx_info));
|
|
}
|
|
|
|
static const struct ixgbe_txq_ops def_txq_ops = {
|
|
.release_mbufs = ixgbe_tx_queue_release_mbufs,
|
|
.free_swring = ixgbe_tx_free_swring,
|
|
.reset = ixgbe_reset_tx_queue,
|
|
};
|
|
|
|
/* Takes an ethdev and a queue and sets up the tx function to be used based on
|
|
* the queue parameters. Used in tx_queue_setup by primary process and then
|
|
* in dev_init by secondary process when attaching to an existing ethdev.
|
|
*/
|
|
void __attribute__((cold))
|
|
ixgbe_set_tx_function(struct rte_eth_dev *dev, struct ixgbe_tx_queue *txq)
|
|
{
|
|
/* Use a simple Tx queue (no offloads, no multi segs) if possible */
|
|
if (((txq->txq_flags & IXGBE_SIMPLE_FLAGS) == IXGBE_SIMPLE_FLAGS)
|
|
&& (txq->tx_rs_thresh >= RTE_PMD_IXGBE_TX_MAX_BURST)) {
|
|
PMD_INIT_LOG(DEBUG, "Using simple tx code path");
|
|
dev->tx_pkt_prepare = NULL;
|
|
#ifdef RTE_IXGBE_INC_VECTOR
|
|
if (txq->tx_rs_thresh <= RTE_IXGBE_TX_MAX_FREE_BUF_SZ &&
|
|
(rte_eal_process_type() != RTE_PROC_PRIMARY ||
|
|
ixgbe_txq_vec_setup(txq) == 0)) {
|
|
PMD_INIT_LOG(DEBUG, "Vector tx enabled.");
|
|
dev->tx_pkt_burst = ixgbe_xmit_pkts_vec;
|
|
} else
|
|
#endif
|
|
dev->tx_pkt_burst = ixgbe_xmit_pkts_simple;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Using full-featured tx code path");
|
|
PMD_INIT_LOG(DEBUG,
|
|
" - txq_flags = %lx " "[IXGBE_SIMPLE_FLAGS=%lx]",
|
|
(unsigned long)txq->txq_flags,
|
|
(unsigned long)IXGBE_SIMPLE_FLAGS);
|
|
PMD_INIT_LOG(DEBUG,
|
|
" - tx_rs_thresh = %lu " "[RTE_PMD_IXGBE_TX_MAX_BURST=%lu]",
|
|
(unsigned long)txq->tx_rs_thresh,
|
|
(unsigned long)RTE_PMD_IXGBE_TX_MAX_BURST);
|
|
dev->tx_pkt_burst = ixgbe_xmit_pkts;
|
|
dev->tx_pkt_prepare = ixgbe_prep_pkts;
|
|
}
|
|
}
|
|
|
|
int __attribute__((cold))
|
|
ixgbe_dev_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct ixgbe_tx_queue *txq;
|
|
struct ixgbe_hw *hw;
|
|
uint16_t tx_rs_thresh, tx_free_thresh;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Validate number of transmit descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of IXGBE_ALIGN.
|
|
*/
|
|
if (nb_desc % IXGBE_TXD_ALIGN != 0 ||
|
|
(nb_desc > IXGBE_MAX_RING_DESC) ||
|
|
(nb_desc < IXGBE_MIN_RING_DESC)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* The following two parameters control the setting of the RS bit on
|
|
* transmit descriptors.
|
|
* TX descriptors will have their RS bit set after txq->tx_rs_thresh
|
|
* descriptors have been used.
|
|
* The TX descriptor ring will be cleaned after txq->tx_free_thresh
|
|
* descriptors are used or if the number of descriptors required
|
|
* to transmit a packet is greater than the number of free TX
|
|
* descriptors.
|
|
* The following constraints must be satisfied:
|
|
* tx_rs_thresh must be greater than 0.
|
|
* tx_rs_thresh must be less than the size of the ring minus 2.
|
|
* tx_rs_thresh must be less than or equal to tx_free_thresh.
|
|
* tx_rs_thresh must be a divisor of the ring size.
|
|
* tx_free_thresh must be greater than 0.
|
|
* tx_free_thresh must be less than the size of the ring minus 3.
|
|
* One descriptor in the TX ring is used as a sentinel to avoid a
|
|
* H/W race condition, hence the maximum threshold constraints.
|
|
* When set to zero use default values.
|
|
*/
|
|
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
|
|
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
|
|
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
|
|
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
|
|
if (tx_rs_thresh >= (nb_desc - 2)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the number "
|
|
"of TX descriptors minus 2. (tx_rs_thresh=%u "
|
|
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
if (tx_rs_thresh > DEFAULT_TX_RS_THRESH) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less or equal than %u. "
|
|
"(tx_rs_thresh=%u port=%d queue=%d)",
|
|
DEFAULT_TX_RS_THRESH, (unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
|
|
"tx_free_thresh must be less than the number of "
|
|
"TX descriptors minus 3. (tx_free_thresh=%u "
|
|
"port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
if (tx_rs_thresh > tx_free_thresh) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
|
|
"tx_free_thresh. (tx_free_thresh=%u "
|
|
"tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
if ((nb_desc % tx_rs_thresh) != 0) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
|
|
"number of TX descriptors. (tx_rs_thresh=%u "
|
|
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/*
|
|
* If rs_bit_thresh is greater than 1, then TX WTHRESH should be
|
|
* set to 0. If WTHRESH is greater than zero, the RS bit is ignored
|
|
* by the NIC and all descriptors are written back after the NIC
|
|
* accumulates WTHRESH descriptors.
|
|
*/
|
|
if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
|
|
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
|
|
"tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
|
|
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->tx_queues[queue_idx] != NULL) {
|
|
ixgbe_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the tx queue data structure */
|
|
txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct ixgbe_tx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Allocate TX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
|
|
sizeof(union ixgbe_adv_tx_desc) * IXGBE_MAX_RING_DESC,
|
|
IXGBE_ALIGN, socket_id);
|
|
if (tz == NULL) {
|
|
ixgbe_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->tx_rs_thresh = tx_rs_thresh;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
|
|
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
|
|
txq->port_id = dev->data->port_id;
|
|
txq->txq_flags = tx_conf->txq_flags;
|
|
txq->ops = &def_txq_ops;
|
|
txq->tx_deferred_start = tx_conf->tx_deferred_start;
|
|
|
|
/*
|
|
* Modification to set VFTDT for virtual function if vf is detected
|
|
*/
|
|
if (hw->mac.type == ixgbe_mac_82599_vf ||
|
|
hw->mac.type == ixgbe_mac_X540_vf ||
|
|
hw->mac.type == ixgbe_mac_X550_vf ||
|
|
hw->mac.type == ixgbe_mac_X550EM_x_vf ||
|
|
hw->mac.type == ixgbe_mac_X550EM_a_vf)
|
|
txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_VFTDT(queue_idx));
|
|
else
|
|
txq->tdt_reg_addr = IXGBE_PCI_REG_ADDR(hw, IXGBE_TDT(txq->reg_idx));
|
|
|
|
txq->tx_ring_phys_addr = tz->phys_addr;
|
|
txq->tx_ring = (union ixgbe_adv_tx_desc *) tz->addr;
|
|
|
|
/* Allocate software ring */
|
|
txq->sw_ring = rte_zmalloc_socket("txq->sw_ring",
|
|
sizeof(struct ixgbe_tx_entry) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL) {
|
|
ixgbe_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
|
|
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
|
|
|
|
/* set up vector or scalar TX function as appropriate */
|
|
ixgbe_set_tx_function(dev, txq);
|
|
|
|
txq->ops->reset(txq);
|
|
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_free_sc_cluster - free the not-yet-completed scattered cluster
|
|
*
|
|
* The "next" pointer of the last segment of (not-yet-completed) RSC clusters
|
|
* in the sw_rsc_ring is not set to NULL but rather points to the next
|
|
* mbuf of this RSC aggregation (that has not been completed yet and still
|
|
* resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we
|
|
* will just free first "nb_segs" segments of the cluster explicitly by calling
|
|
* an rte_pktmbuf_free_seg().
|
|
*
|
|
* @m scattered cluster head
|
|
*/
|
|
static void __attribute__((cold))
|
|
ixgbe_free_sc_cluster(struct rte_mbuf *m)
|
|
{
|
|
uint8_t i, nb_segs = m->nb_segs;
|
|
struct rte_mbuf *next_seg;
|
|
|
|
for (i = 0; i < nb_segs; i++) {
|
|
next_seg = m->next;
|
|
rte_pktmbuf_free_seg(m);
|
|
m = next_seg;
|
|
}
|
|
}
|
|
|
|
static void __attribute__((cold))
|
|
ixgbe_rx_queue_release_mbufs(struct ixgbe_rx_queue *rxq)
|
|
{
|
|
unsigned i;
|
|
|
|
#ifdef RTE_IXGBE_INC_VECTOR
|
|
/* SSE Vector driver has a different way of releasing mbufs. */
|
|
if (rxq->rx_using_sse) {
|
|
ixgbe_rx_queue_release_mbufs_vec(rxq);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (rxq->sw_ring != NULL) {
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
if (rxq->rx_nb_avail) {
|
|
for (i = 0; i < rxq->rx_nb_avail; ++i) {
|
|
struct rte_mbuf *mb;
|
|
|
|
mb = rxq->rx_stage[rxq->rx_next_avail + i];
|
|
rte_pktmbuf_free_seg(mb);
|
|
}
|
|
rxq->rx_nb_avail = 0;
|
|
}
|
|
}
|
|
|
|
if (rxq->sw_sc_ring)
|
|
for (i = 0; i < rxq->nb_rx_desc; i++)
|
|
if (rxq->sw_sc_ring[i].fbuf) {
|
|
ixgbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf);
|
|
rxq->sw_sc_ring[i].fbuf = NULL;
|
|
}
|
|
}
|
|
|
|
static void __attribute__((cold))
|
|
ixgbe_rx_queue_release(struct ixgbe_rx_queue *rxq)
|
|
{
|
|
if (rxq != NULL) {
|
|
ixgbe_rx_queue_release_mbufs(rxq);
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq->sw_sc_ring);
|
|
rte_free(rxq);
|
|
}
|
|
}
|
|
|
|
void __attribute__((cold))
|
|
ixgbe_dev_rx_queue_release(void *rxq)
|
|
{
|
|
ixgbe_rx_queue_release(rxq);
|
|
}
|
|
|
|
/*
|
|
* Check if Rx Burst Bulk Alloc function can be used.
|
|
* Return
|
|
* 0: the preconditions are satisfied and the bulk allocation function
|
|
* can be used.
|
|
* -EINVAL: the preconditions are NOT satisfied and the default Rx burst
|
|
* function must be used.
|
|
*/
|
|
static inline int __attribute__((cold))
|
|
check_rx_burst_bulk_alloc_preconditions(struct ixgbe_rx_queue *rxq)
|
|
{
|
|
int ret = 0;
|
|
|
|
/*
|
|
* Make sure the following pre-conditions are satisfied:
|
|
* rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST
|
|
* rxq->rx_free_thresh < rxq->nb_rx_desc
|
|
* (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0
|
|
* Scattered packets are not supported. This should be checked
|
|
* outside of this function.
|
|
*/
|
|
if (!(rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"RTE_PMD_IXGBE_RX_MAX_BURST=%d",
|
|
rxq->rx_free_thresh, RTE_PMD_IXGBE_RX_MAX_BURST);
|
|
ret = -EINVAL;
|
|
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->rx_free_thresh=%d, "
|
|
"rxq->nb_rx_desc=%d",
|
|
rxq->rx_free_thresh, rxq->nb_rx_desc);
|
|
ret = -EINVAL;
|
|
} else if (!((rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
|
|
"rxq->nb_rx_desc=%d, "
|
|
"rxq->rx_free_thresh=%d",
|
|
rxq->nb_rx_desc, rxq->rx_free_thresh);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Reset dynamic ixgbe_rx_queue fields back to defaults */
|
|
static void __attribute__((cold))
|
|
ixgbe_reset_rx_queue(struct ixgbe_adapter *adapter, struct ixgbe_rx_queue *rxq)
|
|
{
|
|
static const union ixgbe_adv_rx_desc zeroed_desc = {{0}};
|
|
unsigned i;
|
|
uint16_t len = rxq->nb_rx_desc;
|
|
|
|
/*
|
|
* By default, the Rx queue setup function allocates enough memory for
|
|
* IXGBE_MAX_RING_DESC. The Rx Burst bulk allocation function requires
|
|
* extra memory at the end of the descriptor ring to be zero'd out.
|
|
*/
|
|
if (adapter->rx_bulk_alloc_allowed)
|
|
/* zero out extra memory */
|
|
len += RTE_PMD_IXGBE_RX_MAX_BURST;
|
|
|
|
/*
|
|
* Zero out HW ring memory. Zero out extra memory at the end of
|
|
* the H/W ring so look-ahead logic in Rx Burst bulk alloc function
|
|
* reads extra memory as zeros.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
rxq->rx_ring[i] = zeroed_desc;
|
|
}
|
|
|
|
/*
|
|
* initialize extra software ring entries. Space for these extra
|
|
* entries is always allocated
|
|
*/
|
|
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
|
|
for (i = rxq->nb_rx_desc; i < len; ++i) {
|
|
rxq->sw_ring[i].mbuf = &rxq->fake_mbuf;
|
|
}
|
|
|
|
rxq->rx_nb_avail = 0;
|
|
rxq->rx_next_avail = 0;
|
|
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
|
|
#ifdef RTE_IXGBE_INC_VECTOR
|
|
rxq->rxrearm_start = 0;
|
|
rxq->rxrearm_nb = 0;
|
|
#endif
|
|
}
|
|
|
|
int __attribute__((cold))
|
|
ixgbe_dev_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
const struct rte_memzone *rz;
|
|
struct ixgbe_rx_queue *rxq;
|
|
struct ixgbe_hw *hw;
|
|
uint16_t len;
|
|
struct ixgbe_adapter *adapter =
|
|
(struct ixgbe_adapter *)dev->data->dev_private;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Validate number of receive descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of IXGBE_ALIGN.
|
|
*/
|
|
if (nb_desc % IXGBE_RXD_ALIGN != 0 ||
|
|
(nb_desc > IXGBE_MAX_RING_DESC) ||
|
|
(nb_desc < IXGBE_MIN_RING_DESC)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->rx_queues[queue_idx] != NULL) {
|
|
ixgbe_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* First allocate the rx queue data structure */
|
|
rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct ixgbe_rx_queue),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rxq == NULL)
|
|
return -ENOMEM;
|
|
rxq->mb_pool = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
|
|
queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
|
|
rxq->port_id = dev->data->port_id;
|
|
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
|
|
0 : ETHER_CRC_LEN);
|
|
rxq->drop_en = rx_conf->rx_drop_en;
|
|
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
|
|
|
|
/*
|
|
* The packet type in RX descriptor is different for different NICs.
|
|
* Some bits are used for x550 but reserved for other NICS.
|
|
* So set different masks for different NICs.
|
|
*/
|
|
if (hw->mac.type == ixgbe_mac_X550 ||
|
|
hw->mac.type == ixgbe_mac_X550EM_x ||
|
|
hw->mac.type == ixgbe_mac_X550EM_a ||
|
|
hw->mac.type == ixgbe_mac_X550_vf ||
|
|
hw->mac.type == ixgbe_mac_X550EM_x_vf ||
|
|
hw->mac.type == ixgbe_mac_X550EM_a_vf)
|
|
rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_X550;
|
|
else
|
|
rxq->pkt_type_mask = IXGBE_PACKET_TYPE_MASK_82599;
|
|
|
|
/*
|
|
* Allocate RX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
|
|
RX_RING_SZ, IXGBE_ALIGN, socket_id);
|
|
if (rz == NULL) {
|
|
ixgbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Zero init all the descriptors in the ring.
|
|
*/
|
|
memset(rz->addr, 0, RX_RING_SZ);
|
|
|
|
/*
|
|
* Modified to setup VFRDT for Virtual Function
|
|
*/
|
|
if (hw->mac.type == ixgbe_mac_82599_vf ||
|
|
hw->mac.type == ixgbe_mac_X540_vf ||
|
|
hw->mac.type == ixgbe_mac_X550_vf ||
|
|
hw->mac.type == ixgbe_mac_X550EM_x_vf ||
|
|
hw->mac.type == ixgbe_mac_X550EM_a_vf) {
|
|
rxq->rdt_reg_addr =
|
|
IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDT(queue_idx));
|
|
rxq->rdh_reg_addr =
|
|
IXGBE_PCI_REG_ADDR(hw, IXGBE_VFRDH(queue_idx));
|
|
} else {
|
|
rxq->rdt_reg_addr =
|
|
IXGBE_PCI_REG_ADDR(hw, IXGBE_RDT(rxq->reg_idx));
|
|
rxq->rdh_reg_addr =
|
|
IXGBE_PCI_REG_ADDR(hw, IXGBE_RDH(rxq->reg_idx));
|
|
}
|
|
|
|
rxq->rx_ring_phys_addr = rz->phys_addr;
|
|
rxq->rx_ring = (union ixgbe_adv_rx_desc *) rz->addr;
|
|
|
|
/*
|
|
* Certain constraints must be met in order to use the bulk buffer
|
|
* allocation Rx burst function. If any of Rx queues doesn't meet them
|
|
* the feature should be disabled for the whole port.
|
|
*/
|
|
if (check_rx_burst_bulk_alloc_preconditions(rxq)) {
|
|
PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Rx Bulk Alloc "
|
|
"preconditions - canceling the feature for "
|
|
"the whole port[%d]",
|
|
rxq->queue_id, rxq->port_id);
|
|
adapter->rx_bulk_alloc_allowed = false;
|
|
}
|
|
|
|
/*
|
|
* Allocate software ring. Allow for space at the end of the
|
|
* S/W ring to make sure look-ahead logic in bulk alloc Rx burst
|
|
* function does not access an invalid memory region.
|
|
*/
|
|
len = nb_desc;
|
|
if (adapter->rx_bulk_alloc_allowed)
|
|
len += RTE_PMD_IXGBE_RX_MAX_BURST;
|
|
|
|
rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring",
|
|
sizeof(struct ixgbe_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (!rxq->sw_ring) {
|
|
ixgbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Always allocate even if it's not going to be needed in order to
|
|
* simplify the code.
|
|
*
|
|
* This ring is used in LRO and Scattered Rx cases and Scattered Rx may
|
|
* be requested in ixgbe_dev_rx_init(), which is called later from
|
|
* dev_start() flow.
|
|
*/
|
|
rxq->sw_sc_ring =
|
|
rte_zmalloc_socket("rxq->sw_sc_ring",
|
|
sizeof(struct ixgbe_scattered_rx_entry) * len,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (!rxq->sw_sc_ring) {
|
|
ixgbe_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p sw_sc_ring=%p hw_ring=%p "
|
|
"dma_addr=0x%"PRIx64,
|
|
rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring,
|
|
rxq->rx_ring_phys_addr);
|
|
|
|
if (!rte_is_power_of_2(nb_desc)) {
|
|
PMD_INIT_LOG(DEBUG, "queue[%d] doesn't meet Vector Rx "
|
|
"preconditions - canceling the feature for "
|
|
"the whole port[%d]",
|
|
rxq->queue_id, rxq->port_id);
|
|
adapter->rx_vec_allowed = false;
|
|
} else
|
|
ixgbe_rxq_vec_setup(rxq);
|
|
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
|
|
ixgbe_reset_rx_queue(adapter, rxq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
ixgbe_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
#define IXGBE_RXQ_SCAN_INTERVAL 4
|
|
volatile union ixgbe_adv_rx_desc *rxdp;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint32_t desc = 0;
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
|
|
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
(rxdp->wb.upper.status_error &
|
|
rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))) {
|
|
desc += IXGBE_RXQ_SCAN_INTERVAL;
|
|
rxdp += IXGBE_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
ixgbe_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
|
|
{
|
|
volatile union ixgbe_adv_rx_desc *rxdp;
|
|
struct ixgbe_rx_queue *rxq = rx_queue;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return 0;
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
rxdp = &rxq->rx_ring[desc];
|
|
return !!(rxdp->wb.upper.status_error &
|
|
rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD));
|
|
}
|
|
|
|
int
|
|
ixgbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
struct ixgbe_rx_queue *rxq = rx_queue;
|
|
volatile uint32_t *status;
|
|
uint32_t nb_hold, desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return -EINVAL;
|
|
|
|
#ifdef RTE_IXGBE_INC_VECTOR
|
|
if (rxq->rx_using_sse)
|
|
nb_hold = rxq->rxrearm_nb;
|
|
else
|
|
#endif
|
|
nb_hold = rxq->nb_rx_hold;
|
|
if (offset >= rxq->nb_rx_desc - nb_hold)
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
status = &rxq->rx_ring[desc].wb.upper.status_error;
|
|
if (*status & rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD))
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
int
|
|
ixgbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct ixgbe_tx_queue *txq = tx_queue;
|
|
volatile uint32_t *status;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= txq->nb_tx_desc))
|
|
return -EINVAL;
|
|
|
|
desc = txq->tx_tail + offset;
|
|
/* go to next desc that has the RS bit */
|
|
desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
|
|
txq->tx_rs_thresh;
|
|
if (desc >= txq->nb_tx_desc) {
|
|
desc -= txq->nb_tx_desc;
|
|
if (desc >= txq->nb_tx_desc)
|
|
desc -= txq->nb_tx_desc;
|
|
}
|
|
|
|
status = &txq->tx_ring[desc].wb.status;
|
|
if (*status & rte_cpu_to_le_32(IXGBE_ADVTXD_STAT_DD))
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
void __attribute__((cold))
|
|
ixgbe_dev_clear_queues(struct rte_eth_dev *dev)
|
|
{
|
|
unsigned i;
|
|
struct ixgbe_adapter *adapter =
|
|
(struct ixgbe_adapter *)dev->data->dev_private;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
struct ixgbe_tx_queue *txq = dev->data->tx_queues[i];
|
|
|
|
if (txq != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->reset(txq);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
|
|
if (rxq != NULL) {
|
|
ixgbe_rx_queue_release_mbufs(rxq);
|
|
ixgbe_reset_rx_queue(adapter, rxq);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
ixgbe_dev_free_queues(struct rte_eth_dev *dev)
|
|
{
|
|
unsigned i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
ixgbe_dev_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
ixgbe_dev_tx_queue_release(dev->data->tx_queues[i]);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Device RX/TX init functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
/**
|
|
* Receive Side Scaling (RSS)
|
|
* See section 7.1.2.8 in the following document:
|
|
* "Intel 82599 10 GbE Controller Datasheet" - Revision 2.1 October 2009
|
|
*
|
|
* Principles:
|
|
* The source and destination IP addresses of the IP header and the source
|
|
* and destination ports of TCP/UDP headers, if any, of received packets are
|
|
* hashed against a configurable random key to compute a 32-bit RSS hash result.
|
|
* The seven (7) LSBs of the 32-bit hash result are used as an index into a
|
|
* 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit
|
|
* RSS output index which is used as the RX queue index where to store the
|
|
* received packets.
|
|
* The following output is supplied in the RX write-back descriptor:
|
|
* - 32-bit result of the Microsoft RSS hash function,
|
|
* - 4-bit RSS type field.
|
|
*/
|
|
|
|
/*
|
|
* RSS random key supplied in section 7.1.2.8.3 of the Intel 82599 datasheet.
|
|
* Used as the default key.
|
|
*/
|
|
static uint8_t rss_intel_key[40] = {
|
|
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
|
|
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
|
|
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
|
|
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
|
|
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
|
|
};
|
|
|
|
static void
|
|
ixgbe_rss_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
uint32_t mrqc;
|
|
uint32_t mrqc_reg;
|
|
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
|
|
mrqc = IXGBE_READ_REG(hw, mrqc_reg);
|
|
mrqc &= ~IXGBE_MRQC_RSSEN;
|
|
IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
|
|
}
|
|
|
|
static void
|
|
ixgbe_hw_rss_hash_set(struct ixgbe_hw *hw, struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
uint8_t *hash_key;
|
|
uint32_t mrqc;
|
|
uint32_t rss_key;
|
|
uint64_t rss_hf;
|
|
uint16_t i;
|
|
uint32_t mrqc_reg;
|
|
uint32_t rssrk_reg;
|
|
|
|
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
|
|
rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
|
|
|
|
hash_key = rss_conf->rss_key;
|
|
if (hash_key != NULL) {
|
|
/* Fill in RSS hash key */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = hash_key[(i * 4)];
|
|
rss_key |= hash_key[(i * 4) + 1] << 8;
|
|
rss_key |= hash_key[(i * 4) + 2] << 16;
|
|
rss_key |= hash_key[(i * 4) + 3] << 24;
|
|
IXGBE_WRITE_REG_ARRAY(hw, rssrk_reg, i, rss_key);
|
|
}
|
|
}
|
|
|
|
/* Set configured hashing protocols in MRQC register */
|
|
rss_hf = rss_conf->rss_hf;
|
|
mrqc = IXGBE_MRQC_RSSEN; /* Enable RSS */
|
|
if (rss_hf & ETH_RSS_IPV4)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4;
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_TCP;
|
|
if (rss_hf & ETH_RSS_IPV6)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6;
|
|
if (rss_hf & ETH_RSS_IPV6_EX)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX;
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_TCP;
|
|
if (rss_hf & ETH_RSS_IPV6_TCP_EX)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP;
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV4_UDP;
|
|
if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_UDP;
|
|
if (rss_hf & ETH_RSS_IPV6_UDP_EX)
|
|
mrqc |= IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP;
|
|
IXGBE_WRITE_REG(hw, mrqc_reg, mrqc);
|
|
}
|
|
|
|
int
|
|
ixgbe_dev_rss_hash_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
uint32_t mrqc;
|
|
uint64_t rss_hf;
|
|
uint32_t mrqc_reg;
|
|
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (!ixgbe_rss_update_sp(hw->mac.type)) {
|
|
PMD_DRV_LOG(ERR, "RSS hash update is not supported on this "
|
|
"NIC.");
|
|
return -ENOTSUP;
|
|
}
|
|
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
|
|
|
|
/*
|
|
* Excerpt from section 7.1.2.8 Receive-Side Scaling (RSS):
|
|
* "RSS enabling cannot be done dynamically while it must be
|
|
* preceded by a software reset"
|
|
* Before changing anything, first check that the update RSS operation
|
|
* does not attempt to disable RSS, if RSS was enabled at
|
|
* initialization time, or does not attempt to enable RSS, if RSS was
|
|
* disabled at initialization time.
|
|
*/
|
|
rss_hf = rss_conf->rss_hf & IXGBE_RSS_OFFLOAD_ALL;
|
|
mrqc = IXGBE_READ_REG(hw, mrqc_reg);
|
|
if (!(mrqc & IXGBE_MRQC_RSSEN)) { /* RSS disabled */
|
|
if (rss_hf != 0) /* Enable RSS */
|
|
return -(EINVAL);
|
|
return 0; /* Nothing to do */
|
|
}
|
|
/* RSS enabled */
|
|
if (rss_hf == 0) /* Disable RSS */
|
|
return -(EINVAL);
|
|
ixgbe_hw_rss_hash_set(hw, rss_conf);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ixgbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_conf *rss_conf)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
uint8_t *hash_key;
|
|
uint32_t mrqc;
|
|
uint32_t rss_key;
|
|
uint64_t rss_hf;
|
|
uint16_t i;
|
|
uint32_t mrqc_reg;
|
|
uint32_t rssrk_reg;
|
|
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
mrqc_reg = ixgbe_mrqc_reg_get(hw->mac.type);
|
|
rssrk_reg = ixgbe_rssrk_reg_get(hw->mac.type, 0);
|
|
hash_key = rss_conf->rss_key;
|
|
if (hash_key != NULL) {
|
|
/* Return RSS hash key */
|
|
for (i = 0; i < 10; i++) {
|
|
rss_key = IXGBE_READ_REG_ARRAY(hw, rssrk_reg, i);
|
|
hash_key[(i * 4)] = rss_key & 0x000000FF;
|
|
hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
|
|
hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
|
|
hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
|
|
}
|
|
}
|
|
|
|
/* Get RSS functions configured in MRQC register */
|
|
mrqc = IXGBE_READ_REG(hw, mrqc_reg);
|
|
if ((mrqc & IXGBE_MRQC_RSSEN) == 0) { /* RSS is disabled */
|
|
rss_conf->rss_hf = 0;
|
|
return 0;
|
|
}
|
|
rss_hf = 0;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4)
|
|
rss_hf |= ETH_RSS_IPV4;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_TCP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6)
|
|
rss_hf |= ETH_RSS_IPV6;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX)
|
|
rss_hf |= ETH_RSS_IPV6_EX;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_TCP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_TCP)
|
|
rss_hf |= ETH_RSS_IPV6_TCP_EX;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV4_UDP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_UDP)
|
|
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
|
|
if (mrqc & IXGBE_MRQC_RSS_FIELD_IPV6_EX_UDP)
|
|
rss_hf |= ETH_RSS_IPV6_UDP_EX;
|
|
rss_conf->rss_hf = rss_hf;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ixgbe_rss_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_rss_conf rss_conf;
|
|
struct ixgbe_hw *hw;
|
|
uint32_t reta;
|
|
uint16_t i;
|
|
uint16_t j;
|
|
uint16_t sp_reta_size;
|
|
uint32_t reta_reg;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
sp_reta_size = ixgbe_reta_size_get(hw->mac.type);
|
|
|
|
/*
|
|
* Fill in redirection table
|
|
* The byte-swap is needed because NIC registers are in
|
|
* little-endian order.
|
|
*/
|
|
reta = 0;
|
|
for (i = 0, j = 0; i < sp_reta_size; i++, j++) {
|
|
reta_reg = ixgbe_reta_reg_get(hw->mac.type, i);
|
|
|
|
if (j == dev->data->nb_rx_queues)
|
|
j = 0;
|
|
reta = (reta << 8) | j;
|
|
if ((i & 3) == 3)
|
|
IXGBE_WRITE_REG(hw, reta_reg,
|
|
rte_bswap32(reta));
|
|
}
|
|
|
|
/*
|
|
* Configure the RSS key and the RSS protocols used to compute
|
|
* the RSS hash of input packets.
|
|
*/
|
|
rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
|
|
if ((rss_conf.rss_hf & IXGBE_RSS_OFFLOAD_ALL) == 0) {
|
|
ixgbe_rss_disable(dev);
|
|
return;
|
|
}
|
|
if (rss_conf.rss_key == NULL)
|
|
rss_conf.rss_key = rss_intel_key; /* Default hash key */
|
|
ixgbe_hw_rss_hash_set(hw, &rss_conf);
|
|
}
|
|
|
|
#define NUM_VFTA_REGISTERS 128
|
|
#define NIC_RX_BUFFER_SIZE 0x200
|
|
#define X550_RX_BUFFER_SIZE 0x180
|
|
|
|
static void
|
|
ixgbe_vmdq_dcb_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_vmdq_dcb_conf *cfg;
|
|
struct ixgbe_hw *hw;
|
|
enum rte_eth_nb_pools num_pools;
|
|
uint32_t mrqc, vt_ctl, queue_mapping, vlanctrl;
|
|
uint16_t pbsize;
|
|
uint8_t nb_tcs; /* number of traffic classes */
|
|
int i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
|
|
num_pools = cfg->nb_queue_pools;
|
|
/* Check we have a valid number of pools */
|
|
if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) {
|
|
ixgbe_rss_disable(dev);
|
|
return;
|
|
}
|
|
/* 16 pools -> 8 traffic classes, 32 pools -> 4 traffic classes */
|
|
nb_tcs = (uint8_t)(ETH_VMDQ_DCB_NUM_QUEUES / (int)num_pools);
|
|
|
|
/*
|
|
* RXPBSIZE
|
|
* split rx buffer up into sections, each for 1 traffic class
|
|
*/
|
|
switch (hw->mac.type) {
|
|
case ixgbe_mac_X550:
|
|
case ixgbe_mac_X550EM_x:
|
|
case ixgbe_mac_X550EM_a:
|
|
pbsize = (uint16_t)(X550_RX_BUFFER_SIZE / nb_tcs);
|
|
break;
|
|
default:
|
|
pbsize = (uint16_t)(NIC_RX_BUFFER_SIZE / nb_tcs);
|
|
break;
|
|
}
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
|
|
|
|
rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
|
|
/* clear 10 bits. */
|
|
rxpbsize |= (pbsize << IXGBE_RXPBSIZE_SHIFT); /* set value */
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
|
|
}
|
|
/* zero alloc all unused TCs */
|
|
for (i = nb_tcs; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
uint32_t rxpbsize = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i));
|
|
|
|
rxpbsize &= (~(0x3FF << IXGBE_RXPBSIZE_SHIFT));
|
|
/* clear 10 bits. */
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
|
|
}
|
|
|
|
/* MRQC: enable vmdq and dcb */
|
|
mrqc = (num_pools == ETH_16_POOLS) ?
|
|
IXGBE_MRQC_VMDQRT8TCEN : IXGBE_MRQC_VMDQRT4TCEN;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
|
|
|
|
/* PFVTCTL: turn on virtualisation and set the default pool */
|
|
vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
|
|
if (cfg->enable_default_pool) {
|
|
vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
|
|
} else {
|
|
vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
|
|
}
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
|
|
|
|
/* RTRUP2TC: mapping user priorities to traffic classes (TCs) */
|
|
queue_mapping = 0;
|
|
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++)
|
|
/*
|
|
* mapping is done with 3 bits per priority,
|
|
* so shift by i*3 each time
|
|
*/
|
|
queue_mapping |= ((cfg->dcb_tc[i] & 0x07) << (i * 3));
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTRUP2TC, queue_mapping);
|
|
|
|
/* RTRPCS: DCB related */
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, IXGBE_RMCS_RRM);
|
|
|
|
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
|
|
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
|
|
vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
|
|
|
|
/* VFTA - enable all vlan filters */
|
|
for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
|
|
}
|
|
|
|
/* VFRE: pool enabling for receive - 16 or 32 */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRE(0),
|
|
num_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
|
|
|
|
/*
|
|
* MPSAR - allow pools to read specific mac addresses
|
|
* In this case, all pools should be able to read from mac addr 0
|
|
*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), 0xFFFFFFFF);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), 0xFFFFFFFF);
|
|
|
|
/* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
|
|
for (i = 0; i < cfg->nb_pool_maps; i++) {
|
|
/* set vlan id in VF register and set the valid bit */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
|
|
(cfg->pool_map[i].vlan_id & 0xFFF)));
|
|
/*
|
|
* Put the allowed pools in VFB reg. As we only have 16 or 32
|
|
* pools, we only need to use the first half of the register
|
|
* i.e. bits 0-31
|
|
*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i*2), cfg->pool_map[i].pools);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ixgbe_dcb_config_tx_hw_config - Configure general DCB TX parameters
|
|
* @dev: pointer to eth_dev structure
|
|
* @dcb_config: pointer to ixgbe_dcb_config structure
|
|
*/
|
|
static void
|
|
ixgbe_dcb_tx_hw_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
uint32_t reg;
|
|
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
if (hw->mac.type != ixgbe_mac_82598EB) {
|
|
/* Disable the Tx desc arbiter so that MTQC can be changed */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
|
|
reg |= IXGBE_RTTDCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
|
|
|
|
/* Enable DCB for Tx with 8 TCs */
|
|
if (dcb_config->num_tcs.pg_tcs == 8) {
|
|
reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_8TC_8TQ;
|
|
} else {
|
|
reg = IXGBE_MTQC_RT_ENA | IXGBE_MTQC_4TC_4TQ;
|
|
}
|
|
if (dcb_config->vt_mode)
|
|
reg |= IXGBE_MTQC_VT_ENA;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
|
|
|
|
/* Enable the Tx desc arbiter */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
|
|
reg &= ~IXGBE_RTTDCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
|
|
|
|
/* Enable Security TX Buffer IFG for DCB */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_SECTXMINIFG);
|
|
reg |= IXGBE_SECTX_DCB;
|
|
IXGBE_WRITE_REG(hw, IXGBE_SECTXMINIFG, reg);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ixgbe_vmdq_dcb_hw_tx_config - Configure general VMDQ+DCB TX parameters
|
|
* @dev: pointer to rte_eth_dev structure
|
|
* @dcb_config: pointer to ixgbe_dcb_config structure
|
|
*/
|
|
static void
|
|
ixgbe_vmdq_dcb_hw_tx_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
|
|
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
|
|
struct ixgbe_hw *hw =
|
|
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
if (hw->mac.type != ixgbe_mac_82598EB)
|
|
/*PF VF Transmit Enable*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTE(0),
|
|
vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS ? 0xFFFF : 0xFFFFFFFF);
|
|
|
|
/*Configure general DCB TX parameters*/
|
|
ixgbe_dcb_tx_hw_config(dev, dcb_config);
|
|
}
|
|
|
|
static void
|
|
ixgbe_vmdq_dcb_rx_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
|
|
&dev->data->dev_conf.rx_adv_conf.vmdq_dcb_conf;
|
|
struct ixgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
/* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
|
|
if (vmdq_rx_conf->nb_queue_pools == ETH_16_POOLS) {
|
|
dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
|
|
} else {
|
|
dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
|
|
}
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = vmdq_rx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ixgbe_dcb_vt_tx_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
|
|
&dev->data->dev_conf.tx_adv_conf.vmdq_dcb_tx_conf;
|
|
struct ixgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
/* convert rte_eth_conf.rx_adv_conf to struct ixgbe_dcb_config */
|
|
if (vmdq_tx_conf->nb_queue_pools == ETH_16_POOLS) {
|
|
dcb_config->num_tcs.pg_tcs = ETH_8_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = ETH_8_TCS;
|
|
} else {
|
|
dcb_config->num_tcs.pg_tcs = ETH_4_TCS;
|
|
dcb_config->num_tcs.pfc_tcs = ETH_4_TCS;
|
|
}
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = vmdq_tx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ixgbe_dcb_rx_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_dcb_rx_conf *rx_conf =
|
|
&dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
|
|
struct ixgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
dcb_config->num_tcs.pg_tcs = (uint8_t)rx_conf->nb_tcs;
|
|
dcb_config->num_tcs.pfc_tcs = (uint8_t)rx_conf->nb_tcs;
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = rx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_RX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ixgbe_dcb_tx_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
struct rte_eth_dcb_tx_conf *tx_conf =
|
|
&dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
|
|
struct ixgbe_dcb_tc_config *tc;
|
|
uint8_t i, j;
|
|
|
|
dcb_config->num_tcs.pg_tcs = (uint8_t)tx_conf->nb_tcs;
|
|
dcb_config->num_tcs.pfc_tcs = (uint8_t)tx_conf->nb_tcs;
|
|
|
|
/* Initialize User Priority to Traffic Class mapping */
|
|
for (j = 0; j < IXGBE_DCB_MAX_TRAFFIC_CLASS; j++) {
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap = 0;
|
|
}
|
|
|
|
/* User Priority to Traffic Class mapping */
|
|
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
j = tx_conf->dcb_tc[i];
|
|
tc = &dcb_config->tc_config[j];
|
|
tc->path[IXGBE_DCB_TX_CONFIG].up_to_tc_bitmap |=
|
|
(uint8_t)(1 << i);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ixgbe_dcb_rx_hw_config - Configure general DCB RX HW parameters
|
|
* @dev: pointer to eth_dev structure
|
|
* @dcb_config: pointer to ixgbe_dcb_config structure
|
|
*/
|
|
static void
|
|
ixgbe_dcb_rx_hw_config(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
uint32_t reg;
|
|
uint32_t vlanctrl;
|
|
uint8_t i;
|
|
uint32_t q;
|
|
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
/*
|
|
* Disable the arbiter before changing parameters
|
|
* (always enable recycle mode; WSP)
|
|
*/
|
|
reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC | IXGBE_RTRPCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
|
|
|
|
if (hw->mac.type != ixgbe_mac_82598EB) {
|
|
reg = IXGBE_READ_REG(hw, IXGBE_MRQC);
|
|
if (dcb_config->num_tcs.pg_tcs == 4) {
|
|
if (dcb_config->vt_mode)
|
|
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
|
|
IXGBE_MRQC_VMDQRT4TCEN;
|
|
else {
|
|
/* no matter the mode is DCB or DCB_RSS, just
|
|
* set the MRQE to RSSXTCEN. RSS is controlled
|
|
* by RSS_FIELD
|
|
*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
|
|
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
|
|
IXGBE_MRQC_RTRSS4TCEN;
|
|
}
|
|
}
|
|
if (dcb_config->num_tcs.pg_tcs == 8) {
|
|
if (dcb_config->vt_mode)
|
|
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
|
|
IXGBE_MRQC_VMDQRT8TCEN;
|
|
else {
|
|
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, 0);
|
|
reg = (reg & ~IXGBE_MRQC_MRQE_MASK) |
|
|
IXGBE_MRQC_RTRSS8TCEN;
|
|
}
|
|
}
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC, reg);
|
|
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
/* Disable drop for all queues in VMDQ mode*/
|
|
for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_QDE,
|
|
(IXGBE_QDE_WRITE |
|
|
(q << IXGBE_QDE_IDX_SHIFT)));
|
|
} else {
|
|
/* Enable drop for all queues in SRIOV mode */
|
|
for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_QDE,
|
|
(IXGBE_QDE_WRITE |
|
|
(q << IXGBE_QDE_IDX_SHIFT) |
|
|
IXGBE_QDE_ENABLE));
|
|
}
|
|
}
|
|
|
|
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
|
|
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
|
|
vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
|
|
|
|
/* VFTA - enable all vlan filters */
|
|
for (i = 0; i < NUM_VFTA_REGISTERS; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), 0xFFFFFFFF);
|
|
}
|
|
|
|
/*
|
|
* Configure Rx packet plane (recycle mode; WSP) and
|
|
* enable arbiter
|
|
*/
|
|
reg = IXGBE_RTRPCS_RRM | IXGBE_RTRPCS_RAC;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTRPCS, reg);
|
|
}
|
|
|
|
static void
|
|
ixgbe_dcb_hw_arbite_rx_config(struct ixgbe_hw *hw, uint16_t *refill,
|
|
uint16_t *max, uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
|
|
{
|
|
switch (hw->mac.type) {
|
|
case ixgbe_mac_82598EB:
|
|
ixgbe_dcb_config_rx_arbiter_82598(hw, refill, max, tsa);
|
|
break;
|
|
case ixgbe_mac_82599EB:
|
|
case ixgbe_mac_X540:
|
|
case ixgbe_mac_X550:
|
|
case ixgbe_mac_X550EM_x:
|
|
case ixgbe_mac_X550EM_a:
|
|
ixgbe_dcb_config_rx_arbiter_82599(hw, refill, max, bwg_id,
|
|
tsa, map);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ixgbe_dcb_hw_arbite_tx_config(struct ixgbe_hw *hw, uint16_t *refill, uint16_t *max,
|
|
uint8_t *bwg_id, uint8_t *tsa, uint8_t *map)
|
|
{
|
|
switch (hw->mac.type) {
|
|
case ixgbe_mac_82598EB:
|
|
ixgbe_dcb_config_tx_desc_arbiter_82598(hw, refill, max, bwg_id, tsa);
|
|
ixgbe_dcb_config_tx_data_arbiter_82598(hw, refill, max, bwg_id, tsa);
|
|
break;
|
|
case ixgbe_mac_82599EB:
|
|
case ixgbe_mac_X540:
|
|
case ixgbe_mac_X550:
|
|
case ixgbe_mac_X550EM_x:
|
|
case ixgbe_mac_X550EM_a:
|
|
ixgbe_dcb_config_tx_desc_arbiter_82599(hw, refill, max, bwg_id, tsa);
|
|
ixgbe_dcb_config_tx_data_arbiter_82599(hw, refill, max, bwg_id, tsa, map);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#define DCB_RX_CONFIG 1
|
|
#define DCB_TX_CONFIG 1
|
|
#define DCB_TX_PB 1024
|
|
/**
|
|
* ixgbe_dcb_hw_configure - Enable DCB and configure
|
|
* general DCB in VT mode and non-VT mode parameters
|
|
* @dev: pointer to rte_eth_dev structure
|
|
* @dcb_config: pointer to ixgbe_dcb_config structure
|
|
*/
|
|
static int
|
|
ixgbe_dcb_hw_configure(struct rte_eth_dev *dev,
|
|
struct ixgbe_dcb_config *dcb_config)
|
|
{
|
|
int ret = 0;
|
|
uint8_t i, pfc_en, nb_tcs;
|
|
uint16_t pbsize, rx_buffer_size;
|
|
uint8_t config_dcb_rx = 0;
|
|
uint8_t config_dcb_tx = 0;
|
|
uint8_t tsa[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
|
|
uint8_t bwgid[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
|
|
uint16_t refill[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
|
|
uint16_t max[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
|
|
uint8_t map[IXGBE_DCB_MAX_TRAFFIC_CLASS] = {0};
|
|
struct ixgbe_dcb_tc_config *tc;
|
|
uint32_t max_frame = dev->data->mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
|
|
struct ixgbe_hw *hw =
|
|
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct ixgbe_bw_conf *bw_conf =
|
|
IXGBE_DEV_PRIVATE_TO_BW_CONF(dev->data->dev_private);
|
|
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case ETH_MQ_RX_VMDQ_DCB:
|
|
dcb_config->vt_mode = true;
|
|
if (hw->mac.type != ixgbe_mac_82598EB) {
|
|
config_dcb_rx = DCB_RX_CONFIG;
|
|
/*
|
|
*get dcb and VT rx configuration parameters
|
|
*from rte_eth_conf
|
|
*/
|
|
ixgbe_vmdq_dcb_rx_config(dev, dcb_config);
|
|
/*Configure general VMDQ and DCB RX parameters*/
|
|
ixgbe_vmdq_dcb_configure(dev);
|
|
}
|
|
break;
|
|
case ETH_MQ_RX_DCB:
|
|
case ETH_MQ_RX_DCB_RSS:
|
|
dcb_config->vt_mode = false;
|
|
config_dcb_rx = DCB_RX_CONFIG;
|
|
/* Get dcb TX configuration parameters from rte_eth_conf */
|
|
ixgbe_dcb_rx_config(dev, dcb_config);
|
|
/*Configure general DCB RX parameters*/
|
|
ixgbe_dcb_rx_hw_config(dev, dcb_config);
|
|
break;
|
|
default:
|
|
PMD_INIT_LOG(ERR, "Incorrect DCB RX mode configuration");
|
|
break;
|
|
}
|
|
switch (dev->data->dev_conf.txmode.mq_mode) {
|
|
case ETH_MQ_TX_VMDQ_DCB:
|
|
dcb_config->vt_mode = true;
|
|
config_dcb_tx = DCB_TX_CONFIG;
|
|
/* get DCB and VT TX configuration parameters
|
|
* from rte_eth_conf
|
|
*/
|
|
ixgbe_dcb_vt_tx_config(dev, dcb_config);
|
|
/*Configure general VMDQ and DCB TX parameters*/
|
|
ixgbe_vmdq_dcb_hw_tx_config(dev, dcb_config);
|
|
break;
|
|
|
|
case ETH_MQ_TX_DCB:
|
|
dcb_config->vt_mode = false;
|
|
config_dcb_tx = DCB_TX_CONFIG;
|
|
/*get DCB TX configuration parameters from rte_eth_conf*/
|
|
ixgbe_dcb_tx_config(dev, dcb_config);
|
|
/*Configure general DCB TX parameters*/
|
|
ixgbe_dcb_tx_hw_config(dev, dcb_config);
|
|
break;
|
|
default:
|
|
PMD_INIT_LOG(ERR, "Incorrect DCB TX mode configuration");
|
|
break;
|
|
}
|
|
|
|
nb_tcs = dcb_config->num_tcs.pfc_tcs;
|
|
/* Unpack map */
|
|
ixgbe_dcb_unpack_map_cee(dcb_config, IXGBE_DCB_RX_CONFIG, map);
|
|
if (nb_tcs == ETH_4_TCS) {
|
|
/* Avoid un-configured priority mapping to TC0 */
|
|
uint8_t j = 4;
|
|
uint8_t mask = 0xFF;
|
|
|
|
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES - 4; i++)
|
|
mask = (uint8_t)(mask & (~(1 << map[i])));
|
|
for (i = 0; mask && (i < IXGBE_DCB_MAX_TRAFFIC_CLASS); i++) {
|
|
if ((mask & 0x1) && (j < ETH_DCB_NUM_USER_PRIORITIES))
|
|
map[j++] = i;
|
|
mask >>= 1;
|
|
}
|
|
/* Re-configure 4 TCs BW */
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
tc = &dcb_config->tc_config[i];
|
|
if (bw_conf->tc_num != nb_tcs)
|
|
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs);
|
|
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs);
|
|
}
|
|
for (; i < IXGBE_DCB_MAX_TRAFFIC_CLASS; i++) {
|
|
tc = &dcb_config->tc_config[i];
|
|
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent = 0;
|
|
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent = 0;
|
|
}
|
|
} else {
|
|
/* Re-configure 8 TCs BW */
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
tc = &dcb_config->tc_config[i];
|
|
if (bw_conf->tc_num != nb_tcs)
|
|
tc->path[IXGBE_DCB_TX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs + (i & 1));
|
|
tc->path[IXGBE_DCB_RX_CONFIG].bwg_percent =
|
|
(uint8_t)(100 / nb_tcs + (i & 1));
|
|
}
|
|
}
|
|
|
|
switch (hw->mac.type) {
|
|
case ixgbe_mac_X550:
|
|
case ixgbe_mac_X550EM_x:
|
|
case ixgbe_mac_X550EM_a:
|
|
rx_buffer_size = X550_RX_BUFFER_SIZE;
|
|
break;
|
|
default:
|
|
rx_buffer_size = NIC_RX_BUFFER_SIZE;
|
|
break;
|
|
}
|
|
|
|
if (config_dcb_rx) {
|
|
/* Set RX buffer size */
|
|
pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
|
|
uint32_t rxpbsize = pbsize << IXGBE_RXPBSIZE_SHIFT;
|
|
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpbsize);
|
|
}
|
|
/* zero alloc all unused TCs */
|
|
for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
|
|
}
|
|
}
|
|
if (config_dcb_tx) {
|
|
/* Only support an equally distributed
|
|
* Tx packet buffer strategy.
|
|
*/
|
|
uint32_t txpktsize = IXGBE_TXPBSIZE_MAX / nb_tcs;
|
|
uint32_t txpbthresh = (txpktsize / DCB_TX_PB) - IXGBE_TXPKT_SIZE_MAX;
|
|
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
|
|
}
|
|
/* Clear unused TCs, if any, to zero buffer size*/
|
|
for (; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
|
|
}
|
|
}
|
|
|
|
/*Calculates traffic class credits*/
|
|
ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
|
|
IXGBE_DCB_TX_CONFIG);
|
|
ixgbe_dcb_calculate_tc_credits_cee(hw, dcb_config, max_frame,
|
|
IXGBE_DCB_RX_CONFIG);
|
|
|
|
if (config_dcb_rx) {
|
|
/* Unpack CEE standard containers */
|
|
ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_RX_CONFIG, refill);
|
|
ixgbe_dcb_unpack_max_cee(dcb_config, max);
|
|
ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_RX_CONFIG, bwgid);
|
|
ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_RX_CONFIG, tsa);
|
|
/* Configure PG(ETS) RX */
|
|
ixgbe_dcb_hw_arbite_rx_config(hw, refill, max, bwgid, tsa, map);
|
|
}
|
|
|
|
if (config_dcb_tx) {
|
|
/* Unpack CEE standard containers */
|
|
ixgbe_dcb_unpack_refill_cee(dcb_config, IXGBE_DCB_TX_CONFIG, refill);
|
|
ixgbe_dcb_unpack_max_cee(dcb_config, max);
|
|
ixgbe_dcb_unpack_bwgid_cee(dcb_config, IXGBE_DCB_TX_CONFIG, bwgid);
|
|
ixgbe_dcb_unpack_tsa_cee(dcb_config, IXGBE_DCB_TX_CONFIG, tsa);
|
|
/* Configure PG(ETS) TX */
|
|
ixgbe_dcb_hw_arbite_tx_config(hw, refill, max, bwgid, tsa, map);
|
|
}
|
|
|
|
/*Configure queue statistics registers*/
|
|
ixgbe_dcb_config_tc_stats_82599(hw, dcb_config);
|
|
|
|
/* Check if the PFC is supported */
|
|
if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
|
|
pbsize = (uint16_t)(rx_buffer_size / nb_tcs);
|
|
for (i = 0; i < nb_tcs; i++) {
|
|
/*
|
|
* If the TC count is 8,and the default high_water is 48,
|
|
* the low_water is 16 as default.
|
|
*/
|
|
hw->fc.high_water[i] = (pbsize * 3) / 4;
|
|
hw->fc.low_water[i] = pbsize / 4;
|
|
/* Enable pfc for this TC */
|
|
tc = &dcb_config->tc_config[i];
|
|
tc->pfc = ixgbe_dcb_pfc_enabled;
|
|
}
|
|
ixgbe_dcb_unpack_pfc_cee(dcb_config, map, &pfc_en);
|
|
if (dcb_config->num_tcs.pfc_tcs == ETH_4_TCS)
|
|
pfc_en &= 0x0F;
|
|
ret = ixgbe_dcb_config_pfc(hw, pfc_en, map);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_configure_dcb - Configure DCB Hardware
|
|
* @dev: pointer to rte_eth_dev
|
|
*/
|
|
void ixgbe_configure_dcb(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_dcb_config *dcb_cfg =
|
|
IXGBE_DEV_PRIVATE_TO_DCB_CFG(dev->data->dev_private);
|
|
struct rte_eth_conf *dev_conf = &(dev->data->dev_conf);
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
/* check support mq_mode for DCB */
|
|
if ((dev_conf->rxmode.mq_mode != ETH_MQ_RX_VMDQ_DCB) &&
|
|
(dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB) &&
|
|
(dev_conf->rxmode.mq_mode != ETH_MQ_RX_DCB_RSS))
|
|
return;
|
|
|
|
if (dev->data->nb_rx_queues > ETH_DCB_NUM_QUEUES)
|
|
return;
|
|
|
|
/** Configure DCB hardware **/
|
|
ixgbe_dcb_hw_configure(dev, dcb_cfg);
|
|
}
|
|
|
|
/*
|
|
* VMDq only support for 10 GbE NIC.
|
|
*/
|
|
static void
|
|
ixgbe_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_vmdq_rx_conf *cfg;
|
|
struct ixgbe_hw *hw;
|
|
enum rte_eth_nb_pools num_pools;
|
|
uint32_t mrqc, vt_ctl, vlanctrl;
|
|
uint32_t vmolr = 0;
|
|
int i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
|
|
num_pools = cfg->nb_queue_pools;
|
|
|
|
ixgbe_rss_disable(dev);
|
|
|
|
/* MRQC: enable vmdq */
|
|
mrqc = IXGBE_MRQC_VMDQEN;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
|
|
|
|
/* PFVTCTL: turn on virtualisation and set the default pool */
|
|
vt_ctl = IXGBE_VT_CTL_VT_ENABLE | IXGBE_VT_CTL_REPLEN;
|
|
if (cfg->enable_default_pool)
|
|
vt_ctl |= (cfg->default_pool << IXGBE_VT_CTL_POOL_SHIFT);
|
|
else
|
|
vt_ctl |= IXGBE_VT_CTL_DIS_DEFPL;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_VT_CTL, vt_ctl);
|
|
|
|
for (i = 0; i < (int)num_pools; i++) {
|
|
vmolr = ixgbe_convert_vm_rx_mask_to_val(cfg->rx_mode, vmolr);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VMOLR(i), vmolr);
|
|
}
|
|
|
|
/* VLNCTRL: enable vlan filtering and allow all vlan tags through */
|
|
vlanctrl = IXGBE_READ_REG(hw, IXGBE_VLNCTRL);
|
|
vlanctrl |= IXGBE_VLNCTRL_VFE; /* enable vlan filters */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLNCTRL, vlanctrl);
|
|
|
|
/* VFTA - enable all vlan filters */
|
|
for (i = 0; i < NUM_VFTA_REGISTERS; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTA(i), UINT32_MAX);
|
|
|
|
/* VFRE: pool enabling for receive - 64 */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRE(0), UINT32_MAX);
|
|
if (num_pools == ETH_64_POOLS)
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRE(1), UINT32_MAX);
|
|
|
|
/*
|
|
* MPSAR - allow pools to read specific mac addresses
|
|
* In this case, all pools should be able to read from mac addr 0
|
|
*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(0), UINT32_MAX);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(0), UINT32_MAX);
|
|
|
|
/* PFVLVF, PFVLVFB: set up filters for vlan tags as configured */
|
|
for (i = 0; i < cfg->nb_pool_maps; i++) {
|
|
/* set vlan id in VF register and set the valid bit */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVF(i), (IXGBE_VLVF_VIEN |
|
|
(cfg->pool_map[i].vlan_id & IXGBE_RXD_VLAN_ID_MASK)));
|
|
/*
|
|
* Put the allowed pools in VFB reg. As we only have 16 or 64
|
|
* pools, we only need to use the first half of the register
|
|
* i.e. bits 0-31
|
|
*/
|
|
if (((cfg->pool_map[i].pools >> 32) & UINT32_MAX) == 0)
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVFB(i * 2),
|
|
(cfg->pool_map[i].pools & UINT32_MAX));
|
|
else
|
|
IXGBE_WRITE_REG(hw, IXGBE_VLVFB((i * 2 + 1)),
|
|
((cfg->pool_map[i].pools >> 32) & UINT32_MAX));
|
|
|
|
}
|
|
|
|
/* PFDMA Tx General Switch Control Enables VMDQ loopback */
|
|
if (cfg->enable_loop_back) {
|
|
IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, IXGBE_PFDTXGSWC_VT_LBEN);
|
|
for (i = 0; i < RTE_IXGBE_VMTXSW_REGISTER_COUNT; i++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_VMTXSW(i), UINT32_MAX);
|
|
}
|
|
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/*
|
|
* ixgbe_dcb_config_tx_hw_config - Configure general VMDq TX parameters
|
|
* @hw: pointer to hardware structure
|
|
*/
|
|
static void
|
|
ixgbe_vmdq_tx_hw_configure(struct ixgbe_hw *hw)
|
|
{
|
|
uint32_t reg;
|
|
uint32_t q;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
/*PF VF Transmit Enable*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTE(0), UINT32_MAX);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTE(1), UINT32_MAX);
|
|
|
|
/* Disable the Tx desc arbiter so that MTQC can be changed */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
|
|
reg |= IXGBE_RTTDCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
|
|
|
|
reg = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTQC, reg);
|
|
|
|
/* Disable drop for all queues */
|
|
for (q = 0; q < IXGBE_MAX_RX_QUEUE_NUM; q++)
|
|
IXGBE_WRITE_REG(hw, IXGBE_QDE,
|
|
(IXGBE_QDE_WRITE | (q << IXGBE_QDE_IDX_SHIFT)));
|
|
|
|
/* Enable the Tx desc arbiter */
|
|
reg = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
|
|
reg &= ~IXGBE_RTTDCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, reg);
|
|
|
|
IXGBE_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static int __attribute__((cold))
|
|
ixgbe_alloc_rx_queue_mbufs(struct ixgbe_rx_queue *rxq)
|
|
{
|
|
struct ixgbe_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
unsigned int i;
|
|
|
|
/* Initialize software ring entries */
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
volatile union ixgbe_adv_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
|
|
if (mbuf == NULL) {
|
|
PMD_INIT_LOG(ERR, "RX mbuf alloc failed queue_id=%u",
|
|
(unsigned) rxq->queue_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
|
|
mbuf->port = rxq->port_id;
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
|
|
rxd = &rxq->rx_ring[i];
|
|
rxd->read.hdr_addr = 0;
|
|
rxd->read.pkt_addr = dma_addr;
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ixgbe_config_vf_rss(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
uint32_t mrqc;
|
|
|
|
ixgbe_rss_configure(dev);
|
|
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* MRQC: enable VF RSS */
|
|
mrqc = IXGBE_READ_REG(hw, IXGBE_MRQC);
|
|
mrqc &= ~IXGBE_MRQC_MRQE_MASK;
|
|
switch (RTE_ETH_DEV_SRIOV(dev).active) {
|
|
case ETH_64_POOLS:
|
|
mrqc |= IXGBE_MRQC_VMDQRSS64EN;
|
|
break;
|
|
|
|
case ETH_32_POOLS:
|
|
mrqc |= IXGBE_MRQC_VMDQRSS32EN;
|
|
break;
|
|
|
|
default:
|
|
PMD_INIT_LOG(ERR, "Invalid pool number in IOV mode with VMDQ RSS");
|
|
return -EINVAL;
|
|
}
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC, mrqc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ixgbe_config_vf_default(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw =
|
|
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
switch (RTE_ETH_DEV_SRIOV(dev).active) {
|
|
case ETH_64_POOLS:
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC,
|
|
IXGBE_MRQC_VMDQEN);
|
|
break;
|
|
|
|
case ETH_32_POOLS:
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC,
|
|
IXGBE_MRQC_VMDQRT4TCEN);
|
|
break;
|
|
|
|
case ETH_16_POOLS:
|
|
IXGBE_WRITE_REG(hw, IXGBE_MRQC,
|
|
IXGBE_MRQC_VMDQRT8TCEN);
|
|
break;
|
|
default:
|
|
PMD_INIT_LOG(ERR,
|
|
"invalid pool number in IOV mode");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ixgbe_dev_mq_rx_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw =
|
|
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (hw->mac.type == ixgbe_mac_82598EB)
|
|
return 0;
|
|
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
/*
|
|
* SRIOV inactive scheme
|
|
* any DCB/RSS w/o VMDq multi-queue setting
|
|
*/
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case ETH_MQ_RX_RSS:
|
|
case ETH_MQ_RX_DCB_RSS:
|
|
case ETH_MQ_RX_VMDQ_RSS:
|
|
ixgbe_rss_configure(dev);
|
|
break;
|
|
|
|
case ETH_MQ_RX_VMDQ_DCB:
|
|
ixgbe_vmdq_dcb_configure(dev);
|
|
break;
|
|
|
|
case ETH_MQ_RX_VMDQ_ONLY:
|
|
ixgbe_vmdq_rx_hw_configure(dev);
|
|
break;
|
|
|
|
case ETH_MQ_RX_NONE:
|
|
default:
|
|
/* if mq_mode is none, disable rss mode.*/
|
|
ixgbe_rss_disable(dev);
|
|
break;
|
|
}
|
|
} else {
|
|
/* SRIOV active scheme
|
|
* Support RSS together with SRIOV.
|
|
*/
|
|
switch (dev->data->dev_conf.rxmode.mq_mode) {
|
|
case ETH_MQ_RX_RSS:
|
|
case ETH_MQ_RX_VMDQ_RSS:
|
|
ixgbe_config_vf_rss(dev);
|
|
break;
|
|
case ETH_MQ_RX_VMDQ_DCB:
|
|
case ETH_MQ_RX_DCB:
|
|
/* In SRIOV, the configuration is the same as VMDq case */
|
|
ixgbe_vmdq_dcb_configure(dev);
|
|
break;
|
|
/* DCB/RSS together with SRIOV is not supported */
|
|
case ETH_MQ_RX_VMDQ_DCB_RSS:
|
|
case ETH_MQ_RX_DCB_RSS:
|
|
PMD_INIT_LOG(ERR,
|
|
"Could not support DCB/RSS with VMDq & SRIOV");
|
|
return -1;
|
|
default:
|
|
ixgbe_config_vf_default(dev);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ixgbe_dev_mq_tx_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw =
|
|
IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t mtqc;
|
|
uint32_t rttdcs;
|
|
|
|
if (hw->mac.type == ixgbe_mac_82598EB)
|
|
return 0;
|
|
|
|
/* disable arbiter before setting MTQC */
|
|
rttdcs = IXGBE_READ_REG(hw, IXGBE_RTTDCS);
|
|
rttdcs |= IXGBE_RTTDCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
|
|
|
|
if (RTE_ETH_DEV_SRIOV(dev).active == 0) {
|
|
/*
|
|
* SRIOV inactive scheme
|
|
* any DCB w/o VMDq multi-queue setting
|
|
*/
|
|
if (dev->data->dev_conf.txmode.mq_mode == ETH_MQ_TX_VMDQ_ONLY)
|
|
ixgbe_vmdq_tx_hw_configure(hw);
|
|
else {
|
|
mtqc = IXGBE_MTQC_64Q_1PB;
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
|
|
}
|
|
} else {
|
|
switch (RTE_ETH_DEV_SRIOV(dev).active) {
|
|
|
|
/*
|
|
* SRIOV active scheme
|
|
* FIXME if support DCB together with VMDq & SRIOV
|
|
*/
|
|
case ETH_64_POOLS:
|
|
mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_64VF;
|
|
break;
|
|
case ETH_32_POOLS:
|
|
mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_32VF;
|
|
break;
|
|
case ETH_16_POOLS:
|
|
mtqc = IXGBE_MTQC_VT_ENA | IXGBE_MTQC_RT_ENA |
|
|
IXGBE_MTQC_8TC_8TQ;
|
|
break;
|
|
default:
|
|
mtqc = IXGBE_MTQC_64Q_1PB;
|
|
PMD_INIT_LOG(ERR, "invalid pool number in IOV mode");
|
|
}
|
|
IXGBE_WRITE_REG(hw, IXGBE_MTQC, mtqc);
|
|
}
|
|
|
|
/* re-enable arbiter */
|
|
rttdcs &= ~IXGBE_RTTDCS_ARBDIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RTTDCS, rttdcs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_get_rscctl_maxdesc - Calculate the RSCCTL[n].MAXDESC for PF
|
|
*
|
|
* Return the RSCCTL[n].MAXDESC for 82599 and x540 PF devices according to the
|
|
* spec rev. 3.0 chapter 8.2.3.8.13.
|
|
*
|
|
* @pool Memory pool of the Rx queue
|
|
*/
|
|
static inline uint32_t
|
|
ixgbe_get_rscctl_maxdesc(struct rte_mempool *pool)
|
|
{
|
|
struct rte_pktmbuf_pool_private *mp_priv = rte_mempool_get_priv(pool);
|
|
|
|
/* MAXDESC * SRRCTL.BSIZEPKT must not exceed 64 KB minus one */
|
|
uint16_t maxdesc =
|
|
IPV4_MAX_PKT_LEN /
|
|
(mp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM);
|
|
|
|
if (maxdesc >= 16)
|
|
return IXGBE_RSCCTL_MAXDESC_16;
|
|
else if (maxdesc >= 8)
|
|
return IXGBE_RSCCTL_MAXDESC_8;
|
|
else if (maxdesc >= 4)
|
|
return IXGBE_RSCCTL_MAXDESC_4;
|
|
else
|
|
return IXGBE_RSCCTL_MAXDESC_1;
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_ivar - Setup the correct IVAR register for a particular MSIX
|
|
* interrupt
|
|
*
|
|
* (Taken from FreeBSD tree)
|
|
* (yes this is all very magic and confusing :)
|
|
*
|
|
* @dev port handle
|
|
* @entry the register array entry
|
|
* @vector the MSIX vector for this queue
|
|
* @type RX/TX/MISC
|
|
*/
|
|
static void
|
|
ixgbe_set_ivar(struct rte_eth_dev *dev, u8 entry, u8 vector, s8 type)
|
|
{
|
|
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
u32 ivar, index;
|
|
|
|
vector |= IXGBE_IVAR_ALLOC_VAL;
|
|
|
|
switch (hw->mac.type) {
|
|
|
|
case ixgbe_mac_82598EB:
|
|
if (type == -1)
|
|
entry = IXGBE_IVAR_OTHER_CAUSES_INDEX;
|
|
else
|
|
entry += (type * 64);
|
|
index = (entry >> 2) & 0x1F;
|
|
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(index));
|
|
ivar &= ~(0xFF << (8 * (entry & 0x3)));
|
|
ivar |= (vector << (8 * (entry & 0x3)));
|
|
IXGBE_WRITE_REG(hw, IXGBE_IVAR(index), ivar);
|
|
break;
|
|
|
|
case ixgbe_mac_82599EB:
|
|
case ixgbe_mac_X540:
|
|
if (type == -1) { /* MISC IVAR */
|
|
index = (entry & 1) * 8;
|
|
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR_MISC);
|
|
ivar &= ~(0xFF << index);
|
|
ivar |= (vector << index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_IVAR_MISC, ivar);
|
|
} else { /* RX/TX IVARS */
|
|
index = (16 * (entry & 1)) + (8 * type);
|
|
ivar = IXGBE_READ_REG(hw, IXGBE_IVAR(entry >> 1));
|
|
ivar &= ~(0xFF << index);
|
|
ivar |= (vector << index);
|
|
IXGBE_WRITE_REG(hw, IXGBE_IVAR(entry >> 1), ivar);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __attribute__((cold))
|
|
ixgbe_set_rx_function(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i, rx_using_sse;
|
|
struct ixgbe_adapter *adapter =
|
|
(struct ixgbe_adapter *)dev->data->dev_private;
|
|
|
|
/*
|
|
* In order to allow Vector Rx there are a few configuration
|
|
* conditions to be met and Rx Bulk Allocation should be allowed.
|
|
*/
|
|
if (ixgbe_rx_vec_dev_conf_condition_check(dev) ||
|
|
!adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet Vector Rx "
|
|
"preconditions or RTE_IXGBE_INC_VECTOR is "
|
|
"not enabled",
|
|
dev->data->port_id);
|
|
|
|
adapter->rx_vec_allowed = false;
|
|
}
|
|
|
|
/*
|
|
* Initialize the appropriate LRO callback.
|
|
*
|
|
* If all queues satisfy the bulk allocation preconditions
|
|
* (hw->rx_bulk_alloc_allowed is TRUE) then we may use bulk allocation.
|
|
* Otherwise use a single allocation version.
|
|
*/
|
|
if (dev->data->lro) {
|
|
if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "LRO is requested. Using a bulk "
|
|
"allocation version");
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "LRO is requested. Using a single "
|
|
"allocation version");
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
|
|
}
|
|
} else if (dev->data->scattered_rx) {
|
|
/*
|
|
* Set the non-LRO scattered callback: there are Vector and
|
|
* single allocation versions.
|
|
*/
|
|
if (adapter->rx_vec_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
|
|
"callback (port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ixgbe_recv_scattered_pkts_vec;
|
|
} else if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
|
|
"allocation callback (port=%d).",
|
|
dev->data->port_id);
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Using Regualr (non-vector, "
|
|
"single allocation) "
|
|
"Scattered Rx callback "
|
|
"(port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts_lro_single_alloc;
|
|
}
|
|
/*
|
|
* Below we set "simple" callbacks according to port/queues parameters.
|
|
* If parameters allow we are going to choose between the following
|
|
* callbacks:
|
|
* - Vector
|
|
* - Bulk Allocation
|
|
* - Single buffer allocation (the simplest one)
|
|
*/
|
|
} else if (adapter->rx_vec_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
|
|
"burst size no less than %d (port=%d).",
|
|
RTE_IXGBE_DESCS_PER_LOOP,
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts_vec;
|
|
} else if (adapter->rx_bulk_alloc_allowed) {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
|
|
"satisfied. Rx Burst Bulk Alloc function "
|
|
"will be used on port=%d.",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts_bulk_alloc;
|
|
} else {
|
|
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
|
|
"satisfied, or Scattered Rx is requested "
|
|
"(port=%d).",
|
|
dev->data->port_id);
|
|
|
|
dev->rx_pkt_burst = ixgbe_recv_pkts;
|
|
}
|
|
|
|
/* Propagate information about RX function choice through all queues. */
|
|
|
|
rx_using_sse =
|
|
(dev->rx_pkt_burst == ixgbe_recv_scattered_pkts_vec ||
|
|
dev->rx_pkt_burst == ixgbe_recv_pkts_vec);
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
|
|
rxq->rx_using_sse = rx_using_sse;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ixgbe_set_rsc - configure RSC related port HW registers
|
|
*
|
|
* Configures the port's RSC related registers according to the 4.6.7.2 chapter
|
|
* of 82599 Spec (x540 configuration is virtually the same).
|
|
*
|
|
* @dev port handle
|
|
*
|
|
* Returns 0 in case of success or a non-zero error code
|
|
*/
|
|
static int
|
|
ixgbe_set_rsc(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
|
|
struct ixgbe_hw *hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_dev_info dev_info = { 0 };
|
|
bool rsc_capable = false;
|
|
uint16_t i;
|
|
uint32_t rdrxctl;
|
|
uint32_t rfctl;
|
|
|
|
/* Sanity check */
|
|
dev->dev_ops->dev_infos_get(dev, &dev_info);
|
|
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO)
|
|
rsc_capable = true;
|
|
|
|
if (!rsc_capable && rx_conf->enable_lro) {
|
|
PMD_INIT_LOG(CRIT, "LRO is requested on HW that doesn't "
|
|
"support it");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* RSC global configuration (chapter 4.6.7.2.1 of 82599 Spec) */
|
|
|
|
if (!rx_conf->hw_strip_crc && rx_conf->enable_lro) {
|
|
/*
|
|
* According to chapter of 4.6.7.2.1 of the Spec Rev.
|
|
* 3.0 RSC configuration requires HW CRC stripping being
|
|
* enabled. If user requested both HW CRC stripping off
|
|
* and RSC on - return an error.
|
|
*/
|
|
PMD_INIT_LOG(CRIT, "LRO can't be enabled when HW CRC "
|
|
"is disabled");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* RFCTL configuration */
|
|
rfctl = IXGBE_READ_REG(hw, IXGBE_RFCTL);
|
|
if ((rsc_capable) && (rx_conf->enable_lro))
|
|
/*
|
|
* Since NFS packets coalescing is not supported - clear
|
|
* RFCTL.NFSW_DIS and RFCTL.NFSR_DIS when RSC is
|
|
* enabled.
|
|
*/
|
|
rfctl &= ~(IXGBE_RFCTL_RSC_DIS | IXGBE_RFCTL_NFSW_DIS |
|
|
IXGBE_RFCTL_NFSR_DIS);
|
|
else
|
|
rfctl |= IXGBE_RFCTL_RSC_DIS;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RFCTL, rfctl);
|
|
|
|
/* If LRO hasn't been requested - we are done here. */
|
|
if (!rx_conf->enable_lro)
|
|
return 0;
|
|
|
|
/* Set RDRXCTL.RSCACKC bit */
|
|
rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
|
|
rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
|
|
|
|
/* Per-queue RSC configuration (chapter 4.6.7.2.2 of 82599 Spec) */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
struct ixgbe_rx_queue *rxq = dev->data->rx_queues[i];
|
|
uint32_t srrctl =
|
|
IXGBE_READ_REG(hw, IXGBE_SRRCTL(rxq->reg_idx));
|
|
uint32_t rscctl =
|
|
IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxq->reg_idx));
|
|
uint32_t psrtype =
|
|
IXGBE_READ_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx));
|
|
uint32_t eitr =
|
|
IXGBE_READ_REG(hw, IXGBE_EITR(rxq->reg_idx));
|
|
|
|
/*
|
|
* ixgbe PMD doesn't support header-split at the moment.
|
|
*
|
|
* Following the 4.6.7.2.1 chapter of the 82599/x540
|
|
* Spec if RSC is enabled the SRRCTL[n].BSIZEHEADER
|
|
* should be configured even if header split is not
|
|
* enabled. We will configure it 128 bytes following the
|
|
* recommendation in the spec.
|
|
*/
|
|
srrctl &= ~IXGBE_SRRCTL_BSIZEHDR_MASK;
|
|
srrctl |= (128 << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
|
|
IXGBE_SRRCTL_BSIZEHDR_MASK;
|
|
|
|
/*
|
|
* TODO: Consider setting the Receive Descriptor Minimum
|
|
* Threshold Size for an RSC case. This is not an obviously
|
|
* beneficiary option but the one worth considering...
|
|
*/
|
|
|
|
rscctl |= IXGBE_RSCCTL_RSCEN;
|
|
rscctl |= ixgbe_get_rscctl_maxdesc(rxq->mb_pool);
|
|
psrtype |= IXGBE_PSRTYPE_TCPHDR;
|
|
|
|
/*
|
|
* RSC: Set ITR interval corresponding to 2K ints/s.
|
|
*
|
|
* Full-sized RSC aggregations for a 10Gb/s link will
|
|
* arrive at about 20K aggregation/s rate.
|
|
*
|
|
* 2K inst/s rate will make only 10% of the
|
|
* aggregations to be closed due to the interrupt timer
|
|
* expiration for a streaming at wire-speed case.
|
|
*
|
|
* For a sparse streaming case this setting will yield
|
|
* at most 500us latency for a single RSC aggregation.
|
|
*/
|
|
eitr &= ~IXGBE_EITR_ITR_INT_MASK;
|
|
eitr |= IXGBE_EITR_INTERVAL_US(500) | IXGBE_EITR_CNT_WDIS;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxq->reg_idx), rscctl);
|
|
IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
|
|
IXGBE_WRITE_REG(hw, IXGBE_EITR(rxq->reg_idx), eitr);
|
|
|
|
/*
|
|
* RSC requires the mapping of the queue to the
|
|
* interrupt vector.
|
|
*/
|
|
ixgbe_set_ivar(dev, rxq->reg_idx, i, 0);
|
|
}
|
|
|
|
dev->data->lro = 1;
|
|
|
|
PMD_INIT_LOG(DEBUG, "enabling LRO mode");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initializes Receive Unit.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbe_dev_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint64_t bus_addr;
|
|
uint32_t rxctrl;
|
|
uint32_t fctrl;
|
|
uint32_t hlreg0;
|
|
uint32_t maxfrs;
|
|
uint32_t srrctl;
|
|
uint32_t rdrxctl;
|
|
uint32_t rxcsum;
|
|
uint16_t buf_size;
|
|
uint16_t i;
|
|
struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode;
|
|
int rc;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the RX context (registers, descriptor rings, etc.).
|
|
*/
|
|
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl & ~IXGBE_RXCTRL_RXEN);
|
|
|
|
/* Enable receipt of broadcasted frames */
|
|
fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
|
|
fctrl |= IXGBE_FCTRL_BAM;
|
|
fctrl |= IXGBE_FCTRL_DPF;
|
|
fctrl |= IXGBE_FCTRL_PMCF;
|
|
IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
|
|
|
|
/*
|
|
* Configure CRC stripping, if any.
|
|
*/
|
|
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
|
|
if (rx_conf->hw_strip_crc)
|
|
hlreg0 |= IXGBE_HLREG0_RXCRCSTRP;
|
|
else
|
|
hlreg0 &= ~IXGBE_HLREG0_RXCRCSTRP;
|
|
|
|
/*
|
|
* Configure jumbo frame support, if any.
|
|
*/
|
|
if (rx_conf->jumbo_frame == 1) {
|
|
hlreg0 |= IXGBE_HLREG0_JUMBOEN;
|
|
maxfrs = IXGBE_READ_REG(hw, IXGBE_MAXFRS);
|
|
maxfrs &= 0x0000FFFF;
|
|
maxfrs |= (rx_conf->max_rx_pkt_len << 16);
|
|
IXGBE_WRITE_REG(hw, IXGBE_MAXFRS, maxfrs);
|
|
} else
|
|
hlreg0 &= ~IXGBE_HLREG0_JUMBOEN;
|
|
|
|
/*
|
|
* If loopback mode is configured for 82599, set LPBK bit.
|
|
*/
|
|
if (hw->mac.type == ixgbe_mac_82599EB &&
|
|
dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
|
|
hlreg0 |= IXGBE_HLREG0_LPBK;
|
|
else
|
|
hlreg0 &= ~IXGBE_HLREG0_LPBK;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
|
|
|
|
/* Setup RX queues */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/*
|
|
* Reset crc_len in case it was changed after queue setup by a
|
|
* call to configure.
|
|
*/
|
|
rxq->crc_len = rx_conf->hw_strip_crc ? 0 : ETHER_CRC_LEN;
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDBAL(rxq->reg_idx),
|
|
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDBAH(rxq->reg_idx),
|
|
(uint32_t)(bus_addr >> 32));
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDLEN(rxq->reg_idx),
|
|
rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), 0);
|
|
|
|
/* Configure the SRRCTL register */
|
|
#ifdef RTE_HEADER_SPLIT_ENABLE
|
|
/*
|
|
* Configure Header Split
|
|
*/
|
|
if (rx_conf->header_split) {
|
|
if (hw->mac.type == ixgbe_mac_82599EB) {
|
|
/* Must setup the PSRTYPE register */
|
|
uint32_t psrtype;
|
|
|
|
psrtype = IXGBE_PSRTYPE_TCPHDR |
|
|
IXGBE_PSRTYPE_UDPHDR |
|
|
IXGBE_PSRTYPE_IPV4HDR |
|
|
IXGBE_PSRTYPE_IPV6HDR;
|
|
IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(rxq->reg_idx), psrtype);
|
|
}
|
|
srrctl = ((rx_conf->split_hdr_size <<
|
|
IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
|
|
IXGBE_SRRCTL_BSIZEHDR_MASK);
|
|
srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
|
|
} else
|
|
#endif
|
|
srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
|
|
|
|
/* Set if packets are dropped when no descriptors available */
|
|
if (rxq->drop_en)
|
|
srrctl |= IXGBE_SRRCTL_DROP_EN;
|
|
|
|
/*
|
|
* Configure the RX buffer size in the BSIZEPACKET field of
|
|
* the SRRCTL register of the queue.
|
|
* The value is in 1 KB resolution. Valid values can be from
|
|
* 1 KB to 16 KB.
|
|
*/
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
|
|
IXGBE_SRRCTL_BSIZEPKT_MASK);
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_SRRCTL(rxq->reg_idx), srrctl);
|
|
|
|
buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
|
|
IXGBE_SRRCTL_BSIZEPKT_SHIFT);
|
|
|
|
/* It adds dual VLAN length for supporting dual VLAN */
|
|
if (dev->data->dev_conf.rxmode.max_rx_pkt_len +
|
|
2 * IXGBE_VLAN_TAG_SIZE > buf_size)
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
|
|
if (rx_conf->enable_scatter)
|
|
dev->data->scattered_rx = 1;
|
|
|
|
/*
|
|
* Device configured with multiple RX queues.
|
|
*/
|
|
ixgbe_dev_mq_rx_configure(dev);
|
|
|
|
/*
|
|
* Setup the Checksum Register.
|
|
* Disable Full-Packet Checksum which is mutually exclusive with RSS.
|
|
* Enable IP/L4 checkum computation by hardware if requested to do so.
|
|
*/
|
|
rxcsum = IXGBE_READ_REG(hw, IXGBE_RXCSUM);
|
|
rxcsum |= IXGBE_RXCSUM_PCSD;
|
|
if (rx_conf->hw_ip_checksum)
|
|
rxcsum |= IXGBE_RXCSUM_IPPCSE;
|
|
else
|
|
rxcsum &= ~IXGBE_RXCSUM_IPPCSE;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXCSUM, rxcsum);
|
|
|
|
if (hw->mac.type == ixgbe_mac_82599EB ||
|
|
hw->mac.type == ixgbe_mac_X540) {
|
|
rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
|
|
if (rx_conf->hw_strip_crc)
|
|
rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
|
|
else
|
|
rdrxctl &= ~IXGBE_RDRXCTL_CRCSTRIP;
|
|
rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
|
|
}
|
|
|
|
rc = ixgbe_set_rsc(dev);
|
|
if (rc)
|
|
return rc;
|
|
|
|
ixgbe_set_rx_function(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initializes Transmit Unit.
|
|
*/
|
|
void __attribute__((cold))
|
|
ixgbe_dev_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_tx_queue *txq;
|
|
uint64_t bus_addr;
|
|
uint32_t hlreg0;
|
|
uint32_t txctrl;
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Enable TX CRC (checksum offload requirement) and hw padding
|
|
* (TSO requirement)
|
|
*/
|
|
hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
|
|
hlreg0 |= (IXGBE_HLREG0_TXCRCEN | IXGBE_HLREG0_TXPADEN);
|
|
IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDBAL(txq->reg_idx),
|
|
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDBAH(txq->reg_idx),
|
|
(uint32_t)(bus_addr >> 32));
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDLEN(txq->reg_idx),
|
|
txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
|
|
/* Setup the HW Tx Head and TX Tail descriptor pointers */
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
|
|
|
|
/*
|
|
* Disable Tx Head Writeback RO bit, since this hoses
|
|
* bookkeeping if things aren't delivered in order.
|
|
*/
|
|
switch (hw->mac.type) {
|
|
case ixgbe_mac_82598EB:
|
|
txctrl = IXGBE_READ_REG(hw,
|
|
IXGBE_DCA_TXCTRL(txq->reg_idx));
|
|
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
|
|
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL(txq->reg_idx),
|
|
txctrl);
|
|
break;
|
|
|
|
case ixgbe_mac_82599EB:
|
|
case ixgbe_mac_X540:
|
|
case ixgbe_mac_X550:
|
|
case ixgbe_mac_X550EM_x:
|
|
case ixgbe_mac_X550EM_a:
|
|
default:
|
|
txctrl = IXGBE_READ_REG(hw,
|
|
IXGBE_DCA_TXCTRL_82599(txq->reg_idx));
|
|
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
|
|
IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(txq->reg_idx),
|
|
txctrl);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Device configured with multiple TX queues. */
|
|
ixgbe_dev_mq_tx_configure(dev);
|
|
}
|
|
|
|
/*
|
|
* Set up link for 82599 loopback mode Tx->Rx.
|
|
*/
|
|
static inline void __attribute__((cold))
|
|
ixgbe_setup_loopback_link_82599(struct ixgbe_hw *hw)
|
|
{
|
|
PMD_INIT_FUNC_TRACE();
|
|
|
|
if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
|
|
if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM) !=
|
|
IXGBE_SUCCESS) {
|
|
PMD_INIT_LOG(ERR, "Could not enable loopback mode");
|
|
/* ignore error */
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Restart link */
|
|
IXGBE_WRITE_REG(hw,
|
|
IXGBE_AUTOC,
|
|
IXGBE_AUTOC_LMS_10G_LINK_NO_AN | IXGBE_AUTOC_FLU);
|
|
ixgbe_reset_pipeline_82599(hw);
|
|
|
|
hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
|
|
msec_delay(50);
|
|
}
|
|
|
|
|
|
/*
|
|
* Start Transmit and Receive Units.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbe_dev_rxtx_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_tx_queue *txq;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint32_t txdctl;
|
|
uint32_t dmatxctl;
|
|
uint32_t rxctrl;
|
|
uint16_t i;
|
|
int ret = 0;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
/* Setup Transmit Threshold Registers */
|
|
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
|
|
txdctl |= txq->pthresh & 0x7F;
|
|
txdctl |= ((txq->hthresh & 0x7F) << 8);
|
|
txdctl |= ((txq->wthresh & 0x7F) << 16);
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
|
|
}
|
|
|
|
if (hw->mac.type != ixgbe_mac_82598EB) {
|
|
dmatxctl = IXGBE_READ_REG(hw, IXGBE_DMATXCTL);
|
|
dmatxctl |= IXGBE_DMATXCTL_TE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_DMATXCTL, dmatxctl);
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (!txq->tx_deferred_start) {
|
|
ret = ixgbe_dev_tx_queue_start(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (!rxq->rx_deferred_start) {
|
|
ret = ixgbe_dev_rx_queue_start(dev, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Enable Receive engine */
|
|
rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
|
|
if (hw->mac.type == ixgbe_mac_82598EB)
|
|
rxctrl |= IXGBE_RXCTRL_DMBYPS;
|
|
rxctrl |= IXGBE_RXCTRL_RXEN;
|
|
hw->mac.ops.enable_rx_dma(hw, rxctrl);
|
|
|
|
/* If loopback mode is enabled for 82599, set up the link accordingly */
|
|
if (hw->mac.type == ixgbe_mac_82599EB &&
|
|
dev->data->dev_conf.lpbk_mode == IXGBE_LPBK_82599_TX_RX)
|
|
ixgbe_setup_loopback_link_82599(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start Receive Units for specified queue.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint32_t rxdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (rx_queue_id < dev->data->nb_rx_queues) {
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
/* Allocate buffers for descriptor rings */
|
|
if (ixgbe_alloc_rx_queue_mbufs(rxq) != 0) {
|
|
PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d",
|
|
rx_queue_id);
|
|
return -1;
|
|
}
|
|
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
|
|
rxdctl |= IXGBE_RXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
|
|
|
|
/* Wait until RX Enable ready */
|
|
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
|
|
} while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d",
|
|
rx_queue_id);
|
|
rte_wmb();
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDH(rxq->reg_idx), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
} else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop Receive Units for specified queue.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_adapter *adapter =
|
|
(struct ixgbe_adapter *)dev->data->dev_private;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint32_t rxdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (rx_queue_id < dev->data->nb_rx_queues) {
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
|
|
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
|
|
rxdctl &= ~IXGBE_RXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(rxq->reg_idx), rxdctl);
|
|
|
|
/* Wait until RX Enable bit clear */
|
|
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = IXGBE_READ_REG(hw, IXGBE_RXDCTL(rxq->reg_idx));
|
|
} while (--poll_ms && (rxdctl & IXGBE_RXDCTL_ENABLE));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d",
|
|
rx_queue_id);
|
|
|
|
rte_delay_us(RTE_IXGBE_WAIT_100_US);
|
|
|
|
ixgbe_rx_queue_release_mbufs(rxq);
|
|
ixgbe_reset_rx_queue(adapter, rxq);
|
|
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
} else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Start Transmit Units for specified queue.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_tx_queue *txq;
|
|
uint32_t txdctl;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (tx_queue_id < dev->data->nb_tx_queues) {
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
|
|
txdctl |= IXGBE_TXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
|
|
|
|
/* Wait until TX Enable ready */
|
|
if (hw->mac.type == ixgbe_mac_82599EB) {
|
|
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = IXGBE_READ_REG(hw,
|
|
IXGBE_TXDCTL(txq->reg_idx));
|
|
} while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable "
|
|
"Tx Queue %d", tx_queue_id);
|
|
}
|
|
rte_wmb();
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDH(txq->reg_idx), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_TDT(txq->reg_idx), 0);
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
} else
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Stop Transmit Units for specified queue.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_tx_queue *txq;
|
|
uint32_t txdctl;
|
|
uint32_t txtdh, txtdt;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (tx_queue_id >= dev->data->nb_tx_queues)
|
|
return -1;
|
|
|
|
txq = dev->data->tx_queues[tx_queue_id];
|
|
|
|
/* Wait until TX queue is empty */
|
|
if (hw->mac.type == ixgbe_mac_82599EB) {
|
|
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_us(RTE_IXGBE_WAIT_100_US);
|
|
txtdh = IXGBE_READ_REG(hw,
|
|
IXGBE_TDH(txq->reg_idx));
|
|
txtdt = IXGBE_READ_REG(hw,
|
|
IXGBE_TDT(txq->reg_idx));
|
|
} while (--poll_ms && (txtdh != txtdt));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Tx Queue %d is not empty "
|
|
"when stopping.", tx_queue_id);
|
|
}
|
|
|
|
txdctl = IXGBE_READ_REG(hw, IXGBE_TXDCTL(txq->reg_idx));
|
|
txdctl &= ~IXGBE_TXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(txq->reg_idx), txdctl);
|
|
|
|
/* Wait until TX Enable bit clear */
|
|
if (hw->mac.type == ixgbe_mac_82599EB) {
|
|
poll_ms = RTE_IXGBE_REGISTER_POLL_WAIT_10_MS;
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = IXGBE_READ_REG(hw,
|
|
IXGBE_TXDCTL(txq->reg_idx));
|
|
} while (--poll_ms && (txdctl & IXGBE_TXDCTL_ENABLE));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not disable "
|
|
"Tx Queue %d", tx_queue_id);
|
|
}
|
|
|
|
if (txq->ops != NULL) {
|
|
txq->ops->release_mbufs(txq);
|
|
txq->ops->reset(txq);
|
|
}
|
|
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ixgbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct ixgbe_rx_queue *rxq;
|
|
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mb_pool;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.rx_drop_en = rxq->drop_en;
|
|
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
|
|
}
|
|
|
|
void
|
|
ixgbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct ixgbe_tx_queue *txq;
|
|
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
|
|
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
|
|
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
|
|
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
|
|
|
|
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
|
|
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
|
|
qinfo->conf.txq_flags = txq->txq_flags;
|
|
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
|
|
}
|
|
|
|
/*
|
|
* [VF] Initializes Receive Unit.
|
|
*/
|
|
int __attribute__((cold))
|
|
ixgbevf_dev_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint64_t bus_addr;
|
|
uint32_t srrctl, psrtype = 0;
|
|
uint16_t buf_size;
|
|
uint16_t i;
|
|
int ret;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
if (rte_is_power_of_2(dev->data->nb_rx_queues) == 0) {
|
|
PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
|
|
"it should be power of 2");
|
|
return -1;
|
|
}
|
|
|
|
if (dev->data->nb_rx_queues > hw->mac.max_rx_queues) {
|
|
PMD_INIT_LOG(ERR, "The number of Rx queue invalid, "
|
|
"it should be equal to or less than %d",
|
|
hw->mac.max_rx_queues);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* When the VF driver issues a IXGBE_VF_RESET request, the PF driver
|
|
* disables the VF receipt of packets if the PF MTU is > 1500.
|
|
* This is done to deal with 82599 limitations that imposes
|
|
* the PF and all VFs to share the same MTU.
|
|
* Then, the PF driver enables again the VF receipt of packet when
|
|
* the VF driver issues a IXGBE_VF_SET_LPE request.
|
|
* In the meantime, the VF device cannot be used, even if the VF driver
|
|
* and the Guest VM network stack are ready to accept packets with a
|
|
* size up to the PF MTU.
|
|
* As a work-around to this PF behaviour, force the call to
|
|
* ixgbevf_rlpml_set_vf even if jumbo frames are not used. This way,
|
|
* VF packets received can work in all cases.
|
|
*/
|
|
ixgbevf_rlpml_set_vf(hw,
|
|
(uint16_t)dev->data->dev_conf.rxmode.max_rx_pkt_len);
|
|
|
|
/* Setup RX queues */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/* Allocate buffers for descriptor rings */
|
|
ret = ixgbe_alloc_rx_queue_mbufs(rxq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Setup the Base and Length of the Rx Descriptor Rings */
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(i),
|
|
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(i),
|
|
rxq->nb_rx_desc * sizeof(union ixgbe_adv_rx_desc));
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRDH(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), 0);
|
|
|
|
|
|
/* Configure the SRRCTL register */
|
|
#ifdef RTE_HEADER_SPLIT_ENABLE
|
|
/*
|
|
* Configure Header Split
|
|
*/
|
|
if (dev->data->dev_conf.rxmode.header_split) {
|
|
srrctl = ((dev->data->dev_conf.rxmode.split_hdr_size <<
|
|
IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
|
|
IXGBE_SRRCTL_BSIZEHDR_MASK);
|
|
srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
|
|
} else
|
|
#endif
|
|
srrctl = IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
|
|
|
|
/* Set if packets are dropped when no descriptors available */
|
|
if (rxq->drop_en)
|
|
srrctl |= IXGBE_SRRCTL_DROP_EN;
|
|
|
|
/*
|
|
* Configure the RX buffer size in the BSIZEPACKET field of
|
|
* the SRRCTL register of the queue.
|
|
* The value is in 1 KB resolution. Valid values can be from
|
|
* 1 KB to 16 KB.
|
|
*/
|
|
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
|
|
RTE_PKTMBUF_HEADROOM);
|
|
srrctl |= ((buf_size >> IXGBE_SRRCTL_BSIZEPKT_SHIFT) &
|
|
IXGBE_SRRCTL_BSIZEPKT_MASK);
|
|
|
|
/*
|
|
* VF modification to write virtual function SRRCTL register
|
|
*/
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(i), srrctl);
|
|
|
|
buf_size = (uint16_t) ((srrctl & IXGBE_SRRCTL_BSIZEPKT_MASK) <<
|
|
IXGBE_SRRCTL_BSIZEPKT_SHIFT);
|
|
|
|
if (dev->data->dev_conf.rxmode.enable_scatter ||
|
|
/* It adds dual VLAN length for supporting dual VLAN */
|
|
(dev->data->dev_conf.rxmode.max_rx_pkt_len +
|
|
2 * IXGBE_VLAN_TAG_SIZE) > buf_size) {
|
|
if (!dev->data->scattered_rx)
|
|
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
}
|
|
|
|
#ifdef RTE_HEADER_SPLIT_ENABLE
|
|
if (dev->data->dev_conf.rxmode.header_split)
|
|
/* Must setup the PSRTYPE register */
|
|
psrtype = IXGBE_PSRTYPE_TCPHDR |
|
|
IXGBE_PSRTYPE_UDPHDR |
|
|
IXGBE_PSRTYPE_IPV4HDR |
|
|
IXGBE_PSRTYPE_IPV6HDR;
|
|
#endif
|
|
|
|
/* Set RQPL for VF RSS according to max Rx queue */
|
|
psrtype |= (dev->data->nb_rx_queues >> 1) <<
|
|
IXGBE_PSRTYPE_RQPL_SHIFT;
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
|
|
|
|
ixgbe_set_rx_function(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* [VF] Initializes Transmit Unit.
|
|
*/
|
|
void __attribute__((cold))
|
|
ixgbevf_dev_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_tx_queue *txq;
|
|
uint64_t bus_addr;
|
|
uint32_t txctrl;
|
|
uint16_t i;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(i),
|
|
(uint32_t)(bus_addr & 0x00000000ffffffffULL));
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(i),
|
|
txq->nb_tx_desc * sizeof(union ixgbe_adv_tx_desc));
|
|
/* Setup the HW Tx Head and TX Tail descriptor pointers */
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTDH(i), 0);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTDT(i), 0);
|
|
|
|
/*
|
|
* Disable Tx Head Writeback RO bit, since this hoses
|
|
* bookkeeping if things aren't delivered in order.
|
|
*/
|
|
txctrl = IXGBE_READ_REG(hw,
|
|
IXGBE_VFDCA_TXCTRL(i));
|
|
txctrl &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(i),
|
|
txctrl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* [VF] Start Transmit and Receive Units.
|
|
*/
|
|
void __attribute__((cold))
|
|
ixgbevf_dev_rxtx_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct ixgbe_hw *hw;
|
|
struct ixgbe_tx_queue *txq;
|
|
struct ixgbe_rx_queue *rxq;
|
|
uint32_t txdctl;
|
|
uint32_t rxdctl;
|
|
uint16_t i;
|
|
int poll_ms;
|
|
|
|
PMD_INIT_FUNC_TRACE();
|
|
hw = IXGBE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
/* Setup Transmit Threshold Registers */
|
|
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
|
|
txdctl |= txq->pthresh & 0x7F;
|
|
txdctl |= ((txq->hthresh & 0x7F) << 8);
|
|
txdctl |= ((txq->wthresh & 0x7F) << 16);
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
|
|
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
|
|
txdctl |= IXGBE_TXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(i), txdctl);
|
|
|
|
poll_ms = 10;
|
|
/* Wait until TX Enable ready */
|
|
do {
|
|
rte_delay_ms(1);
|
|
txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(i));
|
|
} while (--poll_ms && !(txdctl & IXGBE_TXDCTL_ENABLE));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", i);
|
|
}
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
|
|
rxdctl |= IXGBE_RXDCTL_ENABLE;
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(i), rxdctl);
|
|
|
|
/* Wait until RX Enable ready */
|
|
poll_ms = 10;
|
|
do {
|
|
rte_delay_ms(1);
|
|
rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(i));
|
|
} while (--poll_ms && !(rxdctl & IXGBE_RXDCTL_ENABLE));
|
|
if (!poll_ms)
|
|
PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", i);
|
|
rte_wmb();
|
|
IXGBE_WRITE_REG(hw, IXGBE_VFRDT(i), rxq->nb_rx_desc - 1);
|
|
|
|
}
|
|
}
|
|
|
|
/* Stubs needed for linkage when CONFIG_RTE_IXGBE_INC_VECTOR is set to 'n' */
|
|
int __attribute__((weak))
|
|
ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
uint16_t __attribute__((weak))
|
|
ixgbe_recv_pkts_vec(
|
|
void __rte_unused *rx_queue,
|
|
struct rte_mbuf __rte_unused **rx_pkts,
|
|
uint16_t __rte_unused nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
uint16_t __attribute__((weak))
|
|
ixgbe_recv_scattered_pkts_vec(
|
|
void __rte_unused *rx_queue,
|
|
struct rte_mbuf __rte_unused **rx_pkts,
|
|
uint16_t __rte_unused nb_pkts)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __attribute__((weak))
|
|
ixgbe_rxq_vec_setup(struct ixgbe_rx_queue __rte_unused *rxq)
|
|
{
|
|
return -1;
|
|
}
|