Pallantla Poornima a1e8241a91 drivers: fix sprintf with snprintf
sprintf function is not secure as it doesn't check the length of string.
More secure function snprintf is used

Fixes: 828d51d8fc ("bus/fslmc: refactor scan and probe functions")
Fixes: c22fab9a6c ("raw/dpaa2_qdma: support configuration APIs")
Fixes: e5cbdfc537 ("crypto/dpaa2_sec: add basic operations")
Fixes: b23d4e898a ("crypto/dpaa2_sec: add per dev mempool to store FLE")
Fixes: 623326dded ("crypto/dpaa2_sec: introduce poll mode driver")
Fixes: e7a45f3cc2 ("crypto/caam_jr: add UIO specific operations")
Fixes: f44bccadd8 ("crypto/caam_jr: add device basic operations")
Fixes: 7e3e2954e0 ("crypto/dpaa_sec: move mempool allocation to config")
Fixes: c3e85bdcc6 ("crypto/dpaa_sec: add crypto driver for NXP DPAA platform")
Cc: stable@dpdk.org

Signed-off-by: Pallantla Poornima <pallantlax.poornima@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2019-01-14 23:27:27 +01:00

2771 lines
70 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved.
* Copyright 2017-2018 NXP
*
*/
#include <fcntl.h>
#include <unistd.h>
#include <sched.h>
#include <net/if.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cryptodev_pmd.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_security_driver.h>
#include <rte_cycles.h>
#include <rte_dev.h>
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <fsl_usd.h>
#include <fsl_qman.h>
#include <of.h>
/* RTA header files */
#include <hw/desc/common.h>
#include <hw/desc/algo.h>
#include <hw/desc/ipsec.h>
#include <hw/desc/pdcp.h>
#include <rte_dpaa_bus.h>
#include <dpaa_sec.h>
#include <dpaa_sec_log.h>
enum rta_sec_era rta_sec_era;
int dpaa_logtype_sec;
static uint8_t cryptodev_driver_id;
static __thread struct rte_crypto_op **dpaa_sec_ops;
static __thread int dpaa_sec_op_nb;
static int
dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess);
static inline void
dpaa_sec_op_ending(struct dpaa_sec_op_ctx *ctx)
{
if (!ctx->fd_status) {
ctx->op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
} else {
DPAA_SEC_DP_WARN("SEC return err: 0x%x", ctx->fd_status);
ctx->op->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
/* report op status to sym->op and then free the ctx memeory */
rte_mempool_put(ctx->ctx_pool, (void *)ctx);
}
static inline struct dpaa_sec_op_ctx *
dpaa_sec_alloc_ctx(dpaa_sec_session *ses)
{
struct dpaa_sec_op_ctx *ctx;
int retval;
retval = rte_mempool_get(ses->ctx_pool, (void **)(&ctx));
if (!ctx || retval) {
DPAA_SEC_DP_WARN("Alloc sec descriptor failed!");
return NULL;
}
/*
* Clear SG memory. There are 16 SG entries of 16 Bytes each.
* one call to dcbz_64() clear 64 bytes, hence calling it 4 times
* to clear all the SG entries. dpaa_sec_alloc_ctx() is called for
* each packet, memset is costlier than dcbz_64().
*/
dcbz_64(&ctx->job.sg[SG_CACHELINE_0]);
dcbz_64(&ctx->job.sg[SG_CACHELINE_1]);
dcbz_64(&ctx->job.sg[SG_CACHELINE_2]);
dcbz_64(&ctx->job.sg[SG_CACHELINE_3]);
ctx->ctx_pool = ses->ctx_pool;
ctx->vtop_offset = (size_t) ctx
- rte_mempool_virt2iova(ctx);
return ctx;
}
static inline rte_iova_t
dpaa_mem_vtop(void *vaddr)
{
const struct rte_memseg *ms;
ms = rte_mem_virt2memseg(vaddr, NULL);
if (ms)
return ms->iova + RTE_PTR_DIFF(vaddr, ms->addr);
return (size_t)NULL;
}
static inline void *
dpaa_mem_ptov(rte_iova_t paddr)
{
void *va;
va = (void *)dpaax_iova_table_get_va(paddr);
if (likely(va))
return va;
return rte_mem_iova2virt(paddr);
}
static void
ern_sec_fq_handler(struct qman_portal *qm __rte_unused,
struct qman_fq *fq,
const struct qm_mr_entry *msg)
{
DPAA_SEC_DP_ERR("sec fq %d error, RC = %x, seqnum = %x\n",
fq->fqid, msg->ern.rc, msg->ern.seqnum);
}
/* initialize the queue with dest chan as caam chan so that
* all the packets in this queue could be dispatched into caam
*/
static int
dpaa_sec_init_rx(struct qman_fq *fq_in, rte_iova_t hwdesc,
uint32_t fqid_out)
{
struct qm_mcc_initfq fq_opts;
uint32_t flags;
int ret = -1;
/* Clear FQ options */
memset(&fq_opts, 0x00, sizeof(struct qm_mcc_initfq));
flags = QMAN_INITFQ_FLAG_SCHED;
fq_opts.we_mask = QM_INITFQ_WE_DESTWQ | QM_INITFQ_WE_CONTEXTA |
QM_INITFQ_WE_CONTEXTB;
qm_fqd_context_a_set64(&fq_opts.fqd, hwdesc);
fq_opts.fqd.context_b = fqid_out;
fq_opts.fqd.dest.channel = qm_channel_caam;
fq_opts.fqd.dest.wq = 0;
fq_in->cb.ern = ern_sec_fq_handler;
DPAA_SEC_DEBUG("in-%x out-%x", fq_in->fqid, fqid_out);
ret = qman_init_fq(fq_in, flags, &fq_opts);
if (unlikely(ret != 0))
DPAA_SEC_ERR("qman_init_fq failed %d", ret);
return ret;
}
/* something is put into in_fq and caam put the crypto result into out_fq */
static enum qman_cb_dqrr_result
dqrr_out_fq_cb_rx(struct qman_portal *qm __always_unused,
struct qman_fq *fq __always_unused,
const struct qm_dqrr_entry *dqrr)
{
const struct qm_fd *fd;
struct dpaa_sec_job *job;
struct dpaa_sec_op_ctx *ctx;
if (dpaa_sec_op_nb >= DPAA_SEC_BURST)
return qman_cb_dqrr_defer;
if (!(dqrr->stat & QM_DQRR_STAT_FD_VALID))
return qman_cb_dqrr_consume;
fd = &dqrr->fd;
/* sg is embedded in an op ctx,
* sg[0] is for output
* sg[1] for input
*/
job = dpaa_mem_ptov(qm_fd_addr_get64(fd));
ctx = container_of(job, struct dpaa_sec_op_ctx, job);
ctx->fd_status = fd->status;
if (ctx->op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
struct qm_sg_entry *sg_out;
uint32_t len;
sg_out = &job->sg[0];
hw_sg_to_cpu(sg_out);
len = sg_out->length;
ctx->op->sym->m_src->pkt_len = len;
ctx->op->sym->m_src->data_len = len;
}
dpaa_sec_ops[dpaa_sec_op_nb++] = ctx->op;
dpaa_sec_op_ending(ctx);
return qman_cb_dqrr_consume;
}
/* caam result is put into this queue */
static int
dpaa_sec_init_tx(struct qman_fq *fq)
{
int ret;
struct qm_mcc_initfq opts;
uint32_t flags;
flags = QMAN_FQ_FLAG_NO_ENQUEUE | QMAN_FQ_FLAG_LOCKED |
QMAN_FQ_FLAG_DYNAMIC_FQID;
ret = qman_create_fq(0, flags, fq);
if (unlikely(ret)) {
DPAA_SEC_ERR("qman_create_fq failed");
return ret;
}
memset(&opts, 0, sizeof(opts));
opts.we_mask = QM_INITFQ_WE_DESTWQ | QM_INITFQ_WE_FQCTRL |
QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CONTEXTB;
/* opts.fqd.dest.channel = dpaa_sec_pool_chan; */
fq->cb.dqrr = dqrr_out_fq_cb_rx;
fq->cb.ern = ern_sec_fq_handler;
ret = qman_init_fq(fq, 0, &opts);
if (unlikely(ret)) {
DPAA_SEC_ERR("unable to init caam source fq!");
return ret;
}
return ret;
}
static inline int is_cipher_only(dpaa_sec_session *ses)
{
return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) &&
(ses->auth_alg == RTE_CRYPTO_AUTH_NULL));
}
static inline int is_auth_only(dpaa_sec_session *ses)
{
return ((ses->cipher_alg == RTE_CRYPTO_CIPHER_NULL) &&
(ses->auth_alg != RTE_CRYPTO_AUTH_NULL));
}
static inline int is_aead(dpaa_sec_session *ses)
{
return ((ses->cipher_alg == 0) &&
(ses->auth_alg == 0) &&
(ses->aead_alg != 0));
}
static inline int is_auth_cipher(dpaa_sec_session *ses)
{
return ((ses->cipher_alg != RTE_CRYPTO_CIPHER_NULL) &&
(ses->auth_alg != RTE_CRYPTO_AUTH_NULL) &&
(ses->proto_alg != RTE_SECURITY_PROTOCOL_IPSEC));
}
static inline int is_proto_ipsec(dpaa_sec_session *ses)
{
return (ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC);
}
static inline int is_proto_pdcp(dpaa_sec_session *ses)
{
return (ses->proto_alg == RTE_SECURITY_PROTOCOL_PDCP);
}
static inline int is_encode(dpaa_sec_session *ses)
{
return ses->dir == DIR_ENC;
}
static inline int is_decode(dpaa_sec_session *ses)
{
return ses->dir == DIR_DEC;
}
static inline void
caam_auth_alg(dpaa_sec_session *ses, struct alginfo *alginfo_a)
{
switch (ses->auth_alg) {
case RTE_CRYPTO_AUTH_NULL:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_NULL : 0;
ses->digest_length = 0;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_MD5_96 : OP_ALG_ALGSEL_MD5;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA1_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA1_96 : OP_ALG_ALGSEL_SHA1;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA1_160 : OP_ALG_ALGSEL_SHA224;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA2_256_128 : OP_ALG_ALGSEL_SHA256;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA2_384_192 : OP_ALG_ALGSEL_SHA384;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
alginfo_a->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_HMAC_SHA2_512_256 : OP_ALG_ALGSEL_SHA512;
alginfo_a->algmode = OP_ALG_AAI_HMAC;
break;
default:
DPAA_SEC_ERR("unsupported auth alg %u", ses->auth_alg);
}
}
static inline void
caam_cipher_alg(dpaa_sec_session *ses, struct alginfo *alginfo_c)
{
switch (ses->cipher_alg) {
case RTE_CRYPTO_CIPHER_NULL:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_NULL : 0;
break;
case RTE_CRYPTO_CIPHER_AES_CBC:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_AES_CBC : OP_ALG_ALGSEL_AES;
alginfo_c->algmode = OP_ALG_AAI_CBC;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_3DES : OP_ALG_ALGSEL_3DES;
alginfo_c->algmode = OP_ALG_AAI_CBC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
alginfo_c->algtype =
(ses->proto_alg == RTE_SECURITY_PROTOCOL_IPSEC) ?
OP_PCL_IPSEC_AES_CTR : OP_ALG_ALGSEL_AES;
alginfo_c->algmode = OP_ALG_AAI_CTR;
break;
default:
DPAA_SEC_ERR("unsupported cipher alg %d", ses->cipher_alg);
}
}
static inline void
caam_aead_alg(dpaa_sec_session *ses, struct alginfo *alginfo)
{
switch (ses->aead_alg) {
case RTE_CRYPTO_AEAD_AES_GCM:
alginfo->algtype = OP_ALG_ALGSEL_AES;
alginfo->algmode = OP_ALG_AAI_GCM;
break;
default:
DPAA_SEC_ERR("unsupported AEAD alg %d", ses->aead_alg);
}
}
static int
dpaa_sec_prep_pdcp_cdb(dpaa_sec_session *ses)
{
struct alginfo authdata = {0}, cipherdata = {0};
struct sec_cdb *cdb = &ses->cdb;
int32_t shared_desc_len = 0;
int err;
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
int swap = false;
#else
int swap = true;
#endif
switch (ses->cipher_alg) {
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
cipherdata.algtype = PDCP_CIPHER_TYPE_SNOW;
break;
case RTE_CRYPTO_CIPHER_ZUC_EEA3:
cipherdata.algtype = PDCP_CIPHER_TYPE_ZUC;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
cipherdata.algtype = PDCP_CIPHER_TYPE_AES;
break;
case RTE_CRYPTO_CIPHER_NULL:
cipherdata.algtype = PDCP_CIPHER_TYPE_NULL;
break;
default:
DPAA_SEC_ERR("Crypto: Undefined Cipher specified %u",
ses->cipher_alg);
return -1;
}
cipherdata.key = (size_t)ses->cipher_key.data;
cipherdata.keylen = ses->cipher_key.length;
cipherdata.key_enc_flags = 0;
cipherdata.key_type = RTA_DATA_IMM;
if (ses->pdcp.domain == RTE_SECURITY_PDCP_MODE_CONTROL) {
switch (ses->auth_alg) {
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
authdata.algtype = PDCP_AUTH_TYPE_SNOW;
break;
case RTE_CRYPTO_AUTH_ZUC_EIA3:
authdata.algtype = PDCP_AUTH_TYPE_ZUC;
break;
case RTE_CRYPTO_AUTH_AES_CMAC:
authdata.algtype = PDCP_AUTH_TYPE_AES;
break;
case RTE_CRYPTO_AUTH_NULL:
authdata.algtype = PDCP_AUTH_TYPE_NULL;
break;
default:
DPAA_SEC_ERR("Crypto: Unsupported auth alg %u",
ses->auth_alg);
return -1;
}
authdata.key = (size_t)ses->auth_key.data;
authdata.keylen = ses->auth_key.length;
authdata.key_enc_flags = 0;
authdata.key_type = RTA_DATA_IMM;
cdb->sh_desc[0] = cipherdata.keylen;
cdb->sh_desc[1] = authdata.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)cdb->sh_desc,
&cdb->sh_desc[2], 2);
if (err < 0) {
DPAA_SEC_ERR("Crypto: Incorrect key lengths");
return err;
}
if (!(cdb->sh_desc[2] & 1) && cipherdata.keylen) {
cipherdata.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)cipherdata.key);
cipherdata.key_type = RTA_DATA_PTR;
}
if (!(cdb->sh_desc[2] & (1<<1)) && authdata.keylen) {
authdata.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)authdata.key);
authdata.key_type = RTA_DATA_PTR;
}
cdb->sh_desc[0] = 0;
cdb->sh_desc[1] = 0;
cdb->sh_desc[2] = 0;
if (ses->dir == DIR_ENC)
shared_desc_len = cnstr_shdsc_pdcp_c_plane_encap(
cdb->sh_desc, 1, swap,
ses->pdcp.hfn,
ses->pdcp.bearer,
ses->pdcp.pkt_dir,
ses->pdcp.hfn_threshold,
&cipherdata, &authdata,
0);
else if (ses->dir == DIR_DEC)
shared_desc_len = cnstr_shdsc_pdcp_c_plane_decap(
cdb->sh_desc, 1, swap,
ses->pdcp.hfn,
ses->pdcp.bearer,
ses->pdcp.pkt_dir,
ses->pdcp.hfn_threshold,
&cipherdata, &authdata,
0);
} else {
cdb->sh_desc[0] = cipherdata.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)cdb->sh_desc,
&cdb->sh_desc[2], 1);
if (err < 0) {
DPAA_SEC_ERR("Crypto: Incorrect key lengths");
return err;
}
if (!(cdb->sh_desc[2] & 1) && cipherdata.keylen) {
cipherdata.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)cipherdata.key);
cipherdata.key_type = RTA_DATA_PTR;
}
cdb->sh_desc[0] = 0;
cdb->sh_desc[1] = 0;
cdb->sh_desc[2] = 0;
if (ses->dir == DIR_ENC)
shared_desc_len = cnstr_shdsc_pdcp_u_plane_encap(
cdb->sh_desc, 1, swap,
ses->pdcp.sn_size,
ses->pdcp.hfn,
ses->pdcp.bearer,
ses->pdcp.pkt_dir,
ses->pdcp.hfn_threshold,
&cipherdata, 0);
else if (ses->dir == DIR_DEC)
shared_desc_len = cnstr_shdsc_pdcp_u_plane_decap(
cdb->sh_desc, 1, swap,
ses->pdcp.sn_size,
ses->pdcp.hfn,
ses->pdcp.bearer,
ses->pdcp.pkt_dir,
ses->pdcp.hfn_threshold,
&cipherdata, 0);
}
return shared_desc_len;
}
/* prepare ipsec proto command block of the session */
static int
dpaa_sec_prep_ipsec_cdb(dpaa_sec_session *ses)
{
struct alginfo cipherdata = {0}, authdata = {0};
struct sec_cdb *cdb = &ses->cdb;
int32_t shared_desc_len = 0;
int err;
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
int swap = false;
#else
int swap = true;
#endif
caam_cipher_alg(ses, &cipherdata);
if (cipherdata.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported cipher alg");
return -ENOTSUP;
}
cipherdata.key = (size_t)ses->cipher_key.data;
cipherdata.keylen = ses->cipher_key.length;
cipherdata.key_enc_flags = 0;
cipherdata.key_type = RTA_DATA_IMM;
caam_auth_alg(ses, &authdata);
if (authdata.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported auth alg");
return -ENOTSUP;
}
authdata.key = (size_t)ses->auth_key.data;
authdata.keylen = ses->auth_key.length;
authdata.key_enc_flags = 0;
authdata.key_type = RTA_DATA_IMM;
cdb->sh_desc[0] = cipherdata.keylen;
cdb->sh_desc[1] = authdata.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)cdb->sh_desc,
&cdb->sh_desc[2], 2);
if (err < 0) {
DPAA_SEC_ERR("Crypto: Incorrect key lengths");
return err;
}
if (cdb->sh_desc[2] & 1)
cipherdata.key_type = RTA_DATA_IMM;
else {
cipherdata.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)cipherdata.key);
cipherdata.key_type = RTA_DATA_PTR;
}
if (cdb->sh_desc[2] & (1<<1))
authdata.key_type = RTA_DATA_IMM;
else {
authdata.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)authdata.key);
authdata.key_type = RTA_DATA_PTR;
}
cdb->sh_desc[0] = 0;
cdb->sh_desc[1] = 0;
cdb->sh_desc[2] = 0;
if (ses->dir == DIR_ENC) {
shared_desc_len = cnstr_shdsc_ipsec_new_encap(
cdb->sh_desc,
true, swap, SHR_SERIAL,
&ses->encap_pdb,
(uint8_t *)&ses->ip4_hdr,
&cipherdata, &authdata);
} else if (ses->dir == DIR_DEC) {
shared_desc_len = cnstr_shdsc_ipsec_new_decap(
cdb->sh_desc,
true, swap, SHR_SERIAL,
&ses->decap_pdb,
&cipherdata, &authdata);
}
return shared_desc_len;
}
/* prepare command block of the session */
static int
dpaa_sec_prep_cdb(dpaa_sec_session *ses)
{
struct alginfo alginfo_c = {0}, alginfo_a = {0}, alginfo = {0};
int32_t shared_desc_len = 0;
struct sec_cdb *cdb = &ses->cdb;
int err;
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
int swap = false;
#else
int swap = true;
#endif
memset(cdb, 0, sizeof(struct sec_cdb));
if (is_proto_ipsec(ses)) {
shared_desc_len = dpaa_sec_prep_ipsec_cdb(ses);
} else if (is_proto_pdcp(ses)) {
shared_desc_len = dpaa_sec_prep_pdcp_cdb(ses);
} else if (is_cipher_only(ses)) {
caam_cipher_alg(ses, &alginfo_c);
if (alginfo_c.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported cipher alg");
return -ENOTSUP;
}
alginfo_c.key = (size_t)ses->cipher_key.data;
alginfo_c.keylen = ses->cipher_key.length;
alginfo_c.key_enc_flags = 0;
alginfo_c.key_type = RTA_DATA_IMM;
shared_desc_len = cnstr_shdsc_blkcipher(
cdb->sh_desc, true,
swap, &alginfo_c,
NULL,
ses->iv.length,
ses->dir);
} else if (is_auth_only(ses)) {
caam_auth_alg(ses, &alginfo_a);
if (alginfo_a.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported auth alg");
return -ENOTSUP;
}
alginfo_a.key = (size_t)ses->auth_key.data;
alginfo_a.keylen = ses->auth_key.length;
alginfo_a.key_enc_flags = 0;
alginfo_a.key_type = RTA_DATA_IMM;
shared_desc_len = cnstr_shdsc_hmac(cdb->sh_desc, true,
swap, &alginfo_a,
!ses->dir,
ses->digest_length);
} else if (is_aead(ses)) {
caam_aead_alg(ses, &alginfo);
if (alginfo.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported aead alg");
return -ENOTSUP;
}
alginfo.key = (size_t)ses->aead_key.data;
alginfo.keylen = ses->aead_key.length;
alginfo.key_enc_flags = 0;
alginfo.key_type = RTA_DATA_IMM;
if (ses->dir == DIR_ENC)
shared_desc_len = cnstr_shdsc_gcm_encap(
cdb->sh_desc, true, swap,
&alginfo,
ses->iv.length,
ses->digest_length);
else
shared_desc_len = cnstr_shdsc_gcm_decap(
cdb->sh_desc, true, swap,
&alginfo,
ses->iv.length,
ses->digest_length);
} else {
caam_cipher_alg(ses, &alginfo_c);
if (alginfo_c.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported cipher alg");
return -ENOTSUP;
}
alginfo_c.key = (size_t)ses->cipher_key.data;
alginfo_c.keylen = ses->cipher_key.length;
alginfo_c.key_enc_flags = 0;
alginfo_c.key_type = RTA_DATA_IMM;
caam_auth_alg(ses, &alginfo_a);
if (alginfo_a.algtype == (unsigned int)DPAA_SEC_ALG_UNSUPPORT) {
DPAA_SEC_ERR("not supported auth alg");
return -ENOTSUP;
}
alginfo_a.key = (size_t)ses->auth_key.data;
alginfo_a.keylen = ses->auth_key.length;
alginfo_a.key_enc_flags = 0;
alginfo_a.key_type = RTA_DATA_IMM;
cdb->sh_desc[0] = alginfo_c.keylen;
cdb->sh_desc[1] = alginfo_a.keylen;
err = rta_inline_query(IPSEC_AUTH_VAR_AES_DEC_BASE_DESC_LEN,
MIN_JOB_DESC_SIZE,
(unsigned int *)cdb->sh_desc,
&cdb->sh_desc[2], 2);
if (err < 0) {
DPAA_SEC_ERR("Crypto: Incorrect key lengths");
return err;
}
if (cdb->sh_desc[2] & 1)
alginfo_c.key_type = RTA_DATA_IMM;
else {
alginfo_c.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)alginfo_c.key);
alginfo_c.key_type = RTA_DATA_PTR;
}
if (cdb->sh_desc[2] & (1<<1))
alginfo_a.key_type = RTA_DATA_IMM;
else {
alginfo_a.key = (size_t)dpaa_mem_vtop(
(void *)(size_t)alginfo_a.key);
alginfo_a.key_type = RTA_DATA_PTR;
}
cdb->sh_desc[0] = 0;
cdb->sh_desc[1] = 0;
cdb->sh_desc[2] = 0;
/* Auth_only_len is set as 0 here and it will be
* overwritten in fd for each packet.
*/
shared_desc_len = cnstr_shdsc_authenc(cdb->sh_desc,
true, swap, &alginfo_c, &alginfo_a,
ses->iv.length, 0,
ses->digest_length, ses->dir);
}
if (shared_desc_len < 0) {
DPAA_SEC_ERR("error in preparing command block");
return shared_desc_len;
}
cdb->sh_hdr.hi.field.idlen = shared_desc_len;
cdb->sh_hdr.hi.word = rte_cpu_to_be_32(cdb->sh_hdr.hi.word);
cdb->sh_hdr.lo.word = rte_cpu_to_be_32(cdb->sh_hdr.lo.word);
return 0;
}
/* qp is lockless, should be accessed by only one thread */
static int
dpaa_sec_deq(struct dpaa_sec_qp *qp, struct rte_crypto_op **ops, int nb_ops)
{
struct qman_fq *fq;
unsigned int pkts = 0;
int num_rx_bufs, ret;
struct qm_dqrr_entry *dq;
uint32_t vdqcr_flags = 0;
fq = &qp->outq;
/*
* Until request for four buffers, we provide exact number of buffers.
* Otherwise we do not set the QM_VDQCR_EXACT flag.
* Not setting QM_VDQCR_EXACT flag can provide two more buffers than
* requested, so we request two less in this case.
*/
if (nb_ops < 4) {
vdqcr_flags = QM_VDQCR_EXACT;
num_rx_bufs = nb_ops;
} else {
num_rx_bufs = nb_ops > DPAA_MAX_DEQUEUE_NUM_FRAMES ?
(DPAA_MAX_DEQUEUE_NUM_FRAMES - 2) : (nb_ops - 2);
}
ret = qman_set_vdq(fq, num_rx_bufs, vdqcr_flags);
if (ret)
return 0;
do {
const struct qm_fd *fd;
struct dpaa_sec_job *job;
struct dpaa_sec_op_ctx *ctx;
struct rte_crypto_op *op;
dq = qman_dequeue(fq);
if (!dq)
continue;
fd = &dq->fd;
/* sg is embedded in an op ctx,
* sg[0] is for output
* sg[1] for input
*/
job = dpaa_mem_ptov(qm_fd_addr_get64(fd));
ctx = container_of(job, struct dpaa_sec_op_ctx, job);
ctx->fd_status = fd->status;
op = ctx->op;
if (op->sess_type == RTE_CRYPTO_OP_SECURITY_SESSION) {
struct qm_sg_entry *sg_out;
uint32_t len;
sg_out = &job->sg[0];
hw_sg_to_cpu(sg_out);
len = sg_out->length;
op->sym->m_src->pkt_len = len;
op->sym->m_src->data_len = len;
}
if (!ctx->fd_status) {
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
} else {
DPAA_SEC_DP_WARN("SEC return err:0x%x", ctx->fd_status);
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
}
ops[pkts++] = op;
/* report op status to sym->op and then free the ctx memeory */
rte_mempool_put(ctx->ctx_pool, (void *)ctx);
qman_dqrr_consume(fq, dq);
} while (fq->flags & QMAN_FQ_STATE_VDQCR);
return pkts;
}
static inline struct dpaa_sec_job *
build_auth_only_sg(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct rte_mbuf *mbuf = sym->m_src;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
phys_addr_t start_addr;
uint8_t *old_digest, extra_segs;
if (is_decode(ses))
extra_segs = 3;
else
extra_segs = 2;
if ((mbuf->nb_segs + extra_segs) > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Auth: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
old_digest = ctx->digest;
/* output */
out_sg = &cf->sg[0];
qm_sg_entry_set64(out_sg, sym->auth.digest.phys_addr);
out_sg->length = ses->digest_length;
cpu_to_hw_sg(out_sg);
/* input */
in_sg = &cf->sg[1];
/* need to extend the input to a compound frame */
in_sg->extension = 1;
in_sg->final = 1;
in_sg->length = sym->auth.data.length;
qm_sg_entry_set64(in_sg, dpaa_mem_vtop(&cf->sg[2]));
/* 1st seg */
sg = in_sg + 1;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->auth.data.offset;
sg->offset = sym->auth.data.offset;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
if (is_decode(ses)) {
/* Digest verification case */
cpu_to_hw_sg(sg);
sg++;
rte_memcpy(old_digest, sym->auth.digest.data,
ses->digest_length);
start_addr = dpaa_mem_vtop(old_digest);
qm_sg_entry_set64(sg, start_addr);
sg->length = ses->digest_length;
in_sg->length += ses->digest_length;
} else {
/* Digest calculation case */
sg->length -= ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
cpu_to_hw_sg(in_sg);
return cf;
}
/**
* packet looks like:
* |<----data_len------->|
* |ip_header|ah_header|icv|payload|
* ^
* |
* mbuf->pkt.data
*/
static inline struct dpaa_sec_job *
build_auth_only(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct rte_mbuf *mbuf = sym->m_src;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg;
rte_iova_t start_addr;
uint8_t *old_digest;
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
old_digest = ctx->digest;
start_addr = rte_pktmbuf_iova(mbuf);
/* output */
sg = &cf->sg[0];
qm_sg_entry_set64(sg, sym->auth.digest.phys_addr);
sg->length = ses->digest_length;
cpu_to_hw_sg(sg);
/* input */
sg = &cf->sg[1];
if (is_decode(ses)) {
/* need to extend the input to a compound frame */
sg->extension = 1;
qm_sg_entry_set64(sg, dpaa_mem_vtop(&cf->sg[2]));
sg->length = sym->auth.data.length + ses->digest_length;
sg->final = 1;
cpu_to_hw_sg(sg);
sg = &cf->sg[2];
/* hash result or digest, save digest first */
rte_memcpy(old_digest, sym->auth.digest.data,
ses->digest_length);
qm_sg_entry_set64(sg, start_addr + sym->auth.data.offset);
sg->length = sym->auth.data.length;
cpu_to_hw_sg(sg);
/* let's check digest by hw */
start_addr = dpaa_mem_vtop(old_digest);
sg++;
qm_sg_entry_set64(sg, start_addr);
sg->length = ses->digest_length;
sg->final = 1;
cpu_to_hw_sg(sg);
} else {
qm_sg_entry_set64(sg, start_addr + sym->auth.data.offset);
sg->length = sym->auth.data.length;
sg->final = 1;
cpu_to_hw_sg(sg);
}
return cf;
}
static inline struct dpaa_sec_job *
build_cipher_only_sg(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
struct rte_mbuf *mbuf;
uint8_t req_segs;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
if (sym->m_dst) {
mbuf = sym->m_dst;
req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 3;
} else {
mbuf = sym->m_src;
req_segs = mbuf->nb_segs * 2 + 3;
}
if (req_segs > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Cipher: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
out_sg->length = sym->cipher.data.length;
qm_sg_entry_set64(out_sg, dpaa_mem_vtop(&cf->sg[2]));
cpu_to_hw_sg(out_sg);
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->cipher.data.offset;
sg->offset = sym->cipher.data.offset;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
mbuf = sym->m_src;
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
in_sg->length = sym->cipher.data.length + ses->iv.length;
sg++;
qm_sg_entry_set64(in_sg, dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* IV */
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 1st seg */
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->cipher.data.offset;
sg->offset = sym->cipher.data.offset;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
sg->final = 1;
cpu_to_hw_sg(sg);
return cf;
}
static inline struct dpaa_sec_job *
build_cipher_only(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg;
rte_iova_t src_start_addr, dst_start_addr;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
src_start_addr = rte_pktmbuf_iova(sym->m_src);
if (sym->m_dst)
dst_start_addr = rte_pktmbuf_iova(sym->m_dst);
else
dst_start_addr = src_start_addr;
/* output */
sg = &cf->sg[0];
qm_sg_entry_set64(sg, dst_start_addr + sym->cipher.data.offset);
sg->length = sym->cipher.data.length + ses->iv.length;
cpu_to_hw_sg(sg);
/* input */
sg = &cf->sg[1];
/* need to extend the input to a compound frame */
sg->extension = 1;
sg->final = 1;
sg->length = sym->cipher.data.length + ses->iv.length;
qm_sg_entry_set64(sg, dpaa_mem_vtop(&cf->sg[2]));
cpu_to_hw_sg(sg);
sg = &cf->sg[2];
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, src_start_addr + sym->cipher.data.offset);
sg->length = sym->cipher.data.length;
sg->final = 1;
cpu_to_hw_sg(sg);
return cf;
}
static inline struct dpaa_sec_job *
build_cipher_auth_gcm_sg(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
struct rte_mbuf *mbuf;
uint8_t req_segs;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
if (sym->m_dst) {
mbuf = sym->m_dst;
req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 4;
} else {
mbuf = sym->m_src;
req_segs = mbuf->nb_segs * 2 + 4;
}
if (ses->auth_only_len)
req_segs++;
if (req_segs > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("AEAD: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
rte_prefetch0(cf->sg);
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
if (is_encode(ses))
out_sg->length = sym->aead.data.length + ses->auth_only_len
+ ses->digest_length;
else
out_sg->length = sym->aead.data.length + ses->auth_only_len;
/* output sg entries */
sg = &cf->sg[2];
qm_sg_entry_set64(out_sg, dpaa_mem_vtop(sg));
cpu_to_hw_sg(out_sg);
/* 1st seg */
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->aead.data.offset +
ses->auth_only_len;
sg->offset = sym->aead.data.offset - ses->auth_only_len;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
sg->length -= ses->digest_length;
if (is_encode(ses)) {
cpu_to_hw_sg(sg);
/* set auth output */
sg++;
qm_sg_entry_set64(sg, sym->aead.digest.phys_addr);
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
mbuf = sym->m_src;
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
if (is_encode(ses))
in_sg->length = ses->iv.length + sym->aead.data.length
+ ses->auth_only_len;
else
in_sg->length = ses->iv.length + sym->aead.data.length
+ ses->auth_only_len + ses->digest_length;
/* input sg entries */
sg++;
qm_sg_entry_set64(in_sg, dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* 1st seg IV */
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 2nd seg auth only */
if (ses->auth_only_len) {
sg++;
qm_sg_entry_set64(sg, dpaa_mem_vtop(sym->aead.aad.data));
sg->length = ses->auth_only_len;
cpu_to_hw_sg(sg);
}
/* 3rd seg */
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->aead.data.offset;
sg->offset = sym->aead.data.offset;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
if (is_decode(ses)) {
cpu_to_hw_sg(sg);
sg++;
memcpy(ctx->digest, sym->aead.digest.data,
ses->digest_length);
qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest));
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
return cf;
}
static inline struct dpaa_sec_job *
build_cipher_auth_gcm(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg;
uint32_t length = 0;
rte_iova_t src_start_addr, dst_start_addr;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
src_start_addr = sym->m_src->buf_iova + sym->m_src->data_off;
if (sym->m_dst)
dst_start_addr = sym->m_dst->buf_iova + sym->m_dst->data_off;
else
dst_start_addr = src_start_addr;
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
/* input */
rte_prefetch0(cf->sg);
sg = &cf->sg[2];
qm_sg_entry_set64(&cf->sg[1], dpaa_mem_vtop(sg));
if (is_encode(ses)) {
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
length += sg->length;
cpu_to_hw_sg(sg);
sg++;
if (ses->auth_only_len) {
qm_sg_entry_set64(sg,
dpaa_mem_vtop(sym->aead.aad.data));
sg->length = ses->auth_only_len;
length += sg->length;
cpu_to_hw_sg(sg);
sg++;
}
qm_sg_entry_set64(sg, src_start_addr + sym->aead.data.offset);
sg->length = sym->aead.data.length;
length += sg->length;
sg->final = 1;
cpu_to_hw_sg(sg);
} else {
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
length += sg->length;
cpu_to_hw_sg(sg);
sg++;
if (ses->auth_only_len) {
qm_sg_entry_set64(sg,
dpaa_mem_vtop(sym->aead.aad.data));
sg->length = ses->auth_only_len;
length += sg->length;
cpu_to_hw_sg(sg);
sg++;
}
qm_sg_entry_set64(sg, src_start_addr + sym->aead.data.offset);
sg->length = sym->aead.data.length;
length += sg->length;
cpu_to_hw_sg(sg);
memcpy(ctx->digest, sym->aead.digest.data,
ses->digest_length);
sg++;
qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest));
sg->length = ses->digest_length;
length += sg->length;
sg->final = 1;
cpu_to_hw_sg(sg);
}
/* input compound frame */
cf->sg[1].length = length;
cf->sg[1].extension = 1;
cf->sg[1].final = 1;
cpu_to_hw_sg(&cf->sg[1]);
/* output */
sg++;
qm_sg_entry_set64(&cf->sg[0], dpaa_mem_vtop(sg));
qm_sg_entry_set64(sg,
dst_start_addr + sym->aead.data.offset - ses->auth_only_len);
sg->length = sym->aead.data.length + ses->auth_only_len;
length = sg->length;
if (is_encode(ses)) {
cpu_to_hw_sg(sg);
/* set auth output */
sg++;
qm_sg_entry_set64(sg, sym->aead.digest.phys_addr);
sg->length = ses->digest_length;
length += sg->length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* output compound frame */
cf->sg[0].length = length;
cf->sg[0].extension = 1;
cpu_to_hw_sg(&cf->sg[0]);
return cf;
}
static inline struct dpaa_sec_job *
build_cipher_auth_sg(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
struct rte_mbuf *mbuf;
uint8_t req_segs;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
if (sym->m_dst) {
mbuf = sym->m_dst;
req_segs = mbuf->nb_segs + sym->m_src->nb_segs + 4;
} else {
mbuf = sym->m_src;
req_segs = mbuf->nb_segs * 2 + 4;
}
if (req_segs > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Cipher-Auth: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
rte_prefetch0(cf->sg);
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
if (is_encode(ses))
out_sg->length = sym->auth.data.length + ses->digest_length;
else
out_sg->length = sym->auth.data.length;
/* output sg entries */
sg = &cf->sg[2];
qm_sg_entry_set64(out_sg, dpaa_mem_vtop(sg));
cpu_to_hw_sg(out_sg);
/* 1st seg */
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->auth.data.offset;
sg->offset = sym->auth.data.offset;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
sg->length -= ses->digest_length;
if (is_encode(ses)) {
cpu_to_hw_sg(sg);
/* set auth output */
sg++;
qm_sg_entry_set64(sg, sym->auth.digest.phys_addr);
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
mbuf = sym->m_src;
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
if (is_encode(ses))
in_sg->length = ses->iv.length + sym->auth.data.length;
else
in_sg->length = ses->iv.length + sym->auth.data.length
+ ses->digest_length;
/* input sg entries */
sg++;
qm_sg_entry_set64(in_sg, dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* 1st seg IV */
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 2nd seg */
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len - sym->auth.data.offset;
sg->offset = sym->auth.data.offset;
/* Successive segs */
mbuf = mbuf->next;
while (mbuf) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, rte_pktmbuf_mtophys(mbuf));
sg->length = mbuf->data_len;
mbuf = mbuf->next;
}
sg->length -= ses->digest_length;
if (is_decode(ses)) {
cpu_to_hw_sg(sg);
sg++;
memcpy(ctx->digest, sym->auth.digest.data,
ses->digest_length);
qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest));
sg->length = ses->digest_length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
return cf;
}
static inline struct dpaa_sec_job *
build_cipher_auth(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg;
rte_iova_t src_start_addr, dst_start_addr;
uint32_t length = 0;
uint8_t *IV_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
ses->iv.offset);
src_start_addr = sym->m_src->buf_iova + sym->m_src->data_off;
if (sym->m_dst)
dst_start_addr = sym->m_dst->buf_iova + sym->m_dst->data_off;
else
dst_start_addr = src_start_addr;
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
/* input */
rte_prefetch0(cf->sg);
sg = &cf->sg[2];
qm_sg_entry_set64(&cf->sg[1], dpaa_mem_vtop(sg));
if (is_encode(ses)) {
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
length += sg->length;
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, src_start_addr + sym->auth.data.offset);
sg->length = sym->auth.data.length;
length += sg->length;
sg->final = 1;
cpu_to_hw_sg(sg);
} else {
qm_sg_entry_set64(sg, dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
length += sg->length;
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, src_start_addr + sym->auth.data.offset);
sg->length = sym->auth.data.length;
length += sg->length;
cpu_to_hw_sg(sg);
memcpy(ctx->digest, sym->auth.digest.data,
ses->digest_length);
sg++;
qm_sg_entry_set64(sg, dpaa_mem_vtop(ctx->digest));
sg->length = ses->digest_length;
length += sg->length;
sg->final = 1;
cpu_to_hw_sg(sg);
}
/* input compound frame */
cf->sg[1].length = length;
cf->sg[1].extension = 1;
cf->sg[1].final = 1;
cpu_to_hw_sg(&cf->sg[1]);
/* output */
sg++;
qm_sg_entry_set64(&cf->sg[0], dpaa_mem_vtop(sg));
qm_sg_entry_set64(sg, dst_start_addr + sym->cipher.data.offset);
sg->length = sym->cipher.data.length;
length = sg->length;
if (is_encode(ses)) {
cpu_to_hw_sg(sg);
/* set auth output */
sg++;
qm_sg_entry_set64(sg, sym->auth.digest.phys_addr);
sg->length = ses->digest_length;
length += sg->length;
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* output compound frame */
cf->sg[0].length = length;
cf->sg[0].extension = 1;
cpu_to_hw_sg(&cf->sg[0]);
return cf;
}
static inline struct dpaa_sec_job *
build_proto(struct rte_crypto_op *op, dpaa_sec_session *ses)
{
struct rte_crypto_sym_op *sym = op->sym;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg;
phys_addr_t src_start_addr, dst_start_addr;
ctx = dpaa_sec_alloc_ctx(ses);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->op = op;
src_start_addr = rte_pktmbuf_mtophys(sym->m_src);
if (sym->m_dst)
dst_start_addr = rte_pktmbuf_mtophys(sym->m_dst);
else
dst_start_addr = src_start_addr;
/* input */
sg = &cf->sg[1];
qm_sg_entry_set64(sg, src_start_addr);
sg->length = sym->m_src->pkt_len;
sg->final = 1;
cpu_to_hw_sg(sg);
sym->m_src->packet_type &= ~RTE_PTYPE_L4_MASK;
/* output */
sg = &cf->sg[0];
qm_sg_entry_set64(sg, dst_start_addr);
sg->length = sym->m_src->buf_len - sym->m_src->data_off;
cpu_to_hw_sg(sg);
return cf;
}
static uint16_t
dpaa_sec_enqueue_burst(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
/* Function to transmit the frames to given device and queuepair */
uint32_t loop;
struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp;
uint16_t num_tx = 0;
struct qm_fd fds[DPAA_SEC_BURST], *fd;
uint32_t frames_to_send;
struct rte_crypto_op *op;
struct dpaa_sec_job *cf;
dpaa_sec_session *ses;
uint32_t auth_only_len;
struct qman_fq *inq[DPAA_SEC_BURST];
while (nb_ops) {
frames_to_send = (nb_ops > DPAA_SEC_BURST) ?
DPAA_SEC_BURST : nb_ops;
for (loop = 0; loop < frames_to_send; loop++) {
op = *(ops++);
switch (op->sess_type) {
case RTE_CRYPTO_OP_WITH_SESSION:
ses = (dpaa_sec_session *)
get_sym_session_private_data(
op->sym->session,
cryptodev_driver_id);
break;
case RTE_CRYPTO_OP_SECURITY_SESSION:
ses = (dpaa_sec_session *)
get_sec_session_private_data(
op->sym->sec_session);
break;
default:
DPAA_SEC_DP_ERR(
"sessionless crypto op not supported");
frames_to_send = loop;
nb_ops = loop;
goto send_pkts;
}
if (unlikely(!ses->qp[rte_lcore_id() % MAX_DPAA_CORES])) {
if (dpaa_sec_attach_sess_q(qp, ses)) {
frames_to_send = loop;
nb_ops = loop;
goto send_pkts;
}
} else if (unlikely(ses->qp[rte_lcore_id() %
MAX_DPAA_CORES] != qp)) {
DPAA_SEC_DP_ERR("Old:sess->qp = %p"
" New qp = %p\n",
ses->qp[rte_lcore_id() %
MAX_DPAA_CORES], qp);
frames_to_send = loop;
nb_ops = loop;
goto send_pkts;
}
auth_only_len = op->sym->auth.data.length -
op->sym->cipher.data.length;
if (rte_pktmbuf_is_contiguous(op->sym->m_src)) {
if (is_proto_ipsec(ses)) {
cf = build_proto(op, ses);
} else if (is_proto_pdcp(ses)) {
cf = build_proto(op, ses);
} else if (is_auth_only(ses)) {
cf = build_auth_only(op, ses);
} else if (is_cipher_only(ses)) {
cf = build_cipher_only(op, ses);
} else if (is_aead(ses)) {
cf = build_cipher_auth_gcm(op, ses);
auth_only_len = ses->auth_only_len;
} else if (is_auth_cipher(ses)) {
cf = build_cipher_auth(op, ses);
} else {
DPAA_SEC_DP_ERR("not supported ops");
frames_to_send = loop;
nb_ops = loop;
goto send_pkts;
}
} else {
if (is_auth_only(ses)) {
cf = build_auth_only_sg(op, ses);
} else if (is_cipher_only(ses)) {
cf = build_cipher_only_sg(op, ses);
} else if (is_aead(ses)) {
cf = build_cipher_auth_gcm_sg(op, ses);
auth_only_len = ses->auth_only_len;
} else if (is_auth_cipher(ses)) {
cf = build_cipher_auth_sg(op, ses);
} else {
DPAA_SEC_DP_ERR("not supported ops");
frames_to_send = loop;
nb_ops = loop;
goto send_pkts;
}
}
if (unlikely(!cf)) {
frames_to_send = loop;
nb_ops = loop;
goto send_pkts;
}
fd = &fds[loop];
inq[loop] = ses->inq[rte_lcore_id() % MAX_DPAA_CORES];
fd->opaque_addr = 0;
fd->cmd = 0;
qm_fd_addr_set64(fd, dpaa_mem_vtop(cf->sg));
fd->_format1 = qm_fd_compound;
fd->length29 = 2 * sizeof(struct qm_sg_entry);
/* Auth_only_len is set as 0 in descriptor and it is
* overwritten here in the fd.cmd which will update
* the DPOVRD reg.
*/
if (auth_only_len)
fd->cmd = 0x80000000 | auth_only_len;
}
send_pkts:
loop = 0;
while (loop < frames_to_send) {
loop += qman_enqueue_multi_fq(&inq[loop], &fds[loop],
frames_to_send - loop);
}
nb_ops -= frames_to_send;
num_tx += frames_to_send;
}
dpaa_qp->tx_pkts += num_tx;
dpaa_qp->tx_errs += nb_ops - num_tx;
return num_tx;
}
static uint16_t
dpaa_sec_dequeue_burst(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
uint16_t num_rx;
struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp;
num_rx = dpaa_sec_deq(dpaa_qp, ops, nb_ops);
dpaa_qp->rx_pkts += num_rx;
dpaa_qp->rx_errs += nb_ops - num_rx;
DPAA_SEC_DP_DEBUG("SEC Received %d Packets\n", num_rx);
return num_rx;
}
/** Release queue pair */
static int
dpaa_sec_queue_pair_release(struct rte_cryptodev *dev,
uint16_t qp_id)
{
struct dpaa_sec_dev_private *internals;
struct dpaa_sec_qp *qp = NULL;
PMD_INIT_FUNC_TRACE();
DPAA_SEC_DEBUG("dev =%p, queue =%d", dev, qp_id);
internals = dev->data->dev_private;
if (qp_id >= internals->max_nb_queue_pairs) {
DPAA_SEC_ERR("Max supported qpid %d",
internals->max_nb_queue_pairs);
return -EINVAL;
}
qp = &internals->qps[qp_id];
qp->internals = NULL;
dev->data->queue_pairs[qp_id] = NULL;
return 0;
}
/** Setup a queue pair */
static int
dpaa_sec_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
__rte_unused const struct rte_cryptodev_qp_conf *qp_conf,
__rte_unused int socket_id)
{
struct dpaa_sec_dev_private *internals;
struct dpaa_sec_qp *qp = NULL;
DPAA_SEC_DEBUG("dev =%p, queue =%d, conf =%p", dev, qp_id, qp_conf);
internals = dev->data->dev_private;
if (qp_id >= internals->max_nb_queue_pairs) {
DPAA_SEC_ERR("Max supported qpid %d",
internals->max_nb_queue_pairs);
return -EINVAL;
}
qp = &internals->qps[qp_id];
qp->internals = internals;
dev->data->queue_pairs[qp_id] = qp;
return 0;
}
/** Return the number of allocated queue pairs */
static uint32_t
dpaa_sec_queue_pair_count(struct rte_cryptodev *dev)
{
PMD_INIT_FUNC_TRACE();
return dev->data->nb_queue_pairs;
}
/** Returns the size of session structure */
static unsigned int
dpaa_sec_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return sizeof(dpaa_sec_session);
}
static int
dpaa_sec_cipher_init(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
dpaa_sec_session *session)
{
session->cipher_alg = xform->cipher.algo;
session->iv.length = xform->cipher.iv.length;
session->iv.offset = xform->cipher.iv.offset;
session->cipher_key.data = rte_zmalloc(NULL, xform->cipher.key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL && xform->cipher.key.length > 0) {
DPAA_SEC_ERR("No Memory for cipher key");
return -ENOMEM;
}
session->cipher_key.length = xform->cipher.key.length;
memcpy(session->cipher_key.data, xform->cipher.key.data,
xform->cipher.key.length);
session->dir = (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
return 0;
}
static int
dpaa_sec_auth_init(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
dpaa_sec_session *session)
{
session->auth_alg = xform->auth.algo;
session->auth_key.data = rte_zmalloc(NULL, xform->auth.key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL && xform->auth.key.length > 0) {
DPAA_SEC_ERR("No Memory for auth key");
return -ENOMEM;
}
session->auth_key.length = xform->auth.key.length;
session->digest_length = xform->auth.digest_length;
memcpy(session->auth_key.data, xform->auth.key.data,
xform->auth.key.length);
session->dir = (xform->auth.op == RTE_CRYPTO_AUTH_OP_GENERATE) ?
DIR_ENC : DIR_DEC;
return 0;
}
static int
dpaa_sec_aead_init(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform,
dpaa_sec_session *session)
{
session->aead_alg = xform->aead.algo;
session->iv.length = xform->aead.iv.length;
session->iv.offset = xform->aead.iv.offset;
session->auth_only_len = xform->aead.aad_length;
session->aead_key.data = rte_zmalloc(NULL, xform->aead.key.length,
RTE_CACHE_LINE_SIZE);
if (session->aead_key.data == NULL && xform->aead.key.length > 0) {
DPAA_SEC_ERR("No Memory for aead key\n");
return -ENOMEM;
}
session->aead_key.length = xform->aead.key.length;
session->digest_length = xform->aead.digest_length;
memcpy(session->aead_key.data, xform->aead.key.data,
xform->aead.key.length);
session->dir = (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
return 0;
}
static struct qman_fq *
dpaa_sec_attach_rxq(struct dpaa_sec_dev_private *qi)
{
unsigned int i;
for (i = 0; i < qi->max_nb_sessions; i++) {
if (qi->inq_attach[i] == 0) {
qi->inq_attach[i] = 1;
return &qi->inq[i];
}
}
DPAA_SEC_WARN("All ses session in use %x", qi->max_nb_sessions);
return NULL;
}
static int
dpaa_sec_detach_rxq(struct dpaa_sec_dev_private *qi, struct qman_fq *fq)
{
unsigned int i;
for (i = 0; i < qi->max_nb_sessions; i++) {
if (&qi->inq[i] == fq) {
qman_retire_fq(fq, NULL);
qman_oos_fq(fq);
qi->inq_attach[i] = 0;
return 0;
}
}
return -1;
}
static int
dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess)
{
int ret;
sess->qp[rte_lcore_id() % MAX_DPAA_CORES] = qp;
ret = dpaa_sec_prep_cdb(sess);
if (ret) {
DPAA_SEC_ERR("Unable to prepare sec cdb");
return -1;
}
if (unlikely(!RTE_PER_LCORE(dpaa_io))) {
ret = rte_dpaa_portal_init((void *)0);
if (ret) {
DPAA_SEC_ERR("Failure in affining portal");
return ret;
}
}
ret = dpaa_sec_init_rx(sess->inq[rte_lcore_id() % MAX_DPAA_CORES],
dpaa_mem_vtop(&sess->cdb),
qman_fq_fqid(&qp->outq));
if (ret)
DPAA_SEC_ERR("Unable to init sec queue");
return ret;
}
static int
dpaa_sec_set_session_parameters(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform, void *sess)
{
struct dpaa_sec_dev_private *internals = dev->data->dev_private;
dpaa_sec_session *session = sess;
uint32_t i;
PMD_INIT_FUNC_TRACE();
if (unlikely(sess == NULL)) {
DPAA_SEC_ERR("invalid session struct");
return -EINVAL;
}
memset(session, 0, sizeof(dpaa_sec_session));
/* Default IV length = 0 */
session->iv.length = 0;
/* Cipher Only */
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER && xform->next == NULL) {
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
dpaa_sec_cipher_init(dev, xform, session);
/* Authentication Only */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next == NULL) {
session->cipher_alg = RTE_CRYPTO_CIPHER_NULL;
dpaa_sec_auth_init(dev, xform, session);
/* Cipher then Authenticate */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
dpaa_sec_cipher_init(dev, xform, session);
dpaa_sec_auth_init(dev, xform->next, session);
} else {
DPAA_SEC_ERR("Not supported: Auth then Cipher");
return -EINVAL;
}
/* Authenticate then Cipher */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT) {
dpaa_sec_auth_init(dev, xform, session);
dpaa_sec_cipher_init(dev, xform->next, session);
} else {
DPAA_SEC_ERR("Not supported: Auth then Cipher");
return -EINVAL;
}
/* AEAD operation for AES-GCM kind of Algorithms */
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD &&
xform->next == NULL) {
dpaa_sec_aead_init(dev, xform, session);
} else {
DPAA_SEC_ERR("Invalid crypto type");
return -EINVAL;
}
session->ctx_pool = internals->ctx_pool;
rte_spinlock_lock(&internals->lock);
for (i = 0; i < MAX_DPAA_CORES; i++) {
session->inq[i] = dpaa_sec_attach_rxq(internals);
if (session->inq[i] == NULL) {
DPAA_SEC_ERR("unable to attach sec queue");
rte_spinlock_unlock(&internals->lock);
goto err1;
}
}
rte_spinlock_unlock(&internals->lock);
return 0;
err1:
rte_free(session->cipher_key.data);
rte_free(session->auth_key.data);
memset(session, 0, sizeof(dpaa_sec_session));
return -EINVAL;
}
static int
dpaa_sec_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *mempool)
{
void *sess_private_data;
int ret;
PMD_INIT_FUNC_TRACE();
if (rte_mempool_get(mempool, &sess_private_data)) {
DPAA_SEC_ERR("Couldn't get object from session mempool");
return -ENOMEM;
}
ret = dpaa_sec_set_session_parameters(dev, xform, sess_private_data);
if (ret != 0) {
DPAA_SEC_ERR("failed to configure session parameters");
/* Return session to mempool */
rte_mempool_put(mempool, sess_private_data);
return ret;
}
set_sym_session_private_data(sess, dev->driver_id,
sess_private_data);
return 0;
}
/** Clear the memory of session so it doesn't leave key material behind */
static void
dpaa_sec_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
struct dpaa_sec_dev_private *qi = dev->data->dev_private;
uint8_t index = dev->driver_id;
void *sess_priv = get_sym_session_private_data(sess, index);
PMD_INIT_FUNC_TRACE();
dpaa_sec_session *s = (dpaa_sec_session *)sess_priv;
if (sess_priv) {
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
if (s->inq[rte_lcore_id() % MAX_DPAA_CORES])
dpaa_sec_detach_rxq(qi,
s->inq[rte_lcore_id() % MAX_DPAA_CORES]);
rte_free(s->cipher_key.data);
rte_free(s->auth_key.data);
memset(s, 0, sizeof(dpaa_sec_session));
set_sym_session_private_data(sess, index, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
}
static int
dpaa_sec_set_ipsec_session(__rte_unused struct rte_cryptodev *dev,
struct rte_security_session_conf *conf,
void *sess)
{
struct dpaa_sec_dev_private *internals = dev->data->dev_private;
struct rte_security_ipsec_xform *ipsec_xform = &conf->ipsec;
struct rte_crypto_auth_xform *auth_xform = NULL;
struct rte_crypto_cipher_xform *cipher_xform = NULL;
dpaa_sec_session *session = (dpaa_sec_session *)sess;
uint32_t i;
PMD_INIT_FUNC_TRACE();
memset(session, 0, sizeof(dpaa_sec_session));
if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
cipher_xform = &conf->crypto_xform->cipher;
if (conf->crypto_xform->next)
auth_xform = &conf->crypto_xform->next->auth;
} else {
auth_xform = &conf->crypto_xform->auth;
if (conf->crypto_xform->next)
cipher_xform = &conf->crypto_xform->next->cipher;
}
session->proto_alg = conf->protocol;
if (cipher_xform && cipher_xform->algo != RTE_CRYPTO_CIPHER_NULL) {
session->cipher_key.data = rte_zmalloc(NULL,
cipher_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL &&
cipher_xform->key.length > 0) {
DPAA_SEC_ERR("No Memory for cipher key");
return -ENOMEM;
}
memcpy(session->cipher_key.data, cipher_xform->key.data,
cipher_xform->key.length);
session->cipher_key.length = cipher_xform->key.length;
switch (cipher_xform->algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
case RTE_CRYPTO_CIPHER_3DES_CBC:
case RTE_CRYPTO_CIPHER_AES_CTR:
break;
default:
DPAA_SEC_ERR("Crypto: Unsupported Cipher alg %u",
cipher_xform->algo);
goto out;
}
session->cipher_alg = cipher_xform->algo;
} else {
session->cipher_key.data = NULL;
session->cipher_key.length = 0;
session->cipher_alg = RTE_CRYPTO_CIPHER_NULL;
}
if (auth_xform && auth_xform->algo != RTE_CRYPTO_AUTH_NULL) {
session->auth_key.data = rte_zmalloc(NULL,
auth_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL &&
auth_xform->key.length > 0) {
DPAA_SEC_ERR("No Memory for auth key");
rte_free(session->cipher_key.data);
return -ENOMEM;
}
memcpy(session->auth_key.data, auth_xform->key.data,
auth_xform->key.length);
session->auth_key.length = auth_xform->key.length;
switch (auth_xform->algo) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
case RTE_CRYPTO_AUTH_MD5_HMAC:
case RTE_CRYPTO_AUTH_SHA256_HMAC:
case RTE_CRYPTO_AUTH_SHA384_HMAC:
case RTE_CRYPTO_AUTH_SHA512_HMAC:
case RTE_CRYPTO_AUTH_AES_CMAC:
break;
default:
DPAA_SEC_ERR("Crypto: Unsupported auth alg %u",
auth_xform->algo);
goto out;
}
session->auth_alg = auth_xform->algo;
} else {
session->auth_key.data = NULL;
session->auth_key.length = 0;
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
}
if (ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
memset(&session->encap_pdb, 0, sizeof(struct ipsec_encap_pdb) +
sizeof(session->ip4_hdr));
session->ip4_hdr.ip_v = IPVERSION;
session->ip4_hdr.ip_hl = 5;
session->ip4_hdr.ip_len = rte_cpu_to_be_16(
sizeof(session->ip4_hdr));
session->ip4_hdr.ip_tos = ipsec_xform->tunnel.ipv4.dscp;
session->ip4_hdr.ip_id = 0;
session->ip4_hdr.ip_off = 0;
session->ip4_hdr.ip_ttl = ipsec_xform->tunnel.ipv4.ttl;
session->ip4_hdr.ip_p = (ipsec_xform->proto ==
RTE_SECURITY_IPSEC_SA_PROTO_ESP) ? IPPROTO_ESP
: IPPROTO_AH;
session->ip4_hdr.ip_sum = 0;
session->ip4_hdr.ip_src = ipsec_xform->tunnel.ipv4.src_ip;
session->ip4_hdr.ip_dst = ipsec_xform->tunnel.ipv4.dst_ip;
session->ip4_hdr.ip_sum = calc_chksum((uint16_t *)
(void *)&session->ip4_hdr,
sizeof(struct ip));
session->encap_pdb.options =
(IPVERSION << PDBNH_ESP_ENCAP_SHIFT) |
PDBOPTS_ESP_OIHI_PDB_INL |
PDBOPTS_ESP_IVSRC |
PDBHMO_ESP_ENCAP_DTTL |
PDBHMO_ESP_SNR;
session->encap_pdb.spi = ipsec_xform->spi;
session->encap_pdb.ip_hdr_len = sizeof(struct ip);
session->dir = DIR_ENC;
} else if (ipsec_xform->direction ==
RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
memset(&session->decap_pdb, 0, sizeof(struct ipsec_decap_pdb));
session->decap_pdb.options = sizeof(struct ip) << 16;
session->dir = DIR_DEC;
} else
goto out;
session->ctx_pool = internals->ctx_pool;
rte_spinlock_lock(&internals->lock);
for (i = 0; i < MAX_DPAA_CORES; i++) {
session->inq[i] = dpaa_sec_attach_rxq(internals);
if (session->inq[i] == NULL) {
DPAA_SEC_ERR("unable to attach sec queue");
rte_spinlock_unlock(&internals->lock);
goto out;
}
}
rte_spinlock_unlock(&internals->lock);
return 0;
out:
rte_free(session->auth_key.data);
rte_free(session->cipher_key.data);
memset(session, 0, sizeof(dpaa_sec_session));
return -1;
}
static int
dpaa_sec_set_pdcp_session(struct rte_cryptodev *dev,
struct rte_security_session_conf *conf,
void *sess)
{
struct rte_security_pdcp_xform *pdcp_xform = &conf->pdcp;
struct rte_crypto_sym_xform *xform = conf->crypto_xform;
struct rte_crypto_auth_xform *auth_xform = NULL;
struct rte_crypto_cipher_xform *cipher_xform = NULL;
dpaa_sec_session *session = (dpaa_sec_session *)sess;
struct dpaa_sec_dev_private *dev_priv = dev->data->dev_private;
uint32_t i;
PMD_INIT_FUNC_TRACE();
memset(session, 0, sizeof(dpaa_sec_session));
/* find xfrm types */
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
cipher_xform = &xform->cipher;
if (xform->next != NULL)
auth_xform = &xform->next->auth;
} else if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
auth_xform = &xform->auth;
if (xform->next != NULL)
cipher_xform = &xform->next->cipher;
} else {
DPAA_SEC_ERR("Invalid crypto type");
return -EINVAL;
}
session->proto_alg = conf->protocol;
if (cipher_xform) {
session->cipher_key.data = rte_zmalloc(NULL,
cipher_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->cipher_key.data == NULL &&
cipher_xform->key.length > 0) {
DPAA_SEC_ERR("No Memory for cipher key");
return -ENOMEM;
}
session->cipher_key.length = cipher_xform->key.length;
memcpy(session->cipher_key.data, cipher_xform->key.data,
cipher_xform->key.length);
session->dir = (cipher_xform->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
DIR_ENC : DIR_DEC;
session->cipher_alg = cipher_xform->algo;
} else {
session->cipher_key.data = NULL;
session->cipher_key.length = 0;
session->cipher_alg = RTE_CRYPTO_CIPHER_NULL;
session->dir = DIR_ENC;
}
/* Auth is only applicable for control mode operation. */
if (pdcp_xform->domain == RTE_SECURITY_PDCP_MODE_CONTROL) {
if (pdcp_xform->sn_size != RTE_SECURITY_PDCP_SN_SIZE_5) {
DPAA_SEC_ERR(
"PDCP Seq Num size should be 5 bits for cmode");
goto out;
}
if (auth_xform) {
session->auth_key.data = rte_zmalloc(NULL,
auth_xform->key.length,
RTE_CACHE_LINE_SIZE);
if (session->auth_key.data == NULL &&
auth_xform->key.length > 0) {
DPAA_SEC_ERR("No Memory for auth key");
rte_free(session->cipher_key.data);
return -ENOMEM;
}
session->auth_key.length = auth_xform->key.length;
memcpy(session->auth_key.data, auth_xform->key.data,
auth_xform->key.length);
session->auth_alg = auth_xform->algo;
} else {
session->auth_key.data = NULL;
session->auth_key.length = 0;
session->auth_alg = RTE_CRYPTO_AUTH_NULL;
}
}
session->pdcp.domain = pdcp_xform->domain;
session->pdcp.bearer = pdcp_xform->bearer;
session->pdcp.pkt_dir = pdcp_xform->pkt_dir;
session->pdcp.sn_size = pdcp_xform->sn_size;
#ifdef ENABLE_HFN_OVERRIDE
session->pdcp.hfn_ovd = pdcp_xform->hfn_ovd;
#endif
session->pdcp.hfn = pdcp_xform->hfn;
session->pdcp.hfn_threshold = pdcp_xform->hfn_threshold;
session->ctx_pool = dev_priv->ctx_pool;
rte_spinlock_lock(&dev_priv->lock);
for (i = 0; i < MAX_DPAA_CORES; i++) {
session->inq[i] = dpaa_sec_attach_rxq(dev_priv);
if (session->inq[i] == NULL) {
DPAA_SEC_ERR("unable to attach sec queue");
rte_spinlock_unlock(&dev_priv->lock);
goto out;
}
}
rte_spinlock_unlock(&dev_priv->lock);
return 0;
out:
rte_free(session->auth_key.data);
rte_free(session->cipher_key.data);
memset(session, 0, sizeof(dpaa_sec_session));
return -1;
}
static int
dpaa_sec_security_session_create(void *dev,
struct rte_security_session_conf *conf,
struct rte_security_session *sess,
struct rte_mempool *mempool)
{
void *sess_private_data;
struct rte_cryptodev *cdev = (struct rte_cryptodev *)dev;
int ret;
if (rte_mempool_get(mempool, &sess_private_data)) {
DPAA_SEC_ERR("Couldn't get object from session mempool");
return -ENOMEM;
}
switch (conf->protocol) {
case RTE_SECURITY_PROTOCOL_IPSEC:
ret = dpaa_sec_set_ipsec_session(cdev, conf,
sess_private_data);
break;
case RTE_SECURITY_PROTOCOL_PDCP:
ret = dpaa_sec_set_pdcp_session(cdev, conf,
sess_private_data);
break;
case RTE_SECURITY_PROTOCOL_MACSEC:
return -ENOTSUP;
default:
return -EINVAL;
}
if (ret != 0) {
DPAA_SEC_ERR("failed to configure session parameters");
/* Return session to mempool */
rte_mempool_put(mempool, sess_private_data);
return ret;
}
set_sec_session_private_data(sess, sess_private_data);
return ret;
}
/** Clear the memory of session so it doesn't leave key material behind */
static int
dpaa_sec_security_session_destroy(void *dev __rte_unused,
struct rte_security_session *sess)
{
PMD_INIT_FUNC_TRACE();
void *sess_priv = get_sec_session_private_data(sess);
dpaa_sec_session *s = (dpaa_sec_session *)sess_priv;
if (sess_priv) {
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
rte_free(s->cipher_key.data);
rte_free(s->auth_key.data);
memset(sess, 0, sizeof(dpaa_sec_session));
set_sec_session_private_data(sess, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
return 0;
}
static int
dpaa_sec_dev_configure(struct rte_cryptodev *dev,
struct rte_cryptodev_config *config __rte_unused)
{
char str[20];
struct dpaa_sec_dev_private *internals;
PMD_INIT_FUNC_TRACE();
internals = dev->data->dev_private;
snprintf(str, sizeof(str), "ctx_pool_%d", dev->data->dev_id);
if (!internals->ctx_pool) {
internals->ctx_pool = rte_mempool_create((const char *)str,
CTX_POOL_NUM_BUFS,
CTX_POOL_BUF_SIZE,
CTX_POOL_CACHE_SIZE, 0,
NULL, NULL, NULL, NULL,
SOCKET_ID_ANY, 0);
if (!internals->ctx_pool) {
DPAA_SEC_ERR("%s create failed\n", str);
return -ENOMEM;
}
} else
DPAA_SEC_INFO("mempool already created for dev_id : %d",
dev->data->dev_id);
return 0;
}
static int
dpaa_sec_dev_start(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
return 0;
}
static void
dpaa_sec_dev_stop(struct rte_cryptodev *dev __rte_unused)
{
PMD_INIT_FUNC_TRACE();
}
static int
dpaa_sec_dev_close(struct rte_cryptodev *dev)
{
struct dpaa_sec_dev_private *internals;
PMD_INIT_FUNC_TRACE();
if (dev == NULL)
return -ENOMEM;
internals = dev->data->dev_private;
rte_mempool_free(internals->ctx_pool);
internals->ctx_pool = NULL;
return 0;
}
static void
dpaa_sec_dev_infos_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *info)
{
struct dpaa_sec_dev_private *internals = dev->data->dev_private;
PMD_INIT_FUNC_TRACE();
if (info != NULL) {
info->max_nb_queue_pairs = internals->max_nb_queue_pairs;
info->feature_flags = dev->feature_flags;
info->capabilities = dpaa_sec_capabilities;
info->sym.max_nb_sessions = internals->max_nb_sessions;
info->driver_id = cryptodev_driver_id;
}
}
static struct rte_cryptodev_ops crypto_ops = {
.dev_configure = dpaa_sec_dev_configure,
.dev_start = dpaa_sec_dev_start,
.dev_stop = dpaa_sec_dev_stop,
.dev_close = dpaa_sec_dev_close,
.dev_infos_get = dpaa_sec_dev_infos_get,
.queue_pair_setup = dpaa_sec_queue_pair_setup,
.queue_pair_release = dpaa_sec_queue_pair_release,
.queue_pair_count = dpaa_sec_queue_pair_count,
.sym_session_get_size = dpaa_sec_sym_session_get_size,
.sym_session_configure = dpaa_sec_sym_session_configure,
.sym_session_clear = dpaa_sec_sym_session_clear
};
static const struct rte_security_capability *
dpaa_sec_capabilities_get(void *device __rte_unused)
{
return dpaa_sec_security_cap;
}
static const struct rte_security_ops dpaa_sec_security_ops = {
.session_create = dpaa_sec_security_session_create,
.session_update = NULL,
.session_stats_get = NULL,
.session_destroy = dpaa_sec_security_session_destroy,
.set_pkt_metadata = NULL,
.capabilities_get = dpaa_sec_capabilities_get
};
static int
dpaa_sec_uninit(struct rte_cryptodev *dev)
{
struct dpaa_sec_dev_private *internals;
if (dev == NULL)
return -ENODEV;
internals = dev->data->dev_private;
rte_free(dev->security_ctx);
/* In case close has been called, internals->ctx_pool would be NULL */
rte_mempool_free(internals->ctx_pool);
rte_free(internals);
DPAA_SEC_INFO("Closing DPAA_SEC device %s on numa socket %u",
dev->data->name, rte_socket_id());
return 0;
}
static int
dpaa_sec_dev_init(struct rte_cryptodev *cryptodev)
{
struct dpaa_sec_dev_private *internals;
struct rte_security_ctx *security_instance;
struct dpaa_sec_qp *qp;
uint32_t i, flags;
int ret;
PMD_INIT_FUNC_TRACE();
cryptodev->driver_id = cryptodev_driver_id;
cryptodev->dev_ops = &crypto_ops;
cryptodev->enqueue_burst = dpaa_sec_enqueue_burst;
cryptodev->dequeue_burst = dpaa_sec_dequeue_burst;
cryptodev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_SECURITY |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT;
internals = cryptodev->data->dev_private;
internals->max_nb_queue_pairs = RTE_DPAA_MAX_NB_SEC_QPS;
internals->max_nb_sessions = RTE_DPAA_SEC_PMD_MAX_NB_SESSIONS;
/*
* For secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DPAA_SEC_WARN("Device already init by primary process");
return 0;
}
/* Initialize security_ctx only for primary process*/
security_instance = rte_malloc("rte_security_instances_ops",
sizeof(struct rte_security_ctx), 0);
if (security_instance == NULL)
return -ENOMEM;
security_instance->device = (void *)cryptodev;
security_instance->ops = &dpaa_sec_security_ops;
security_instance->sess_cnt = 0;
cryptodev->security_ctx = security_instance;
rte_spinlock_init(&internals->lock);
for (i = 0; i < internals->max_nb_queue_pairs; i++) {
/* init qman fq for queue pair */
qp = &internals->qps[i];
ret = dpaa_sec_init_tx(&qp->outq);
if (ret) {
DPAA_SEC_ERR("config tx of queue pair %d", i);
goto init_error;
}
}
flags = QMAN_FQ_FLAG_LOCKED | QMAN_FQ_FLAG_DYNAMIC_FQID |
QMAN_FQ_FLAG_TO_DCPORTAL;
for (i = 0; i < MAX_DPAA_CORES * internals->max_nb_sessions; i++) {
/* create rx qman fq for sessions*/
ret = qman_create_fq(0, flags, &internals->inq[i]);
if (unlikely(ret != 0)) {
DPAA_SEC_ERR("sec qman_create_fq failed");
goto init_error;
}
}
RTE_LOG(INFO, PMD, "%s cryptodev init\n", cryptodev->data->name);
return 0;
init_error:
DPAA_SEC_ERR("driver %s: create failed\n", cryptodev->data->name);
dpaa_sec_uninit(cryptodev);
return -EFAULT;
}
static int
cryptodev_dpaa_sec_probe(struct rte_dpaa_driver *dpaa_drv __rte_unused,
struct rte_dpaa_device *dpaa_dev)
{
struct rte_cryptodev *cryptodev;
char cryptodev_name[RTE_CRYPTODEV_NAME_MAX_LEN];
int retval;
snprintf(cryptodev_name, sizeof(cryptodev_name), "dpaa_sec-%d",
dpaa_dev->id.dev_id);
cryptodev = rte_cryptodev_pmd_allocate(cryptodev_name, rte_socket_id());
if (cryptodev == NULL)
return -ENOMEM;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
cryptodev->data->dev_private = rte_zmalloc_socket(
"cryptodev private structure",
sizeof(struct dpaa_sec_dev_private),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (cryptodev->data->dev_private == NULL)
rte_panic("Cannot allocate memzone for private "
"device data");
}
dpaa_dev->crypto_dev = cryptodev;
cryptodev->device = &dpaa_dev->device;
/* init user callbacks */
TAILQ_INIT(&(cryptodev->link_intr_cbs));
/* if sec device version is not configured */
if (!rta_get_sec_era()) {
const struct device_node *caam_node;
for_each_compatible_node(caam_node, NULL, "fsl,sec-v4.0") {
const uint32_t *prop = of_get_property(caam_node,
"fsl,sec-era",
NULL);
if (prop) {
rta_set_sec_era(
INTL_SEC_ERA(rte_cpu_to_be_32(*prop)));
break;
}
}
}
/* Invoke PMD device initialization function */
retval = dpaa_sec_dev_init(cryptodev);
if (retval == 0)
return 0;
/* In case of error, cleanup is done */
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
rte_free(cryptodev->data->dev_private);
rte_cryptodev_pmd_release_device(cryptodev);
return -ENXIO;
}
static int
cryptodev_dpaa_sec_remove(struct rte_dpaa_device *dpaa_dev)
{
struct rte_cryptodev *cryptodev;
int ret;
cryptodev = dpaa_dev->crypto_dev;
if (cryptodev == NULL)
return -ENODEV;
ret = dpaa_sec_uninit(cryptodev);
if (ret)
return ret;
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_dpaa_driver rte_dpaa_sec_driver = {
.drv_type = FSL_DPAA_CRYPTO,
.driver = {
.name = "DPAA SEC PMD"
},
.probe = cryptodev_dpaa_sec_probe,
.remove = cryptodev_dpaa_sec_remove,
};
static struct cryptodev_driver dpaa_sec_crypto_drv;
RTE_PMD_REGISTER_DPAA(CRYPTODEV_NAME_DPAA_SEC_PMD, rte_dpaa_sec_driver);
RTE_PMD_REGISTER_CRYPTO_DRIVER(dpaa_sec_crypto_drv, rte_dpaa_sec_driver.driver,
cryptodev_driver_id);
RTE_INIT(dpaa_sec_init_log)
{
dpaa_logtype_sec = rte_log_register("pmd.crypto.dpaa");
if (dpaa_logtype_sec >= 0)
rte_log_set_level(dpaa_logtype_sec, RTE_LOG_NOTICE);
}