e1b9445985
Implement efsys.h for the PMD. Signed-off-by: Artem Andreev <artem.andreev@oktetlabs.ru> Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com> Reviewed-by: Andy Moreton <amoreton@solarflare.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
774 lines
20 KiB
C
774 lines
20 KiB
C
/*-
|
|
* Copyright (c) 2016 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _SFC_COMMON_EFSYS_H
|
|
#define _SFC_COMMON_EFSYS_H
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_spinlock.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_common.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_log.h>
|
|
|
|
#include "sfc_debug.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define EFSYS_HAS_UINT64 1
|
|
#define EFSYS_USE_UINT64 1
|
|
#define EFSYS_HAS_SSE2_M128 1
|
|
|
|
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
|
|
#define EFSYS_IS_BIG_ENDIAN 1
|
|
#define EFSYS_IS_LITTLE_ENDIAN 0
|
|
#elif RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
|
|
#define EFSYS_IS_BIG_ENDIAN 0
|
|
#define EFSYS_IS_LITTLE_ENDIAN 1
|
|
#else
|
|
#error "Cannot determine system endianness"
|
|
#endif
|
|
#include "efx_types.h"
|
|
|
|
|
|
#ifndef _NOTE
|
|
#define _NOTE(s)
|
|
#endif
|
|
|
|
typedef bool boolean_t;
|
|
|
|
#ifndef B_FALSE
|
|
#define B_FALSE false
|
|
#endif
|
|
#ifndef B_TRUE
|
|
#define B_TRUE true
|
|
#endif
|
|
|
|
/*
|
|
* RTE_MAX() and RTE_MIN() cannot be used since braced-group within
|
|
* expression allowed only inside a function, but MAX() is used as
|
|
* a number of elements in array.
|
|
*/
|
|
#ifndef MAX
|
|
#define MAX(v1, v2) ((v1) > (v2) ? (v1) : (v2))
|
|
#endif
|
|
#ifndef MIN
|
|
#define MIN(v1, v2) ((v1) < (v2) ? (v1) : (v2))
|
|
#endif
|
|
|
|
/* There are macros for alignment in DPDK, but we need to make a proper
|
|
* correspondence here, if we want to re-use them at all
|
|
*/
|
|
#ifndef IS_P2ALIGNED
|
|
#define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
|
|
#endif
|
|
|
|
#ifndef P2ROUNDUP
|
|
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
|
|
#endif
|
|
|
|
#ifndef P2ALIGN
|
|
#define P2ALIGN(_x, _a) ((_x) & -(_a))
|
|
#endif
|
|
|
|
#ifndef IS2P
|
|
#define ISP2(x) rte_is_power_of_2(x)
|
|
#endif
|
|
|
|
#define ENOTACTIVE ENOTCONN
|
|
|
|
static inline void
|
|
prefetch_read_many(const volatile void *addr)
|
|
{
|
|
rte_prefetch0(addr);
|
|
}
|
|
|
|
static inline void
|
|
prefetch_read_once(const volatile void *addr)
|
|
{
|
|
rte_prefetch_non_temporal(addr);
|
|
}
|
|
|
|
/* Modifiers used for Windows builds */
|
|
#define __in
|
|
#define __in_opt
|
|
#define __in_ecount(_n)
|
|
#define __in_ecount_opt(_n)
|
|
#define __in_bcount(_n)
|
|
#define __in_bcount_opt(_n)
|
|
|
|
#define __out
|
|
#define __out_opt
|
|
#define __out_ecount(_n)
|
|
#define __out_ecount_opt(_n)
|
|
#define __out_bcount(_n)
|
|
#define __out_bcount_opt(_n)
|
|
|
|
#define __deref_out
|
|
|
|
#define __inout
|
|
#define __inout_opt
|
|
#define __inout_ecount(_n)
|
|
#define __inout_ecount_opt(_n)
|
|
#define __inout_bcount(_n)
|
|
#define __inout_bcount_opt(_n)
|
|
#define __inout_bcount_full_opt(_n)
|
|
|
|
#define __deref_out_bcount_opt(n)
|
|
|
|
#define __checkReturn
|
|
#define __success(_x)
|
|
|
|
#define __drv_when(_p, _c)
|
|
|
|
/* Code inclusion options */
|
|
|
|
|
|
#define EFSYS_OPT_NAMES 0
|
|
|
|
/* Disable SFN5xxx/SFN6xxx since it requires specific support in the PMD */
|
|
#define EFSYS_OPT_SIENA 0
|
|
/* Enable SFN7xxx support */
|
|
#define EFSYS_OPT_HUNTINGTON 1
|
|
/* Enable SFN8xxx support */
|
|
#define EFSYS_OPT_MEDFORD 1
|
|
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
|
|
#define EFSYS_OPT_CHECK_REG 1
|
|
#else
|
|
#define EFSYS_OPT_CHECK_REG 0
|
|
#endif
|
|
|
|
/* MCDI is required for SFN7xxx and SFN8xx */
|
|
#define EFSYS_OPT_MCDI 1
|
|
#define EFSYS_OPT_MCDI_LOGGING 0
|
|
#define EFSYS_OPT_MCDI_PROXY_AUTH 0
|
|
|
|
#define EFSYS_OPT_MAC_STATS 0
|
|
|
|
#define EFSYS_OPT_LOOPBACK 0
|
|
|
|
#define EFSYS_OPT_MON_MCDI 0
|
|
#define EFSYS_OPT_MON_STATS 0
|
|
|
|
#define EFSYS_OPT_PHY_STATS 0
|
|
#define EFSYS_OPT_BIST 0
|
|
#define EFSYS_OPT_PHY_LED_CONTROL 0
|
|
#define EFSYS_OPT_PHY_FLAGS 0
|
|
|
|
#define EFSYS_OPT_VPD 0
|
|
#define EFSYS_OPT_NVRAM 0
|
|
#define EFSYS_OPT_BOOTCFG 0
|
|
|
|
#define EFSYS_OPT_DIAG 0
|
|
#define EFSYS_OPT_RX_SCALE 0
|
|
#define EFSYS_OPT_QSTATS 0
|
|
/* Filters support is required for SFN7xxx and SFN8xx */
|
|
#define EFSYS_OPT_FILTER 1
|
|
#define EFSYS_OPT_RX_SCATTER 0
|
|
|
|
#define EFSYS_OPT_EV_PREFETCH 0
|
|
|
|
#define EFSYS_OPT_DECODE_INTR_FATAL 0
|
|
|
|
#define EFSYS_OPT_LICENSING 0
|
|
|
|
#define EFSYS_OPT_ALLOW_UNCONFIGURED_NIC 0
|
|
|
|
#define EFSYS_OPT_RX_PACKED_STREAM 0
|
|
|
|
/* ID */
|
|
|
|
typedef struct __efsys_identifier_s efsys_identifier_t;
|
|
|
|
|
|
#define EFSYS_PROBE(_name) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE1(_name, _type1, _arg1) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE2(_name, _type1, _arg1, _type2, _arg2) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE3(_name, _type1, _arg1, _type2, _arg2, \
|
|
_type3, _arg3) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE4(_name, _type1, _arg1, _type2, _arg2, \
|
|
_type3, _arg3, _type4, _arg4) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE5(_name, _type1, _arg1, _type2, _arg2, \
|
|
_type3, _arg3, _type4, _arg4, _type5, _arg5) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE6(_name, _type1, _arg1, _type2, _arg2, \
|
|
_type3, _arg3, _type4, _arg4, _type5, _arg5, \
|
|
_type6, _arg6) \
|
|
do { } while (0)
|
|
|
|
#define EFSYS_PROBE7(_name, _type1, _arg1, _type2, _arg2, \
|
|
_type3, _arg3, _type4, _arg4, _type5, _arg5, \
|
|
_type6, _arg6, _type7, _arg7) \
|
|
do { } while (0)
|
|
|
|
|
|
/* DMA */
|
|
|
|
typedef phys_addr_t efsys_dma_addr_t;
|
|
|
|
typedef struct efsys_mem_s {
|
|
const struct rte_memzone *esm_mz;
|
|
/*
|
|
* Ideally it should have volatile qualifier to denote that
|
|
* the memory may be updated by someone else. However, it adds
|
|
* qualifier discard warnings when the pointer or its derivative
|
|
* is passed to memset() or rte_mov16().
|
|
* So, skip the qualifier here, but make sure that it is added
|
|
* below in access macros.
|
|
*/
|
|
void *esm_base;
|
|
efsys_dma_addr_t esm_addr;
|
|
} efsys_mem_t;
|
|
|
|
|
|
#define EFSYS_MEM_ZERO(_esmp, _size) \
|
|
do { \
|
|
(void)memset((void *)(_esmp)->esm_base, 0, (_size)); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_MEM_READD(_esmp, _offset, _edp) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
volatile uint32_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
|
|
\
|
|
_addr = (volatile uint32_t *)(_base + (_offset)); \
|
|
(_edp)->ed_u32[0] = _addr[0]; \
|
|
\
|
|
EFSYS_PROBE2(mem_readl, unsigned int, (_offset), \
|
|
uint32_t, (_edp)->ed_u32[0]); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_MEM_READQ(_esmp, _offset, _eqp) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
volatile uint64_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
|
|
\
|
|
_addr = (volatile uint64_t *)(_base + (_offset)); \
|
|
(_eqp)->eq_u64[0] = _addr[0]; \
|
|
\
|
|
EFSYS_PROBE3(mem_readq, unsigned int, (_offset), \
|
|
uint32_t, (_eqp)->eq_u32[1], \
|
|
uint32_t, (_eqp)->eq_u32[0]); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_MEM_READO(_esmp, _offset, _eop) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
volatile __m128i *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
|
|
\
|
|
_addr = (volatile __m128i *)(_base + (_offset)); \
|
|
(_eop)->eo_u128[0] = _addr[0]; \
|
|
\
|
|
EFSYS_PROBE5(mem_reado, unsigned int, (_offset), \
|
|
uint32_t, (_eop)->eo_u32[3], \
|
|
uint32_t, (_eop)->eo_u32[2], \
|
|
uint32_t, (_eop)->eo_u32[1], \
|
|
uint32_t, (_eop)->eo_u32[0]); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
|
|
#define EFSYS_MEM_WRITED(_esmp, _offset, _edp) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
volatile uint32_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
|
|
\
|
|
EFSYS_PROBE2(mem_writed, unsigned int, (_offset), \
|
|
uint32_t, (_edp)->ed_u32[0]); \
|
|
\
|
|
_addr = (volatile uint32_t *)(_base + (_offset)); \
|
|
_addr[0] = (_edp)->ed_u32[0]; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_MEM_WRITEQ(_esmp, _offset, _eqp) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
volatile uint64_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
|
|
\
|
|
EFSYS_PROBE3(mem_writeq, unsigned int, (_offset), \
|
|
uint32_t, (_eqp)->eq_u32[1], \
|
|
uint32_t, (_eqp)->eq_u32[0]); \
|
|
\
|
|
_addr = (volatile uint64_t *)(_base + (_offset)); \
|
|
_addr[0] = (_eqp)->eq_u64[0]; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_MEM_WRITEO(_esmp, _offset, _eop) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
volatile __m128i *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
|
|
\
|
|
\
|
|
EFSYS_PROBE5(mem_writeo, unsigned int, (_offset), \
|
|
uint32_t, (_eop)->eo_u32[3], \
|
|
uint32_t, (_eop)->eo_u32[2], \
|
|
uint32_t, (_eop)->eo_u32[1], \
|
|
uint32_t, (_eop)->eo_u32[0]); \
|
|
\
|
|
_addr = (volatile __m128i *)(_base + (_offset)); \
|
|
_addr[0] = (_eop)->eo_u128[0]; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
|
|
#define EFSYS_MEM_ADDR(_esmp) \
|
|
((_esmp)->esm_addr)
|
|
|
|
#define EFSYS_MEM_IS_NULL(_esmp) \
|
|
((_esmp)->esm_base == NULL)
|
|
|
|
#define EFSYS_MEM_PREFETCH(_esmp, _offset) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esmp)->esm_base; \
|
|
\
|
|
rte_prefetch0(_base + (_offset)); \
|
|
} while (0)
|
|
|
|
|
|
/* BAR */
|
|
|
|
typedef struct efsys_bar_s {
|
|
rte_spinlock_t esb_lock;
|
|
int esb_rid;
|
|
struct rte_pci_device *esb_dev;
|
|
/*
|
|
* Ideally it should have volatile qualifier to denote that
|
|
* the memory may be updated by someone else. However, it adds
|
|
* qualifier discard warnings when the pointer or its derivative
|
|
* is passed to memset() or rte_mov16().
|
|
* So, skip the qualifier here, but make sure that it is added
|
|
* below in access macros.
|
|
*/
|
|
void *esb_base;
|
|
} efsys_bar_t;
|
|
|
|
#define SFC_BAR_LOCK_INIT(_esbp, _ifname) \
|
|
do { \
|
|
rte_spinlock_init(&(_esbp)->esb_lock); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
#define SFC_BAR_LOCK_DESTROY(_esbp) ((void)0)
|
|
#define SFC_BAR_LOCK(_esbp) rte_spinlock_lock(&(_esbp)->esb_lock)
|
|
#define SFC_BAR_UNLOCK(_esbp) rte_spinlock_unlock(&(_esbp)->esb_lock)
|
|
|
|
#define EFSYS_BAR_READD(_esbp, _offset, _edp, _lock) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esbp)->esb_base; \
|
|
volatile uint32_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_LOCK(_esbp); \
|
|
\
|
|
_addr = (volatile uint32_t *)(_base + (_offset)); \
|
|
rte_rmb(); \
|
|
(_edp)->ed_u32[0] = _addr[0]; \
|
|
\
|
|
EFSYS_PROBE2(bar_readd, unsigned int, (_offset), \
|
|
uint32_t, (_edp)->ed_u32[0]); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_UNLOCK(_esbp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_BAR_READQ(_esbp, _offset, _eqp) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esbp)->esb_base; \
|
|
volatile uint64_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
|
|
\
|
|
SFC_BAR_LOCK(_esbp); \
|
|
\
|
|
_addr = (volatile uint64_t *)(_base + (_offset)); \
|
|
rte_rmb(); \
|
|
(_eqp)->eq_u64[0] = _addr[0]; \
|
|
\
|
|
EFSYS_PROBE3(bar_readq, unsigned int, (_offset), \
|
|
uint32_t, (_eqp)->eq_u32[1], \
|
|
uint32_t, (_eqp)->eq_u32[0]); \
|
|
\
|
|
SFC_BAR_UNLOCK(_esbp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_BAR_READO(_esbp, _offset, _eop, _lock) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esbp)->esb_base; \
|
|
volatile __m128i *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_LOCK(_esbp); \
|
|
\
|
|
_addr = (volatile __m128i *)(_base + (_offset)); \
|
|
rte_rmb(); \
|
|
(_eop)->eo_u128[0] = _addr[0]; \
|
|
\
|
|
EFSYS_PROBE5(bar_reado, unsigned int, (_offset), \
|
|
uint32_t, (_eop)->eo_u32[3], \
|
|
uint32_t, (_eop)->eo_u32[2], \
|
|
uint32_t, (_eop)->eo_u32[1], \
|
|
uint32_t, (_eop)->eo_u32[0]); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_UNLOCK(_esbp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
|
|
#define EFSYS_BAR_WRITED(_esbp, _offset, _edp, _lock) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esbp)->esb_base; \
|
|
volatile uint32_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_dword_t))); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_LOCK(_esbp); \
|
|
\
|
|
EFSYS_PROBE2(bar_writed, unsigned int, (_offset), \
|
|
uint32_t, (_edp)->ed_u32[0]); \
|
|
\
|
|
_addr = (volatile uint32_t *)(_base + (_offset)); \
|
|
_addr[0] = (_edp)->ed_u32[0]; \
|
|
rte_wmb(); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_UNLOCK(_esbp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_BAR_WRITEQ(_esbp, _offset, _eqp) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esbp)->esb_base; \
|
|
volatile uint64_t *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_qword_t))); \
|
|
\
|
|
SFC_BAR_LOCK(_esbp); \
|
|
\
|
|
EFSYS_PROBE3(bar_writeq, unsigned int, (_offset), \
|
|
uint32_t, (_eqp)->eq_u32[1], \
|
|
uint32_t, (_eqp)->eq_u32[0]); \
|
|
\
|
|
_addr = (volatile uint64_t *)(_base + (_offset)); \
|
|
_addr[0] = (_eqp)->eq_u64[0]; \
|
|
rte_wmb(); \
|
|
\
|
|
SFC_BAR_UNLOCK(_esbp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/*
|
|
* Guarantees 64bit aligned 64bit writes to write combined BAR mapping
|
|
* (required by PIO hardware).
|
|
*
|
|
* Neither VFIO, nor UIO, nor NIC UIO (on FreeBSD) support
|
|
* write-combined memory mapped to user-land, so just abort if used.
|
|
*/
|
|
#define EFSYS_BAR_WC_WRITEQ(_esbp, _offset, _eqp) \
|
|
do { \
|
|
rte_panic("Write-combined BAR access not supported"); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_BAR_WRITEO(_esbp, _offset, _eop, _lock) \
|
|
do { \
|
|
volatile uint8_t *_base = (_esbp)->esb_base; \
|
|
volatile __m128i *_addr; \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
SFC_ASSERT(IS_P2ALIGNED(_offset, sizeof(efx_oword_t))); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_LOCK(_esbp); \
|
|
\
|
|
EFSYS_PROBE5(bar_writeo, unsigned int, (_offset), \
|
|
uint32_t, (_eop)->eo_u32[3], \
|
|
uint32_t, (_eop)->eo_u32[2], \
|
|
uint32_t, (_eop)->eo_u32[1], \
|
|
uint32_t, (_eop)->eo_u32[0]); \
|
|
\
|
|
_addr = (volatile __m128i *)(_base + (_offset)); \
|
|
_addr[0] = (_eop)->eo_u128[0]; \
|
|
rte_wmb(); \
|
|
\
|
|
_NOTE(CONSTANTCONDITION); \
|
|
if (_lock) \
|
|
SFC_BAR_UNLOCK(_esbp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/* Use the standard octo-word write for doorbell writes */
|
|
#define EFSYS_BAR_DOORBELL_WRITEO(_esbp, _offset, _eop) \
|
|
do { \
|
|
EFSYS_BAR_WRITEO((_esbp), (_offset), (_eop), B_FALSE); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/* SPIN */
|
|
|
|
#define EFSYS_SPIN(_us) \
|
|
do { \
|
|
rte_delay_us(_us); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_SLEEP EFSYS_SPIN
|
|
|
|
/* BARRIERS */
|
|
|
|
#define EFSYS_MEM_READ_BARRIER() rte_rmb()
|
|
#define EFSYS_PIO_WRITE_BARRIER() rte_wmb()
|
|
|
|
/* DMA SYNC */
|
|
|
|
/*
|
|
* DPDK does not provide any DMA syncing API, and no PMD drivers
|
|
* have any traces of explicit DMA syncing.
|
|
* DMA mapping is assumed to be coherent.
|
|
*/
|
|
|
|
#define EFSYS_DMA_SYNC_FOR_KERNEL(_esmp, _offset, _size) ((void)0)
|
|
#define EFSYS_DMA_SYNC_FOR_DEVICE(_esmp, _offset, _size) ((void)0)
|
|
|
|
/* TIMESTAMP */
|
|
|
|
typedef uint64_t efsys_timestamp_t;
|
|
|
|
#define EFSYS_TIMESTAMP(_usp) \
|
|
do { \
|
|
*(_usp) = rte_get_timer_cycles() * 1000000 / \
|
|
rte_get_timer_hz(); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/* KMEM */
|
|
|
|
#define EFSYS_KMEM_ALLOC(_esip, _size, _p) \
|
|
do { \
|
|
(_esip) = (_esip); \
|
|
(_p) = rte_zmalloc("sfc", (_size), 0); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_KMEM_FREE(_esip, _size, _p) \
|
|
do { \
|
|
(void)(_esip); \
|
|
(void)(_size); \
|
|
rte_free((_p)); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/* LOCK */
|
|
|
|
typedef rte_spinlock_t efsys_lock_t;
|
|
|
|
#define SFC_EFSYS_LOCK_INIT(_eslp, _ifname, _label) \
|
|
rte_spinlock_init((_eslp))
|
|
#define SFC_EFSYS_LOCK_DESTROY(_eslp) ((void)0)
|
|
#define SFC_EFSYS_LOCK(_eslp) \
|
|
rte_spinlock_lock((_eslp))
|
|
#define SFC_EFSYS_UNLOCK(_eslp) \
|
|
rte_spinlock_unlock((_eslp))
|
|
#define SFC_EFSYS_LOCK_ASSERT_OWNED(_eslp) \
|
|
SFC_ASSERT(rte_spinlock_is_locked((_eslp)))
|
|
|
|
typedef int efsys_lock_state_t;
|
|
|
|
#define EFSYS_LOCK_MAGIC 0x000010c4
|
|
|
|
#define EFSYS_LOCK(_lockp, _state) \
|
|
do { \
|
|
SFC_EFSYS_LOCK(_lockp); \
|
|
(_state) = EFSYS_LOCK_MAGIC; \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_UNLOCK(_lockp, _state) \
|
|
do { \
|
|
SFC_ASSERT((_state) == EFSYS_LOCK_MAGIC); \
|
|
SFC_EFSYS_UNLOCK(_lockp); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/* STAT */
|
|
|
|
typedef uint64_t efsys_stat_t;
|
|
|
|
#define EFSYS_STAT_INCR(_knp, _delta) \
|
|
do { \
|
|
*(_knp) += (_delta); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_STAT_DECR(_knp, _delta) \
|
|
do { \
|
|
*(_knp) -= (_delta); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_STAT_SET(_knp, _val) \
|
|
do { \
|
|
*(_knp) = (_val); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_STAT_SET_QWORD(_knp, _valp) \
|
|
do { \
|
|
*(_knp) = rte_le_to_cpu_64((_valp)->eq_u64[0]); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_STAT_SET_DWORD(_knp, _valp) \
|
|
do { \
|
|
*(_knp) = rte_le_to_cpu_32((_valp)->ed_u32[0]); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_STAT_INCR_QWORD(_knp, _valp) \
|
|
do { \
|
|
*(_knp) += rte_le_to_cpu_64((_valp)->eq_u64[0]); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
#define EFSYS_STAT_SUBR_QWORD(_knp, _valp) \
|
|
do { \
|
|
*(_knp) -= rte_le_to_cpu_64((_valp)->eq_u64[0]); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
|
|
/* ERR */
|
|
|
|
#if EFSYS_OPT_DECODE_INTR_FATAL
|
|
#define EFSYS_ERR(_esip, _code, _dword0, _dword1) \
|
|
do { \
|
|
(void)(_esip); \
|
|
RTE_LOG(ERR, PMD, "FATAL ERROR #%u (0x%08x%08x)\n", \
|
|
(_code), (_dword0), (_dword1)); \
|
|
_NOTE(CONSTANTCONDITION); \
|
|
} while (B_FALSE)
|
|
#endif
|
|
|
|
/* ASSERT */
|
|
|
|
/* RTE_VERIFY from DPDK treats expressions with % operator incorrectly,
|
|
* so we re-implement it here
|
|
*/
|
|
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
|
|
#define EFSYS_ASSERT(_exp) \
|
|
do { \
|
|
if (unlikely(!(_exp))) \
|
|
rte_panic("line %d\tassert \"%s\" failed\n", \
|
|
__LINE__, (#_exp)); \
|
|
} while (0)
|
|
#else
|
|
#define EFSYS_ASSERT(_exp) (void)(_exp)
|
|
#endif
|
|
|
|
#define EFSYS_ASSERT3(_x, _op, _y, _t) EFSYS_ASSERT((_t)(_x) _op (_t)(_y))
|
|
|
|
#define EFSYS_ASSERT3U(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uint64_t)
|
|
#define EFSYS_ASSERT3S(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, int64_t)
|
|
#define EFSYS_ASSERT3P(_x, _op, _y) EFSYS_ASSERT3(_x, _op, _y, uintptr_t)
|
|
|
|
/* ROTATE */
|
|
|
|
#define EFSYS_HAS_ROTL_DWORD 0
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _SFC_COMMON_EFSYS_H */
|