numam-dpdk/drivers/net/sfc/sfc_ev.c
Artem Andreev 886f8d8a05 net/sfc: retrieve link info
Signed-off-by: Artem Andreev <artem.andreev@oktetlabs.ru>
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Andy Moreton <amoreton@solarflare.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2017-01-17 19:39:26 +01:00

588 lines
14 KiB
C

/*-
* Copyright (c) 2016 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_alarm.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
/* Initial delay when waiting for event queue init complete event */
#define SFC_EVQ_INIT_BACKOFF_START_US (1)
/* Maximum delay between event queue polling attempts */
#define SFC_EVQ_INIT_BACKOFF_MAX_US (10 * 1000)
/* Event queue init approx timeout */
#define SFC_EVQ_INIT_TIMEOUT_US (2 * US_PER_S)
/* Management event queue polling period in microseconds */
#define SFC_MGMT_EV_QPOLL_PERIOD_US (US_PER_S)
static boolean_t
sfc_ev_initialized(void *arg)
{
struct sfc_evq *evq = arg;
/* Init done events may be duplicated on SFN7xxx (SFC bug 31631) */
SFC_ASSERT(evq->init_state == SFC_EVQ_STARTING ||
evq->init_state == SFC_EVQ_STARTED);
evq->init_state = SFC_EVQ_STARTED;
return B_FALSE;
}
static boolean_t
sfc_ev_rx(void *arg, __rte_unused uint32_t label, __rte_unused uint32_t id,
__rte_unused uint32_t size, __rte_unused uint16_t flags)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected Rx event", evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_tx(void *arg, __rte_unused uint32_t label, __rte_unused uint32_t id)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected Tx event", evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_exception(void *arg, __rte_unused uint32_t code,
__rte_unused uint32_t data)
{
struct sfc_evq *evq = arg;
if (code == EFX_EXCEPTION_UNKNOWN_SENSOREVT)
return B_FALSE;
evq->exception = B_TRUE;
sfc_warn(evq->sa,
"hardware exception %s (code=%u, data=%#x) on EVQ %u;"
" needs recovery",
(code == EFX_EXCEPTION_RX_RECOVERY) ? "RX_RECOVERY" :
(code == EFX_EXCEPTION_RX_DSC_ERROR) ? "RX_DSC_ERROR" :
(code == EFX_EXCEPTION_TX_DSC_ERROR) ? "TX_DSC_ERROR" :
(code == EFX_EXCEPTION_FWALERT_SRAM) ? "FWALERT_SRAM" :
(code == EFX_EXCEPTION_UNKNOWN_FWALERT) ? "UNKNOWN_FWALERT" :
(code == EFX_EXCEPTION_RX_ERROR) ? "RX_ERROR" :
(code == EFX_EXCEPTION_TX_ERROR) ? "TX_ERROR" :
(code == EFX_EXCEPTION_EV_ERROR) ? "EV_ERROR" :
"UNKNOWN",
code, data, evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_rxq_flush_done(void *arg, __rte_unused uint32_t rxq_hw_index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected Rx flush done event",
evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_rxq_flush_failed(void *arg, __rte_unused uint32_t rxq_hw_index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected Rx flush failed event",
evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_txq_flush_done(void *arg, __rte_unused uint32_t txq_hw_index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected Tx flush done event",
evq->evq_index);
return B_TRUE;
}
static boolean_t
sfc_ev_software(void *arg, uint16_t magic)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected software event magic=%#.4x",
evq->evq_index, magic);
return B_TRUE;
}
static boolean_t
sfc_ev_sram(void *arg, uint32_t code)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected SRAM event code=%u",
evq->evq_index, code);
return B_TRUE;
}
static boolean_t
sfc_ev_wake_up(void *arg, uint32_t index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected wake up event index=%u",
evq->evq_index, index);
return B_TRUE;
}
static boolean_t
sfc_ev_timer(void *arg, uint32_t index)
{
struct sfc_evq *evq = arg;
sfc_err(evq->sa, "EVQ %u unexpected timer event index=%u",
evq->evq_index, index);
return B_TRUE;
}
static boolean_t
sfc_ev_link_change(void *arg, efx_link_mode_t link_mode)
{
struct sfc_evq *evq = arg;
struct sfc_adapter *sa = evq->sa;
struct rte_eth_link *dev_link = &sa->eth_dev->data->dev_link;
struct rte_eth_link new_link;
EFX_STATIC_ASSERT(sizeof(*dev_link) == sizeof(rte_atomic64_t));
sfc_port_link_mode_to_info(link_mode, &new_link);
rte_atomic64_set((rte_atomic64_t *)dev_link, *(uint64_t *)&new_link);
return B_FALSE;
}
static const efx_ev_callbacks_t sfc_ev_callbacks = {
.eec_initialized = sfc_ev_initialized,
.eec_rx = sfc_ev_rx,
.eec_tx = sfc_ev_tx,
.eec_exception = sfc_ev_exception,
.eec_rxq_flush_done = sfc_ev_rxq_flush_done,
.eec_rxq_flush_failed = sfc_ev_rxq_flush_failed,
.eec_txq_flush_done = sfc_ev_txq_flush_done,
.eec_software = sfc_ev_software,
.eec_sram = sfc_ev_sram,
.eec_wake_up = sfc_ev_wake_up,
.eec_timer = sfc_ev_timer,
.eec_link_change = sfc_ev_link_change,
};
void
sfc_ev_qpoll(struct sfc_evq *evq)
{
SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED ||
evq->init_state == SFC_EVQ_STARTING);
/* Synchronize the DMA memory for reading not required */
efx_ev_qpoll(evq->common, &evq->read_ptr, &sfc_ev_callbacks, evq);
/* Poll-mode driver does not re-prime the event queue for interrupts */
}
void
sfc_ev_mgmt_qpoll(struct sfc_adapter *sa)
{
if (rte_spinlock_trylock(&sa->mgmt_evq_lock)) {
struct sfc_evq *mgmt_evq = sa->evq_info[sa->mgmt_evq_index].evq;
if (mgmt_evq->init_state == SFC_EVQ_STARTED)
sfc_ev_qpoll(mgmt_evq);
rte_spinlock_unlock(&sa->mgmt_evq_lock);
}
}
int
sfc_ev_qprime(struct sfc_evq *evq)
{
SFC_ASSERT(evq->init_state == SFC_EVQ_STARTED);
return efx_ev_qprime(evq->common, evq->read_ptr);
}
int
sfc_ev_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
const struct sfc_evq_info *evq_info;
struct sfc_evq *evq;
efsys_mem_t *esmp;
unsigned int total_delay_us;
unsigned int delay_us;
int rc;
sfc_log_init(sa, "sw_index=%u", sw_index);
evq_info = &sa->evq_info[sw_index];
evq = evq_info->evq;
esmp = &evq->mem;
/* Clear all events */
(void)memset((void *)esmp->esm_base, 0xff,
EFX_EVQ_SIZE(evq_info->entries));
/* Create the common code event queue */
rc = efx_ev_qcreate(sa->nic, sw_index, esmp, evq_info->entries,
0 /* unused on EF10 */, 0,
EFX_EVQ_FLAGS_TYPE_THROUGHPUT |
EFX_EVQ_FLAGS_NOTIFY_DISABLED,
&evq->common);
if (rc != 0)
goto fail_ev_qcreate;
evq->init_state = SFC_EVQ_STARTING;
/* Wait for the initialization event */
total_delay_us = 0;
delay_us = SFC_EVQ_INIT_BACKOFF_START_US;
do {
(void)sfc_ev_qpoll(evq);
/* Check to see if the initialization complete indication
* posted by the hardware.
*/
if (evq->init_state == SFC_EVQ_STARTED)
goto done;
/* Give event queue some time to init */
rte_delay_us(delay_us);
total_delay_us += delay_us;
/* Exponential backoff */
delay_us *= 2;
if (delay_us > SFC_EVQ_INIT_BACKOFF_MAX_US)
delay_us = SFC_EVQ_INIT_BACKOFF_MAX_US;
} while (total_delay_us < SFC_EVQ_INIT_TIMEOUT_US);
rc = ETIMEDOUT;
goto fail_timedout;
done:
return 0;
fail_timedout:
evq->init_state = SFC_EVQ_INITIALIZED;
efx_ev_qdestroy(evq->common);
fail_ev_qcreate:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
const struct sfc_evq_info *evq_info;
struct sfc_evq *evq;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sa->evq_count);
evq_info = &sa->evq_info[sw_index];
evq = evq_info->evq;
if (evq == NULL || evq->init_state != SFC_EVQ_STARTED)
return;
evq->init_state = SFC_EVQ_INITIALIZED;
evq->read_ptr = 0;
evq->exception = B_FALSE;
efx_ev_qdestroy(evq->common);
}
static void
sfc_ev_mgmt_periodic_qpoll(void *arg)
{
struct sfc_adapter *sa = arg;
int rc;
sfc_ev_mgmt_qpoll(sa);
rc = rte_eal_alarm_set(SFC_MGMT_EV_QPOLL_PERIOD_US,
sfc_ev_mgmt_periodic_qpoll, sa);
if (rc != 0)
sfc_panic(sa,
"cannot rearm management EVQ polling alarm (rc=%d)",
rc);
}
static void
sfc_ev_mgmt_periodic_qpoll_start(struct sfc_adapter *sa)
{
sfc_ev_mgmt_periodic_qpoll(sa);
}
static void
sfc_ev_mgmt_periodic_qpoll_stop(struct sfc_adapter *sa)
{
rte_eal_alarm_cancel(sfc_ev_mgmt_periodic_qpoll, sa);
}
int
sfc_ev_start(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
rc = efx_ev_init(sa->nic);
if (rc != 0)
goto fail_ev_init;
/* Start management EVQ used for global events */
rte_spinlock_lock(&sa->mgmt_evq_lock);
rc = sfc_ev_qstart(sa, sa->mgmt_evq_index);
if (rc != 0)
goto fail_mgmt_evq_start;
rte_spinlock_unlock(&sa->mgmt_evq_lock);
/*
* Start management EVQ polling. If interrupts are disabled
* (not used), it is required to process link status change
* and other device level events to avoid unrecoverable
* error because the event queue overflow.
*/
sfc_ev_mgmt_periodic_qpoll_start(sa);
/*
* Rx/Tx event queues are started/stopped when corresponding
* Rx/Tx queue is started/stopped.
*/
return 0;
fail_mgmt_evq_start:
rte_spinlock_unlock(&sa->mgmt_evq_lock);
efx_ev_fini(sa->nic);
fail_ev_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_stop(struct sfc_adapter *sa)
{
unsigned int sw_index;
sfc_log_init(sa, "entry");
sfc_ev_mgmt_periodic_qpoll_stop(sa);
/* Make sure that all event queues are stopped */
sw_index = sa->evq_count;
while (sw_index-- > 0) {
if (sw_index == sa->mgmt_evq_index) {
/* Locks are required for the management EVQ */
rte_spinlock_lock(&sa->mgmt_evq_lock);
sfc_ev_qstop(sa, sa->mgmt_evq_index);
rte_spinlock_unlock(&sa->mgmt_evq_lock);
} else {
sfc_ev_qstop(sa, sw_index);
}
}
efx_ev_fini(sa->nic);
}
int
sfc_ev_qinit(struct sfc_adapter *sa, unsigned int sw_index,
unsigned int entries, int socket_id)
{
struct sfc_evq_info *evq_info;
struct sfc_evq *evq;
int rc;
sfc_log_init(sa, "sw_index=%u", sw_index);
evq_info = &sa->evq_info[sw_index];
SFC_ASSERT(rte_is_power_of_2(entries));
SFC_ASSERT(entries <= evq_info->max_entries);
evq_info->entries = entries;
evq = rte_zmalloc_socket("sfc-evq", sizeof(*evq), RTE_CACHE_LINE_SIZE,
socket_id);
if (evq == NULL)
return ENOMEM;
evq->sa = sa;
evq->evq_index = sw_index;
/* Allocate DMA space */
rc = sfc_dma_alloc(sa, "evq", sw_index, EFX_EVQ_SIZE(evq_info->entries),
socket_id, &evq->mem);
if (rc != 0)
return rc;
evq->init_state = SFC_EVQ_INITIALIZED;
evq_info->evq = evq;
return 0;
}
void
sfc_ev_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_evq *evq;
sfc_log_init(sa, "sw_index=%u", sw_index);
evq = sa->evq_info[sw_index].evq;
SFC_ASSERT(evq->init_state == SFC_EVQ_INITIALIZED);
sa->evq_info[sw_index].evq = NULL;
sfc_dma_free(sa, &evq->mem);
rte_free(evq);
}
static int
sfc_ev_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_evq_info *evq_info = &sa->evq_info[sw_index];
unsigned int max_entries;
sfc_log_init(sa, "sw_index=%u", sw_index);
max_entries = sfc_evq_max_entries(sa, sw_index);
SFC_ASSERT(rte_is_power_of_2(max_entries));
evq_info->max_entries = max_entries;
return 0;
}
static void
sfc_ev_qfini_info(struct sfc_adapter *sa, unsigned int sw_index)
{
sfc_log_init(sa, "sw_index=%u", sw_index);
/* Nothing to cleanup */
}
int
sfc_ev_init(struct sfc_adapter *sa)
{
int rc;
unsigned int sw_index;
sfc_log_init(sa, "entry");
sa->evq_count = sfc_ev_qcount(sa);
sa->mgmt_evq_index = 0;
rte_spinlock_init(&sa->mgmt_evq_lock);
/* Allocate EVQ info array */
rc = ENOMEM;
sa->evq_info = rte_calloc_socket("sfc-evqs", sa->evq_count,
sizeof(struct sfc_evq_info), 0,
sa->socket_id);
if (sa->evq_info == NULL)
goto fail_evqs_alloc;
for (sw_index = 0; sw_index < sa->evq_count; ++sw_index) {
rc = sfc_ev_qinit_info(sa, sw_index);
if (rc != 0)
goto fail_ev_qinit_info;
}
rc = sfc_ev_qinit(sa, sa->mgmt_evq_index, SFC_MGMT_EVQ_ENTRIES,
sa->socket_id);
if (rc != 0)
goto fail_mgmt_evq_init;
/*
* Rx/Tx event queues are created/destroyed when corresponding
* Rx/Tx queue is created/destroyed.
*/
return 0;
fail_mgmt_evq_init:
fail_ev_qinit_info:
while (sw_index-- > 0)
sfc_ev_qfini_info(sa, sw_index);
rte_free(sa->evq_info);
sa->evq_info = NULL;
fail_evqs_alloc:
sa->evq_count = 0;
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_ev_fini(struct sfc_adapter *sa)
{
int sw_index;
sfc_log_init(sa, "entry");
/* Cleanup all event queues */
sw_index = sa->evq_count;
while (--sw_index >= 0) {
if (sa->evq_info[sw_index].evq != NULL)
sfc_ev_qfini(sa, sw_index);
sfc_ev_qfini_info(sa, sw_index);
}
rte_free(sa->evq_info);
sa->evq_info = NULL;
sa->evq_count = 0;
}