numam-dpdk/lib/table/rte_table_hash_ext.c
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

1012 lines
28 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <string.h>
#include <stdio.h>
#include <rte_common.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include "rte_table_hash.h"
#define KEYS_PER_BUCKET 4
struct bucket {
union {
uintptr_t next;
uint64_t lru_list;
};
uint16_t sig[KEYS_PER_BUCKET];
uint32_t key_pos[KEYS_PER_BUCKET];
};
#define BUCKET_NEXT(bucket) \
((void *) ((bucket)->next & (~1LU)))
#define BUCKET_NEXT_VALID(bucket) \
((bucket)->next & 1LU)
#define BUCKET_NEXT_SET(bucket, bucket_next) \
do \
(bucket)->next = (((uintptr_t) ((void *) (bucket_next))) | 1LU);\
while (0)
#define BUCKET_NEXT_SET_NULL(bucket) \
do \
(bucket)->next = 0; \
while (0)
#define BUCKET_NEXT_COPY(bucket, bucket2) \
do \
(bucket)->next = (bucket2)->next; \
while (0)
#ifdef RTE_TABLE_STATS_COLLECT
#define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val) \
table->stats.n_pkts_in += val
#define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val) \
table->stats.n_pkts_lookup_miss += val
#else
#define RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(table, val)
#define RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(table, val)
#endif
struct grinder {
struct bucket *bkt;
uint64_t sig;
uint64_t match;
uint32_t key_index;
};
struct rte_table_hash {
struct rte_table_stats stats;
/* Input parameters */
uint32_t key_size;
uint32_t entry_size;
uint32_t n_keys;
uint32_t n_buckets;
uint32_t n_buckets_ext;
rte_table_hash_op_hash f_hash;
uint64_t seed;
uint32_t key_offset;
/* Internal */
uint64_t bucket_mask;
uint32_t key_size_shl;
uint32_t data_size_shl;
uint32_t key_stack_tos;
uint32_t bkt_ext_stack_tos;
/* Grinder */
struct grinder grinders[RTE_PORT_IN_BURST_SIZE_MAX];
/* Tables */
uint64_t *key_mask;
struct bucket *buckets;
struct bucket *buckets_ext;
uint8_t *key_mem;
uint8_t *data_mem;
uint32_t *key_stack;
uint32_t *bkt_ext_stack;
/* Table memory */
uint8_t memory[0] __rte_cache_aligned;
};
static int
keycmp(void *a, void *b, void *b_mask, uint32_t n_bytes)
{
uint64_t *a64 = a, *b64 = b, *b_mask64 = b_mask;
uint32_t i;
for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
if (a64[i] != (b64[i] & b_mask64[i]))
return 1;
return 0;
}
static void
keycpy(void *dst, void *src, void *src_mask, uint32_t n_bytes)
{
uint64_t *dst64 = dst, *src64 = src, *src_mask64 = src_mask;
uint32_t i;
for (i = 0; i < n_bytes / sizeof(uint64_t); i++)
dst64[i] = src64[i] & src_mask64[i];
}
static int
check_params_create(struct rte_table_hash_params *params)
{
/* name */
if (params->name == NULL) {
RTE_LOG(ERR, TABLE, "%s: name invalid value\n", __func__);
return -EINVAL;
}
/* key_size */
if ((params->key_size < sizeof(uint64_t)) ||
(!rte_is_power_of_2(params->key_size))) {
RTE_LOG(ERR, TABLE, "%s: key_size invalid value\n", __func__);
return -EINVAL;
}
/* n_keys */
if (params->n_keys == 0) {
RTE_LOG(ERR, TABLE, "%s: n_keys invalid value\n", __func__);
return -EINVAL;
}
/* n_buckets */
if ((params->n_buckets == 0) ||
(!rte_is_power_of_2(params->n_buckets))) {
RTE_LOG(ERR, TABLE, "%s: n_buckets invalid value\n", __func__);
return -EINVAL;
}
/* f_hash */
if (params->f_hash == NULL) {
RTE_LOG(ERR, TABLE, "%s: f_hash invalid value\n", __func__);
return -EINVAL;
}
return 0;
}
static void *
rte_table_hash_ext_create(void *params, int socket_id, uint32_t entry_size)
{
struct rte_table_hash_params *p = params;
struct rte_table_hash *t;
uint64_t table_meta_sz, key_mask_sz, bucket_sz, bucket_ext_sz, key_sz;
uint64_t key_stack_sz, bkt_ext_stack_sz, data_sz, total_size;
uint64_t key_mask_offset, bucket_offset, bucket_ext_offset, key_offset;
uint64_t key_stack_offset, bkt_ext_stack_offset, data_offset;
uint32_t n_buckets_ext, i;
/* Check input parameters */
if ((check_params_create(p) != 0) ||
(!rte_is_power_of_2(entry_size)) ||
((sizeof(struct rte_table_hash) % RTE_CACHE_LINE_SIZE) != 0) ||
(sizeof(struct bucket) != (RTE_CACHE_LINE_SIZE / 2)))
return NULL;
/*
* Table dimensioning
*
* Objective: Pick the number of bucket extensions (n_buckets_ext) so that
* it is guaranteed that n_keys keys can be stored in the table at any time.
*
* The worst case scenario takes place when all the n_keys keys fall into
* the same bucket. Actually, due to the KEYS_PER_BUCKET scheme, the worst
* case takes place when (n_keys - KEYS_PER_BUCKET + 1) keys fall into the
* same bucket, while the remaining (KEYS_PER_BUCKET - 1) keys each fall
* into a different bucket. This case defeats the purpose of the hash table.
* It indicates unsuitable f_hash or n_keys to n_buckets ratio.
*
* n_buckets_ext = n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1
*/
n_buckets_ext = p->n_keys / KEYS_PER_BUCKET + KEYS_PER_BUCKET - 1;
/* Memory allocation */
table_meta_sz = RTE_CACHE_LINE_ROUNDUP(sizeof(struct rte_table_hash));
key_mask_sz = RTE_CACHE_LINE_ROUNDUP(p->key_size);
bucket_sz = RTE_CACHE_LINE_ROUNDUP(p->n_buckets * sizeof(struct bucket));
bucket_ext_sz =
RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(struct bucket));
key_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * p->key_size);
key_stack_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * sizeof(uint32_t));
bkt_ext_stack_sz =
RTE_CACHE_LINE_ROUNDUP(n_buckets_ext * sizeof(uint32_t));
data_sz = RTE_CACHE_LINE_ROUNDUP(p->n_keys * entry_size);
total_size = table_meta_sz + key_mask_sz + bucket_sz + bucket_ext_sz +
key_sz + key_stack_sz + bkt_ext_stack_sz + data_sz;
if (total_size > SIZE_MAX) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes"
" for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
t = rte_zmalloc_socket(p->name,
(size_t)total_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (t == NULL) {
RTE_LOG(ERR, TABLE, "%s: Cannot allocate %" PRIu64 " bytes"
" for hash table %s\n",
__func__, total_size, p->name);
return NULL;
}
RTE_LOG(INFO, TABLE, "%s (%u-byte key): Hash table %s memory "
"footprint is %" PRIu64 " bytes\n",
__func__, p->key_size, p->name, total_size);
/* Memory initialization */
t->key_size = p->key_size;
t->entry_size = entry_size;
t->n_keys = p->n_keys;
t->n_buckets = p->n_buckets;
t->n_buckets_ext = n_buckets_ext;
t->f_hash = p->f_hash;
t->seed = p->seed;
t->key_offset = p->key_offset;
/* Internal */
t->bucket_mask = t->n_buckets - 1;
t->key_size_shl = __builtin_ctzl(p->key_size);
t->data_size_shl = __builtin_ctzl(entry_size);
/* Tables */
key_mask_offset = 0;
bucket_offset = key_mask_offset + key_mask_sz;
bucket_ext_offset = bucket_offset + bucket_sz;
key_offset = bucket_ext_offset + bucket_ext_sz;
key_stack_offset = key_offset + key_sz;
bkt_ext_stack_offset = key_stack_offset + key_stack_sz;
data_offset = bkt_ext_stack_offset + bkt_ext_stack_sz;
t->key_mask = (uint64_t *) &t->memory[key_mask_offset];
t->buckets = (struct bucket *) &t->memory[bucket_offset];
t->buckets_ext = (struct bucket *) &t->memory[bucket_ext_offset];
t->key_mem = &t->memory[key_offset];
t->key_stack = (uint32_t *) &t->memory[key_stack_offset];
t->bkt_ext_stack = (uint32_t *) &t->memory[bkt_ext_stack_offset];
t->data_mem = &t->memory[data_offset];
/* Key mask */
if (p->key_mask == NULL)
memset(t->key_mask, 0xFF, p->key_size);
else
memcpy(t->key_mask, p->key_mask, p->key_size);
/* Key stack */
for (i = 0; i < t->n_keys; i++)
t->key_stack[i] = t->n_keys - 1 - i;
t->key_stack_tos = t->n_keys;
/* Bucket ext stack */
for (i = 0; i < t->n_buckets_ext; i++)
t->bkt_ext_stack[i] = t->n_buckets_ext - 1 - i;
t->bkt_ext_stack_tos = t->n_buckets_ext;
return t;
}
static int
rte_table_hash_ext_free(void *table)
{
struct rte_table_hash *t = table;
/* Check input parameters */
if (t == NULL)
return -EINVAL;
rte_free(t);
return 0;
}
static int
rte_table_hash_ext_entry_add(void *table, void *key, void *entry,
int *key_found, void **entry_ptr)
{
struct rte_table_hash *t = table;
struct bucket *bkt0, *bkt, *bkt_prev;
uint64_t sig;
uint32_t bkt_index, i;
sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
bkt_index = sig & t->bucket_mask;
bkt0 = &t->buckets[bkt_index];
sig = (sig >> 16) | 1LLU;
/* Key is present in the bucket */
for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
uint32_t bkt_key_index = bkt->key_pos[i];
uint8_t *bkt_key =
&t->key_mem[bkt_key_index << t->key_size_shl];
if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
t->key_size) == 0)) {
uint8_t *data = &t->data_mem[bkt_key_index <<
t->data_size_shl];
memcpy(data, entry, t->entry_size);
*key_found = 1;
*entry_ptr = (void *) data;
return 0;
}
}
/* Key is not present in the bucket */
for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt,
bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
if (bkt_sig == 0) {
uint32_t bkt_key_index;
uint8_t *bkt_key, *data;
/* Allocate new key */
if (t->key_stack_tos == 0) /* No free keys */
return -ENOSPC;
bkt_key_index = t->key_stack[
--t->key_stack_tos];
/* Install new key */
bkt_key = &t->key_mem[bkt_key_index <<
t->key_size_shl];
data = &t->data_mem[bkt_key_index <<
t->data_size_shl];
bkt->sig[i] = (uint16_t) sig;
bkt->key_pos[i] = bkt_key_index;
keycpy(bkt_key, key, t->key_mask, t->key_size);
memcpy(data, entry, t->entry_size);
*key_found = 0;
*entry_ptr = (void *) data;
return 0;
}
}
/* Bucket full: extend bucket */
if ((t->bkt_ext_stack_tos > 0) && (t->key_stack_tos > 0)) {
uint32_t bkt_key_index;
uint8_t *bkt_key, *data;
/* Allocate new bucket ext */
bkt_index = t->bkt_ext_stack[--t->bkt_ext_stack_tos];
bkt = &t->buckets_ext[bkt_index];
/* Chain the new bucket ext */
BUCKET_NEXT_SET(bkt_prev, bkt);
BUCKET_NEXT_SET_NULL(bkt);
/* Allocate new key */
bkt_key_index = t->key_stack[--t->key_stack_tos];
bkt_key = &t->key_mem[bkt_key_index << t->key_size_shl];
data = &t->data_mem[bkt_key_index << t->data_size_shl];
/* Install new key into bucket */
bkt->sig[0] = (uint16_t) sig;
bkt->key_pos[0] = bkt_key_index;
keycpy(bkt_key, key, t->key_mask, t->key_size);
memcpy(data, entry, t->entry_size);
*key_found = 0;
*entry_ptr = (void *) data;
return 0;
}
return -ENOSPC;
}
static int
rte_table_hash_ext_entry_delete(void *table, void *key, int *key_found,
void *entry)
{
struct rte_table_hash *t = table;
struct bucket *bkt0, *bkt, *bkt_prev;
uint64_t sig;
uint32_t bkt_index, i;
sig = t->f_hash(key, t->key_mask, t->key_size, t->seed);
bkt_index = sig & t->bucket_mask;
bkt0 = &t->buckets[bkt_index];
sig = (sig >> 16) | 1LLU;
/* Key is present in the bucket */
for (bkt_prev = NULL, bkt = bkt0; bkt != NULL; bkt_prev = bkt,
bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
uint32_t bkt_key_index = bkt->key_pos[i];
uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
t->key_size_shl];
if ((sig == bkt_sig) && (keycmp(bkt_key, key, t->key_mask,
t->key_size) == 0)) {
uint8_t *data = &t->data_mem[bkt_key_index <<
t->data_size_shl];
/* Uninstall key from bucket */
bkt->sig[i] = 0;
*key_found = 1;
if (entry)
memcpy(entry, data, t->entry_size);
/* Free key */
t->key_stack[t->key_stack_tos++] =
bkt_key_index;
/*Check if bucket is unused */
if ((bkt_prev != NULL) &&
(bkt->sig[0] == 0) && (bkt->sig[1] == 0) &&
(bkt->sig[2] == 0) && (bkt->sig[3] == 0)) {
/* Unchain bucket */
BUCKET_NEXT_COPY(bkt_prev, bkt);
/* Clear bucket */
memset(bkt, 0, sizeof(struct bucket));
/* Free bucket back to buckets ext */
bkt_index = bkt - t->buckets_ext;
t->bkt_ext_stack[t->bkt_ext_stack_tos++]
= bkt_index;
}
return 0;
}
}
/* Key is not present in the bucket */
*key_found = 0;
return 0;
}
static int rte_table_hash_ext_lookup_unoptimized(
void *table,
struct rte_mbuf **pkts,
uint64_t pkts_mask,
uint64_t *lookup_hit_mask,
void **entries)
{
struct rte_table_hash *t = (struct rte_table_hash *) table;
uint64_t pkts_mask_out = 0;
__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
for ( ; pkts_mask; ) {
struct bucket *bkt0, *bkt;
struct rte_mbuf *pkt;
uint8_t *key;
uint64_t pkt_mask, sig;
uint32_t pkt_index, bkt_index, i;
pkt_index = __builtin_ctzll(pkts_mask);
pkt_mask = 1LLU << pkt_index;
pkts_mask &= ~pkt_mask;
pkt = pkts[pkt_index];
key = RTE_MBUF_METADATA_UINT8_PTR(pkt, t->key_offset);
sig = (uint64_t) t->f_hash(key, t->key_mask, t->key_size, t->seed);
bkt_index = sig & t->bucket_mask;
bkt0 = &t->buckets[bkt_index];
sig = (sig >> 16) | 1LLU;
/* Key is present in the bucket */
for (bkt = bkt0; bkt != NULL; bkt = BUCKET_NEXT(bkt))
for (i = 0; i < KEYS_PER_BUCKET; i++) {
uint64_t bkt_sig = (uint64_t) bkt->sig[i];
uint32_t bkt_key_index = bkt->key_pos[i];
uint8_t *bkt_key = &t->key_mem[bkt_key_index <<
t->key_size_shl];
if ((sig == bkt_sig) && (keycmp(bkt_key, key,
t->key_mask, t->key_size) == 0)) {
uint8_t *data = &t->data_mem[
bkt_key_index << t->data_size_shl];
pkts_mask_out |= pkt_mask;
entries[pkt_index] = (void *) data;
break;
}
}
}
*lookup_hit_mask = pkts_mask_out;
return 0;
}
/***
*
* mask = match bitmask
* match = at least one match
* match_many = more than one match
* match_pos = position of first match
*
*----------------------------------------
* mask match match_many match_pos
*----------------------------------------
* 0000 0 0 00
* 0001 1 0 00
* 0010 1 0 01
* 0011 1 1 00
*----------------------------------------
* 0100 1 0 10
* 0101 1 1 00
* 0110 1 1 01
* 0111 1 1 00
*----------------------------------------
* 1000 1 0 11
* 1001 1 1 00
* 1010 1 1 01
* 1011 1 1 00
*----------------------------------------
* 1100 1 1 10
* 1101 1 1 00
* 1110 1 1 01
* 1111 1 1 00
*----------------------------------------
*
* match = 1111_1111_1111_1110
* match_many = 1111_1110_1110_1000
* match_pos = 0001_0010_0001_0011__0001_0010_0001_0000
*
* match = 0xFFFELLU
* match_many = 0xFEE8LLU
* match_pos = 0x12131210LLU
*
***/
#define LUT_MATCH 0xFFFELLU
#define LUT_MATCH_MANY 0xFEE8LLU
#define LUT_MATCH_POS 0x12131210LLU
#define lookup_cmp_sig(mbuf_sig, bucket, match, match_many, match_pos) \
{ \
uint64_t bucket_sig[4], mask[4], mask_all; \
\
bucket_sig[0] = bucket->sig[0]; \
bucket_sig[1] = bucket->sig[1]; \
bucket_sig[2] = bucket->sig[2]; \
bucket_sig[3] = bucket->sig[3]; \
\
bucket_sig[0] ^= mbuf_sig; \
bucket_sig[1] ^= mbuf_sig; \
bucket_sig[2] ^= mbuf_sig; \
bucket_sig[3] ^= mbuf_sig; \
\
mask[0] = 0; \
mask[1] = 0; \
mask[2] = 0; \
mask[3] = 0; \
\
if (bucket_sig[0] == 0) \
mask[0] = 1; \
if (bucket_sig[1] == 0) \
mask[1] = 2; \
if (bucket_sig[2] == 0) \
mask[2] = 4; \
if (bucket_sig[3] == 0) \
mask[3] = 8; \
\
mask_all = (mask[0] | mask[1]) | (mask[2] | mask[3]); \
\
match = (LUT_MATCH >> mask_all) & 1; \
match_many = (LUT_MATCH_MANY >> mask_all) & 1; \
match_pos = (LUT_MATCH_POS >> (mask_all << 1)) & 3; \
}
#define lookup_cmp_key(mbuf, key, match_key, f) \
{ \
uint64_t *pkt_key = RTE_MBUF_METADATA_UINT64_PTR(mbuf, f->key_offset);\
uint64_t *bkt_key = (uint64_t *) key; \
uint64_t *key_mask = f->key_mask; \
\
switch (f->key_size) { \
case 8: \
{ \
uint64_t xor = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
match_key = 0; \
if (xor == 0) \
match_key = 1; \
} \
break; \
\
case 16: \
{ \
uint64_t xor[2], or; \
\
xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
or = xor[0] | xor[1]; \
match_key = 0; \
if (or == 0) \
match_key = 1; \
} \
break; \
\
case 32: \
{ \
uint64_t xor[4], or; \
\
xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \
xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \
or = xor[0] | xor[1] | xor[2] | xor[3]; \
match_key = 0; \
if (or == 0) \
match_key = 1; \
} \
break; \
\
case 64: \
{ \
uint64_t xor[8], or; \
\
xor[0] = (pkt_key[0] & key_mask[0]) ^ bkt_key[0]; \
xor[1] = (pkt_key[1] & key_mask[1]) ^ bkt_key[1]; \
xor[2] = (pkt_key[2] & key_mask[2]) ^ bkt_key[2]; \
xor[3] = (pkt_key[3] & key_mask[3]) ^ bkt_key[3]; \
xor[4] = (pkt_key[4] & key_mask[4]) ^ bkt_key[4]; \
xor[5] = (pkt_key[5] & key_mask[5]) ^ bkt_key[5]; \
xor[6] = (pkt_key[6] & key_mask[6]) ^ bkt_key[6]; \
xor[7] = (pkt_key[7] & key_mask[7]) ^ bkt_key[7]; \
or = xor[0] | xor[1] | xor[2] | xor[3] | \
xor[4] | xor[5] | xor[6] | xor[7]; \
match_key = 0; \
if (or == 0) \
match_key = 1; \
} \
break; \
\
default: \
match_key = 0; \
if (keycmp(bkt_key, pkt_key, key_mask, f->key_size) == 0) \
match_key = 1; \
} \
}
#define lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index) \
{ \
uint64_t pkt00_mask, pkt01_mask; \
struct rte_mbuf *mbuf00, *mbuf01; \
uint32_t key_offset = t->key_offset; \
\
pkt00_index = __builtin_ctzll(pkts_mask); \
pkt00_mask = 1LLU << pkt00_index; \
pkts_mask &= ~pkt00_mask; \
mbuf00 = pkts[pkt00_index]; \
\
pkt01_index = __builtin_ctzll(pkts_mask); \
pkt01_mask = 1LLU << pkt01_index; \
pkts_mask &= ~pkt01_mask; \
mbuf01 = pkts[pkt01_index]; \
\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}
#define lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask, pkt00_index, \
pkt01_index) \
{ \
uint64_t pkt00_mask, pkt01_mask; \
struct rte_mbuf *mbuf00, *mbuf01; \
uint32_t key_offset = t->key_offset; \
\
pkt00_index = __builtin_ctzll(pkts_mask); \
pkt00_mask = 1LLU << pkt00_index; \
pkts_mask &= ~pkt00_mask; \
mbuf00 = pkts[pkt00_index]; \
\
pkt01_index = __builtin_ctzll(pkts_mask); \
if (pkts_mask == 0) \
pkt01_index = pkt00_index; \
pkt01_mask = 1LLU << pkt01_index; \
pkts_mask &= ~pkt01_mask; \
mbuf01 = pkts[pkt01_index]; \
\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf00, key_offset));\
rte_prefetch0(RTE_MBUF_METADATA_UINT8_PTR(mbuf01, key_offset));\
}
#define lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index) \
{ \
struct grinder *g10, *g11; \
uint64_t sig10, sig11, bkt10_index, bkt11_index; \
struct rte_mbuf *mbuf10, *mbuf11; \
struct bucket *bkt10, *bkt11, *buckets = t->buckets; \
uint8_t *key10, *key11; \
uint64_t bucket_mask = t->bucket_mask; \
rte_table_hash_op_hash f_hash = t->f_hash; \
uint64_t seed = t->seed; \
uint32_t key_size = t->key_size; \
uint32_t key_offset = t->key_offset; \
\
mbuf10 = pkts[pkt10_index]; \
key10 = RTE_MBUF_METADATA_UINT8_PTR(mbuf10, key_offset); \
sig10 = (uint64_t) f_hash(key10, t->key_mask, key_size, seed); \
bkt10_index = sig10 & bucket_mask; \
bkt10 = &buckets[bkt10_index]; \
\
mbuf11 = pkts[pkt11_index]; \
key11 = RTE_MBUF_METADATA_UINT8_PTR(mbuf11, key_offset); \
sig11 = (uint64_t) f_hash(key11, t->key_mask, key_size, seed); \
bkt11_index = sig11 & bucket_mask; \
bkt11 = &buckets[bkt11_index]; \
\
rte_prefetch0(bkt10); \
rte_prefetch0(bkt11); \
\
g10 = &g[pkt10_index]; \
g10->sig = sig10; \
g10->bkt = bkt10; \
\
g11 = &g[pkt11_index]; \
g11->sig = sig11; \
g11->bkt = bkt11; \
}
#define lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many)\
{ \
struct grinder *g20, *g21; \
uint64_t sig20, sig21; \
struct bucket *bkt20, *bkt21; \
uint8_t *key20, *key21, *key_mem = t->key_mem; \
uint64_t match20, match21, match_many20, match_many21; \
uint64_t match_pos20, match_pos21; \
uint32_t key20_index, key21_index, key_size_shl = t->key_size_shl;\
\
g20 = &g[pkt20_index]; \
sig20 = g20->sig; \
bkt20 = g20->bkt; \
sig20 = (sig20 >> 16) | 1LLU; \
lookup_cmp_sig(sig20, bkt20, match20, match_many20, match_pos20);\
match20 <<= pkt20_index; \
match_many20 |= BUCKET_NEXT_VALID(bkt20); \
match_many20 <<= pkt20_index; \
key20_index = bkt20->key_pos[match_pos20]; \
key20 = &key_mem[key20_index << key_size_shl]; \
\
g21 = &g[pkt21_index]; \
sig21 = g21->sig; \
bkt21 = g21->bkt; \
sig21 = (sig21 >> 16) | 1LLU; \
lookup_cmp_sig(sig21, bkt21, match21, match_many21, match_pos21);\
match21 <<= pkt21_index; \
match_many21 |= BUCKET_NEXT_VALID(bkt21); \
match_many21 <<= pkt21_index; \
key21_index = bkt21->key_pos[match_pos21]; \
key21 = &key_mem[key21_index << key_size_shl]; \
\
rte_prefetch0(key20); \
rte_prefetch0(key21); \
\
pkts_mask_match_many |= match_many20 | match_many21; \
\
g20->match = match20; \
g20->key_index = key20_index; \
\
g21->match = match21; \
g21->key_index = key21_index; \
}
#define lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out, \
entries) \
{ \
struct grinder *g30, *g31; \
struct rte_mbuf *mbuf30, *mbuf31; \
uint8_t *key30, *key31, *key_mem = t->key_mem; \
uint8_t *data30, *data31, *data_mem = t->data_mem; \
uint64_t match30, match31, match_key30, match_key31, match_keys;\
uint32_t key30_index, key31_index; \
uint32_t key_size_shl = t->key_size_shl; \
uint32_t data_size_shl = t->data_size_shl; \
\
mbuf30 = pkts[pkt30_index]; \
g30 = &g[pkt30_index]; \
match30 = g30->match; \
key30_index = g30->key_index; \
key30 = &key_mem[key30_index << key_size_shl]; \
lookup_cmp_key(mbuf30, key30, match_key30, t); \
match_key30 <<= pkt30_index; \
match_key30 &= match30; \
data30 = &data_mem[key30_index << data_size_shl]; \
entries[pkt30_index] = data30; \
\
mbuf31 = pkts[pkt31_index]; \
g31 = &g[pkt31_index]; \
match31 = g31->match; \
key31_index = g31->key_index; \
key31 = &key_mem[key31_index << key_size_shl]; \
lookup_cmp_key(mbuf31, key31, match_key31, t); \
match_key31 <<= pkt31_index; \
match_key31 &= match31; \
data31 = &data_mem[key31_index << data_size_shl]; \
entries[pkt31_index] = data31; \
\
rte_prefetch0(data30); \
rte_prefetch0(data31); \
\
match_keys = match_key30 | match_key31; \
pkts_mask_out |= match_keys; \
}
/***
* The lookup function implements a 4-stage pipeline, with each stage processing
* two different packets. The purpose of pipelined implementation is to hide the
* latency of prefetching the data structures and loosen the data dependency
* between instructions.
*
* p00 _______ p10 _______ p20 _______ p30 _______
*----->| |----->| |----->| |----->| |----->
* | 0 | | 1 | | 2 | | 3 |
*----->|_______|----->|_______|----->|_______|----->|_______|----->
* p01 p11 p21 p31
*
* The naming convention is:
* pXY = packet Y of stage X, X = 0 .. 3, Y = 0 .. 1
*
***/
static int rte_table_hash_ext_lookup(
void *table,
struct rte_mbuf **pkts,
uint64_t pkts_mask,
uint64_t *lookup_hit_mask,
void **entries)
{
struct rte_table_hash *t = (struct rte_table_hash *) table;
struct grinder *g = t->grinders;
uint64_t pkt00_index, pkt01_index, pkt10_index, pkt11_index;
uint64_t pkt20_index, pkt21_index, pkt30_index, pkt31_index;
uint64_t pkts_mask_out = 0, pkts_mask_match_many = 0;
int status = 0;
__rte_unused uint32_t n_pkts_in = __builtin_popcountll(pkts_mask);
RTE_TABLE_HASH_EXT_STATS_PKTS_IN_ADD(t, n_pkts_in);
/* Cannot run the pipeline with less than 7 packets */
if (__builtin_popcountll(pkts_mask) < 7) {
status = rte_table_hash_ext_lookup_unoptimized(table, pkts,
pkts_mask, lookup_hit_mask, entries);
RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in -
__builtin_popcountll(*lookup_hit_mask));
return status;
}
/* Pipeline stage 0 */
lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
/* Pipeline feed */
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline feed */
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0(t, g, pkts, pkts_mask, pkt00_index, pkt01_index);
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
/*
* Pipeline run
*
*/
for ( ; pkts_mask; ) {
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 0 */
lookup2_stage0_with_odd_support(t, g, pkts, pkts_mask,
pkt00_index, pkt01_index);
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index,
pkts_mask_match_many);
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index,
pkts_mask_out, entries);
}
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
pkt10_index = pkt00_index;
pkt11_index = pkt01_index;
/* Pipeline stage 1 */
lookup2_stage1(t, g, pkts, pkt10_index, pkt11_index);
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
entries);
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
pkt20_index = pkt10_index;
pkt21_index = pkt11_index;
/* Pipeline stage 2 */
lookup2_stage2(t, g, pkt20_index, pkt21_index, pkts_mask_match_many);
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
entries);
/* Pipeline feed */
pkt30_index = pkt20_index;
pkt31_index = pkt21_index;
/* Pipeline stage 3 */
lookup2_stage3(t, g, pkts, pkt30_index, pkt31_index, pkts_mask_out,
entries);
/* Slow path */
pkts_mask_match_many &= ~pkts_mask_out;
if (pkts_mask_match_many) {
uint64_t pkts_mask_out_slow = 0;
status = rte_table_hash_ext_lookup_unoptimized(table, pkts,
pkts_mask_match_many, &pkts_mask_out_slow, entries);
pkts_mask_out |= pkts_mask_out_slow;
}
*lookup_hit_mask = pkts_mask_out;
RTE_TABLE_HASH_EXT_STATS_PKTS_LOOKUP_MISS(t, n_pkts_in - __builtin_popcountll(pkts_mask_out));
return status;
}
static int
rte_table_hash_ext_stats_read(void *table, struct rte_table_stats *stats, int clear)
{
struct rte_table_hash *t = table;
if (stats != NULL)
memcpy(stats, &t->stats, sizeof(t->stats));
if (clear)
memset(&t->stats, 0, sizeof(t->stats));
return 0;
}
struct rte_table_ops rte_table_hash_ext_ops = {
.f_create = rte_table_hash_ext_create,
.f_free = rte_table_hash_ext_free,
.f_add = rte_table_hash_ext_entry_add,
.f_delete = rte_table_hash_ext_entry_delete,
.f_add_bulk = NULL,
.f_delete_bulk = NULL,
.f_lookup = rte_table_hash_ext_lookup,
.f_stats = rte_table_hash_ext_stats_read,
};