fdf20fa7be
CACHE_LINE_SIZE is a macro defined in machine/param.h in FreeBSD and conflicts with DPDK macro version. Adding RTE_ prefix to avoid conflicts. CACHE_LINE_MASK and CACHE_LINE_ROUNDUP are also prefixed. Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com> [Thomas: updated on HEAD, including PPC]
322 lines
9.7 KiB
C
322 lines
9.7 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_common.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "malloc_elem.h"
|
|
#include "malloc_heap.h"
|
|
|
|
#define MIN_DATA_SIZE (RTE_CACHE_LINE_SIZE)
|
|
|
|
/*
|
|
* initialise a general malloc_elem header structure
|
|
*/
|
|
void
|
|
malloc_elem_init(struct malloc_elem *elem,
|
|
struct malloc_heap *heap, const struct rte_memzone *mz, size_t size)
|
|
{
|
|
elem->heap = heap;
|
|
elem->mz = mz;
|
|
elem->prev = NULL;
|
|
memset(&elem->free_list, 0, sizeof(elem->free_list));
|
|
elem->state = ELEM_FREE;
|
|
elem->size = size;
|
|
elem->pad = 0;
|
|
set_header(elem);
|
|
set_trailer(elem);
|
|
}
|
|
|
|
/*
|
|
* initialise a dummy malloc_elem header for the end-of-memzone marker
|
|
*/
|
|
void
|
|
malloc_elem_mkend(struct malloc_elem *elem, struct malloc_elem *prev)
|
|
{
|
|
malloc_elem_init(elem, prev->heap, prev->mz, 0);
|
|
elem->prev = prev;
|
|
elem->state = ELEM_BUSY; /* mark busy so its never merged */
|
|
}
|
|
|
|
/*
|
|
* calculate the starting point of where data of the requested size
|
|
* and alignment would fit in the current element. If the data doesn't
|
|
* fit, return NULL.
|
|
*/
|
|
static void *
|
|
elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align)
|
|
{
|
|
const uintptr_t end_pt = (uintptr_t)elem +
|
|
elem->size - MALLOC_ELEM_TRAILER_LEN;
|
|
const uintptr_t new_data_start = rte_align_floor_int((end_pt - size),align);
|
|
const uintptr_t new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN;
|
|
|
|
/* if the new start point is before the exist start, it won't fit */
|
|
return (new_elem_start < (uintptr_t)elem) ? NULL : (void *)new_elem_start;
|
|
}
|
|
|
|
/*
|
|
* use elem_start_pt to determine if we get meet the size and
|
|
* alignment request from the current element
|
|
*/
|
|
int
|
|
malloc_elem_can_hold(struct malloc_elem *elem, size_t size, unsigned align)
|
|
{
|
|
return elem_start_pt(elem, size, align) != NULL;
|
|
}
|
|
|
|
/*
|
|
* split an existing element into two smaller elements at the given
|
|
* split_pt parameter.
|
|
*/
|
|
static void
|
|
split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt)
|
|
{
|
|
struct malloc_elem *next_elem = RTE_PTR_ADD(elem, elem->size);
|
|
const unsigned old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem;
|
|
const unsigned new_elem_size = elem->size - old_elem_size;
|
|
|
|
malloc_elem_init(split_pt, elem->heap, elem->mz, new_elem_size);
|
|
split_pt->prev = elem;
|
|
next_elem->prev = split_pt;
|
|
elem->size = old_elem_size;
|
|
set_trailer(elem);
|
|
}
|
|
|
|
/*
|
|
* Given an element size, compute its freelist index.
|
|
* We free an element into the freelist containing similarly-sized elements.
|
|
* We try to allocate elements starting with the freelist containing
|
|
* similarly-sized elements, and if necessary, we search freelists
|
|
* containing larger elements.
|
|
*
|
|
* Example element size ranges for a heap with five free lists:
|
|
* heap->free_head[0] - (0 , 2^8]
|
|
* heap->free_head[1] - (2^8 , 2^10]
|
|
* heap->free_head[2] - (2^10 ,2^12]
|
|
* heap->free_head[3] - (2^12, 2^14]
|
|
* heap->free_head[4] - (2^14, MAX_SIZE]
|
|
*/
|
|
size_t
|
|
malloc_elem_free_list_index(size_t size)
|
|
{
|
|
#define MALLOC_MINSIZE_LOG2 8
|
|
#define MALLOC_LOG2_INCREMENT 2
|
|
|
|
size_t log2;
|
|
size_t index;
|
|
|
|
if (size <= (1UL << MALLOC_MINSIZE_LOG2))
|
|
return 0;
|
|
|
|
/* Find next power of 2 >= size. */
|
|
log2 = sizeof(size) * 8 - __builtin_clzl(size-1);
|
|
|
|
/* Compute freelist index, based on log2(size). */
|
|
index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) /
|
|
MALLOC_LOG2_INCREMENT;
|
|
|
|
return (index <= RTE_HEAP_NUM_FREELISTS-1?
|
|
index: RTE_HEAP_NUM_FREELISTS-1);
|
|
}
|
|
|
|
/*
|
|
* Add the specified element to its heap's free list.
|
|
*/
|
|
void
|
|
malloc_elem_free_list_insert(struct malloc_elem *elem)
|
|
{
|
|
size_t idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN);
|
|
|
|
elem->state = ELEM_FREE;
|
|
LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list);
|
|
}
|
|
|
|
/*
|
|
* Remove the specified element from its heap's free list.
|
|
*/
|
|
static void
|
|
elem_free_list_remove(struct malloc_elem *elem)
|
|
{
|
|
LIST_REMOVE(elem, free_list);
|
|
}
|
|
|
|
/*
|
|
* reserve a block of data in an existing malloc_elem. If the malloc_elem
|
|
* is much larger than the data block requested, we split the element in two.
|
|
* This function is only called from malloc_heap_alloc so parameter checking
|
|
* is not done here, as it's done there previously.
|
|
*/
|
|
struct malloc_elem *
|
|
malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align)
|
|
{
|
|
struct malloc_elem *new_elem = elem_start_pt(elem, size, align);
|
|
const unsigned old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem;
|
|
|
|
if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE){
|
|
/* don't split it, pad the element instead */
|
|
elem->state = ELEM_BUSY;
|
|
elem->pad = old_elem_size;
|
|
|
|
/* put a dummy header in padding, to point to real element header */
|
|
if (elem->pad > 0){ /* pad will be at least 64-bytes, as everything
|
|
* is cache-line aligned */
|
|
new_elem->pad = elem->pad;
|
|
new_elem->state = ELEM_PAD;
|
|
new_elem->size = elem->size - elem->pad;
|
|
set_header(new_elem);
|
|
}
|
|
/* remove element from free list */
|
|
elem_free_list_remove(elem);
|
|
|
|
return new_elem;
|
|
}
|
|
|
|
/* we are going to split the element in two. The original element
|
|
* remains free, and the new element is the one allocated.
|
|
* Re-insert original element, in case its new size makes it
|
|
* belong on a different list.
|
|
*/
|
|
elem_free_list_remove(elem);
|
|
split_elem(elem, new_elem);
|
|
new_elem->state = ELEM_BUSY;
|
|
malloc_elem_free_list_insert(elem);
|
|
|
|
return new_elem;
|
|
}
|
|
|
|
/*
|
|
* joing two struct malloc_elem together. elem1 and elem2 must
|
|
* be contiguous in memory.
|
|
*/
|
|
static inline void
|
|
join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2)
|
|
{
|
|
struct malloc_elem *next = RTE_PTR_ADD(elem2, elem2->size);
|
|
elem1->size += elem2->size;
|
|
next->prev = elem1;
|
|
}
|
|
|
|
/*
|
|
* free a malloc_elem block by adding it to the free list. If the
|
|
* blocks either immediately before or immediately after newly freed block
|
|
* are also free, the blocks are merged together.
|
|
*/
|
|
int
|
|
malloc_elem_free(struct malloc_elem *elem)
|
|
{
|
|
if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
|
|
return -1;
|
|
|
|
rte_spinlock_lock(&(elem->heap->lock));
|
|
struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size);
|
|
if (next->state == ELEM_FREE){
|
|
/* remove from free list, join to this one */
|
|
elem_free_list_remove(next);
|
|
join_elem(elem, next);
|
|
}
|
|
|
|
/* check if previous element is free, if so join with it and return,
|
|
* need to re-insert in free list, as that element's size is changing
|
|
*/
|
|
if (elem->prev != NULL && elem->prev->state == ELEM_FREE) {
|
|
elem_free_list_remove(elem->prev);
|
|
join_elem(elem->prev, elem);
|
|
malloc_elem_free_list_insert(elem->prev);
|
|
}
|
|
/* otherwise add ourselves to the free list */
|
|
else {
|
|
malloc_elem_free_list_insert(elem);
|
|
elem->pad = 0;
|
|
}
|
|
/* decrease heap's count of allocated elements */
|
|
elem->heap->alloc_count--;
|
|
rte_spinlock_unlock(&(elem->heap->lock));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* attempt to resize a malloc_elem by expanding into any free space
|
|
* immediately after it in memory.
|
|
*/
|
|
int
|
|
malloc_elem_resize(struct malloc_elem *elem, size_t size)
|
|
{
|
|
const size_t new_size = size + MALLOC_ELEM_OVERHEAD;
|
|
/* if we request a smaller size, then always return ok */
|
|
const size_t current_size = elem->size - elem->pad;
|
|
if (current_size >= new_size)
|
|
return 0;
|
|
|
|
struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size);
|
|
rte_spinlock_lock(&elem->heap->lock);
|
|
if (next ->state != ELEM_FREE)
|
|
goto err_return;
|
|
if (current_size + next->size < new_size)
|
|
goto err_return;
|
|
|
|
/* we now know the element fits, so remove from free list,
|
|
* join the two
|
|
*/
|
|
elem_free_list_remove(next);
|
|
join_elem(elem, next);
|
|
|
|
if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD){
|
|
/* now we have a big block together. Lets cut it down a bit, by splitting */
|
|
struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size);
|
|
split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE);
|
|
split_elem(elem, split_pt);
|
|
malloc_elem_free_list_insert(split_pt);
|
|
}
|
|
rte_spinlock_unlock(&elem->heap->lock);
|
|
return 0;
|
|
|
|
err_return:
|
|
rte_spinlock_unlock(&elem->heap->lock);
|
|
return -1;
|
|
}
|