Min Hu (Connor) 6705a69cee net/e1000: fix flow error message object
This patch fixes parameter misuse when set rte flow action error.

Fixes: c0688ef1eded ("net/igb: parse flow API n-tuple filter")
Cc: stable@dpdk.org

Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
2021-04-28 03:29:06 +02:00

1923 lines
52 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include "e1000_logs.h"
#include "base/e1000_api.h"
#include "e1000_ethdev.h"
#define NEXT_ITEM_OF_PATTERN(item, pattern, index) \
do { \
item = (pattern) + (index); \
while (item->type == RTE_FLOW_ITEM_TYPE_VOID) { \
(index)++; \
item = (pattern) + (index); \
} \
} while (0)
#define NEXT_ITEM_OF_ACTION(act, actions, index) \
do { \
act = (actions) + (index); \
while (act->type == RTE_FLOW_ACTION_TYPE_VOID) {\
(index)++; \
act = (actions) + (index); \
} \
} while (0)
#define IGB_FLEX_RAW_NUM 12
struct igb_flow_mem_list igb_flow_list;
struct igb_ntuple_filter_list igb_filter_ntuple_list;
struct igb_ethertype_filter_list igb_filter_ethertype_list;
struct igb_syn_filter_list igb_filter_syn_list;
struct igb_flex_filter_list igb_filter_flex_list;
struct igb_rss_filter_list igb_filter_rss_list;
/**
* Please aware there's an asumption for all the parsers.
* rte_flow_item is using big endian, rte_flow_attr and
* rte_flow_action are using CPU order.
* Because the pattern is used to describe the packets,
* normally the packets should use network order.
*/
/**
* Parse the rule to see if it is a n-tuple rule.
* And get the n-tuple filter info BTW.
* pattern:
* The first not void item can be ETH or IPV4.
* The second not void item must be IPV4 if the first one is ETH.
* The third not void item must be UDP or TCP or SCTP
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4 src_addr 192.168.1.20 0xFFFFFFFF
* dst_addr 192.167.3.50 0xFFFFFFFF
* next_proto_id 17 0xFF
* UDP/TCP/ src_port 80 0xFFFF
* SCTP dst_port 80 0xFFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_ntuple_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ntuple_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_ipv4 *ipv4_spec;
const struct rte_flow_item_ipv4 *ipv4_mask;
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
const struct rte_flow_item_udp *udp_spec;
const struct rte_flow_item_udp *udp_mask;
const struct rte_flow_item_sctp *sctp_spec;
const struct rte_flow_item_sctp *sctp_mask;
uint32_t index;
if (!pattern) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/* parse pattern */
index = 0;
/* the first not void item can be MAC or IPv4 */
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* Skip Ethernet */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* if the first item is MAC, the content should be NULL */
if (item->spec || item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* check if the next not void item is IPv4 */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
}
/* get the IPv4 info */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ntuple mask");
return -rte_errno;
}
/* Not supported last point for range */
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
ipv4_mask = item->mask;
/**
* Only support src & dst addresses, protocol,
* others should be masked.
*/
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_ip_mask = ipv4_mask->hdr.dst_addr;
filter->src_ip_mask = ipv4_mask->hdr.src_addr;
filter->proto_mask = ipv4_mask->hdr.next_proto_id;
ipv4_spec = item->spec;
filter->dst_ip = ipv4_spec->hdr.dst_addr;
filter->src_ip = ipv4_spec->hdr.src_addr;
filter->proto = ipv4_spec->hdr.next_proto_id;
/* check if the next not void item is TCP or UDP or SCTP */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_SCTP) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* Not supported last point for range */
if (item->last) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* get the TCP/UDP/SCTP info */
if (item->type == RTE_FLOW_ITEM_TYPE_TCP) {
if (item->spec && item->mask) {
tcp_mask = item->mask;
/**
* Only support src & dst ports, tcp flags,
* others should be masked.
*/
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_port_mask = tcp_mask->hdr.dst_port;
filter->src_port_mask = tcp_mask->hdr.src_port;
if (tcp_mask->hdr.tcp_flags == 0xFF) {
filter->flags |= RTE_NTUPLE_FLAGS_TCP_FLAG;
} else if (!tcp_mask->hdr.tcp_flags) {
filter->flags &= ~RTE_NTUPLE_FLAGS_TCP_FLAG;
} else {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
tcp_spec = item->spec;
filter->dst_port = tcp_spec->hdr.dst_port;
filter->src_port = tcp_spec->hdr.src_port;
filter->tcp_flags = tcp_spec->hdr.tcp_flags;
}
} else if (item->type == RTE_FLOW_ITEM_TYPE_UDP) {
if (item->spec && item->mask) {
udp_mask = item->mask;
/**
* Only support src & dst ports,
* others should be masked.
*/
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_port_mask = udp_mask->hdr.dst_port;
filter->src_port_mask = udp_mask->hdr.src_port;
udp_spec = item->spec;
filter->dst_port = udp_spec->hdr.dst_port;
filter->src_port = udp_spec->hdr.src_port;
}
} else {
if (item->spec && item->mask) {
sctp_mask = item->mask;
/**
* Only support src & dst ports,
* others should be masked.
*/
if (sctp_mask->hdr.tag ||
sctp_mask->hdr.cksum) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
filter->dst_port_mask = sctp_mask->hdr.dst_port;
filter->src_port_mask = sctp_mask->hdr.src_port;
sctp_spec = (const struct rte_flow_item_sctp *)
item->spec;
filter->dst_port = sctp_spec->hdr.dst_port;
filter->src_port = sctp_spec->hdr.src_port;
}
}
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -rte_errno;
}
/* parse action */
index = 0;
/**
* n-tuple only supports forwarding,
* check if the first not void action is QUEUE.
*/
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
filter->queue =
((const struct rte_flow_action_queue *)act->conf)->index;
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
if (attr->priority > 0xFFFF) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Error priority.");
return -rte_errno;
}
filter->priority = (uint16_t)attr->priority;
return 0;
}
/* a specific function for igb because the flags is specific */
static int
igb_parse_ntuple_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ntuple_filter *filter,
struct rte_flow_error *error)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP(hw->mac.type);
ret = cons_parse_ntuple_filter(attr, pattern, actions, filter, error);
if (ret)
return ret;
/* Igb doesn't support many priorities. */
if (filter->priority > E1000_2TUPLE_MAX_PRI) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Priority not supported by ntuple filter");
return -rte_errno;
}
if (hw->mac.type == e1000_82576) {
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not "
"supported by ntuple filter");
return -rte_errno;
}
filter->flags |= RTE_5TUPLE_FLAGS;
} else {
if (filter->src_ip_mask || filter->dst_ip_mask ||
filter->src_port_mask) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "only two tuple are "
"supported by this filter");
return -rte_errno;
}
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not "
"supported by ntuple filter");
return -rte_errno;
}
filter->flags |= RTE_2TUPLE_FLAGS;
}
return 0;
}
/**
* Parse the rule to see if it is a ethertype rule.
* And get the ethertype filter info BTW.
* pattern:
* The first not void item can be ETH.
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH type 0x0807 0xFFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_ethertype_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions,
struct rte_eth_ethertype_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_eth *eth_spec;
const struct rte_flow_item_eth *eth_mask;
const struct rte_flow_action_queue *act_q;
uint32_t index;
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/* Parse pattern */
index = 0;
/* The first non-void item should be MAC. */
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ethertype filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Get the MAC info. */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ethertype filter");
return -rte_errno;
}
eth_spec = item->spec;
eth_mask = item->mask;
/* Mask bits of source MAC address must be full of 0.
* Mask bits of destination MAC address must be full
* of 1 or full of 0.
*/
if (!rte_is_zero_ether_addr(&eth_mask->src) ||
(!rte_is_zero_ether_addr(&eth_mask->dst) &&
!rte_is_broadcast_ether_addr(&eth_mask->dst))) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ether address mask");
return -rte_errno;
}
if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ethertype mask");
return -rte_errno;
}
/* If mask bits of destination MAC address
* are full of 1, set RTE_ETHTYPE_FLAGS_MAC.
*/
if (rte_is_broadcast_ether_addr(&eth_mask->dst)) {
filter->mac_addr = eth_spec->dst;
filter->flags |= RTE_ETHTYPE_FLAGS_MAC;
} else {
filter->flags &= ~RTE_ETHTYPE_FLAGS_MAC;
}
filter->ether_type = rte_be_to_cpu_16(eth_spec->type);
/* Check if the next non-void item is END. */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ethertype filter.");
return -rte_errno;
}
/* Parse action */
index = 0;
/* Check if the first non-void action is QUEUE or DROP. */
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE &&
act->type != RTE_FLOW_ACTION_TYPE_DROP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
if (act->type == RTE_FLOW_ACTION_TYPE_QUEUE) {
act_q = (const struct rte_flow_action_queue *)act->conf;
filter->queue = act_q->index;
} else {
filter->flags |= RTE_ETHTYPE_FLAGS_DROP;
}
/* Check if the next non-void item is END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* Parse attr */
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* Not supported */
if (attr->transfer) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
/* Not supported */
if (attr->group) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "Not support group.");
return -rte_errno;
}
return 0;
}
static int
igb_parse_ethertype_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ethertype_filter *filter,
struct rte_flow_error *error)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP(hw->mac.type);
ret = cons_parse_ethertype_filter(attr, pattern,
actions, filter, error);
if (ret)
return ret;
if (hw->mac.type == e1000_82576) {
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) {
memset(filter, 0, sizeof(
struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not supported "
"by ethertype filter");
return -rte_errno;
}
} else {
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) {
memset(filter, 0, sizeof(
struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not supported "
"by ethertype filter");
return -rte_errno;
}
}
if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
filter->ether_type == RTE_ETHER_TYPE_IPV6) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "IPv4/IPv6 not supported by ethertype filter");
return -rte_errno;
}
if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "mac compare is unsupported");
return -rte_errno;
}
if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
memset(filter, 0, sizeof(struct rte_eth_ethertype_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "drop option is unsupported");
return -rte_errno;
}
return 0;
}
/**
* Parse the rule to see if it is a TCP SYN rule.
* And get the TCP SYN filter info BTW.
* pattern:
* The first not void item must be ETH.
* The second not void item must be IPV4 or IPV6.
* The third not void item must be TCP.
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4/IPV6 NULL NULL
* TCP tcp_flags 0x02 0xFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_syn_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_syn_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
const struct rte_flow_action_queue *act_q;
uint32_t index;
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/* parse pattern */
index = 0;
/* the first not void item should be MAC or IPv4 or IPv6 or TCP */
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6 &&
item->type != RTE_FLOW_ITEM_TYPE_TCP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
/* Skip Ethernet */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
/* if the item is MAC, the content should be NULL */
if (item->spec || item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SYN address mask");
return -rte_errno;
}
/* check if the next not void item is IPv4 or IPv6 */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4 &&
item->type != RTE_FLOW_ITEM_TYPE_IPV6) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
}
/* Skip IP */
if (item->type == RTE_FLOW_ITEM_TYPE_IPV4 ||
item->type == RTE_FLOW_ITEM_TYPE_IPV6) {
/* if the item is IP, the content should be NULL */
if (item->spec || item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SYN mask");
return -rte_errno;
}
/* check if the next not void item is TCP */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
}
/* Get the TCP info. Only support SYN. */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SYN mask");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
tcp_spec = item->spec;
tcp_mask = item->mask;
if (!(tcp_spec->hdr.tcp_flags & RTE_TCP_SYN_FLAG) ||
tcp_mask->hdr.src_port ||
tcp_mask->hdr.dst_port ||
tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags != RTE_TCP_SYN_FLAG ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by syn filter");
return -rte_errno;
}
/* parse action */
index = 0;
/* check if the first not void action is QUEUE. */
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
act_q = (const struct rte_flow_action_queue *)act->conf;
filter->queue = act_q->index;
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
/* Support 2 priorities, the lowest or highest. */
if (!attr->priority) {
filter->hig_pri = 0;
} else if (attr->priority == (uint32_t)~0U) {
filter->hig_pri = 1;
} else {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
return 0;
}
static int
igb_parse_syn_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_syn_filter *filter,
struct rte_flow_error *error)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP(hw->mac.type);
ret = cons_parse_syn_filter(attr, pattern,
actions, filter, error);
if (hw->mac.type == e1000_82576) {
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not "
"supported by syn filter");
return -rte_errno;
}
} else {
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) {
memset(filter, 0, sizeof(struct rte_eth_syn_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not "
"supported by syn filter");
return -rte_errno;
}
}
if (ret)
return ret;
return 0;
}
/**
* Parse the rule to see if it is a flex byte rule.
* And get the flex byte filter info BTW.
* pattern:
* The first not void item must be RAW.
* The second not void item can be RAW or END.
* The third not void item can be RAW or END.
* The last not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* RAW relative 0 0x1
* offset 0 0xFFFFFFFF
* pattern {0x08, 0x06} {0xFF, 0xFF}
* RAW relative 1 0x1
* offset 100 0xFFFFFFFF
* pattern {0x11, 0x22, 0x33} {0xFF, 0xFF, 0xFF}
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
cons_parse_flex_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct igb_flex_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_raw *raw_spec;
const struct rte_flow_item_raw *raw_mask;
const struct rte_flow_action_queue *act_q;
uint32_t index, i, offset, total_offset;
uint32_t max_offset = 0;
int32_t shift, j, raw_index = 0;
int32_t relative[IGB_FLEX_RAW_NUM] = {0};
int32_t raw_offset[IGB_FLEX_RAW_NUM] = {0};
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
/* parse pattern */
index = 0;
item_loop:
/* the first not void item should be RAW */
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_RAW) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by flex filter");
return -rte_errno;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -rte_errno;
}
raw_spec = item->spec;
raw_mask = item->mask;
if (!raw_mask->length ||
!raw_mask->relative) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by flex filter");
return -rte_errno;
}
if (raw_mask->offset)
offset = raw_spec->offset;
else
offset = 0;
for (j = 0; j < raw_spec->length; j++) {
if (raw_mask->pattern[j] != 0xFF) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by flex filter");
return -rte_errno;
}
}
total_offset = 0;
if (raw_spec->relative) {
for (j = raw_index; j > 0; j--) {
total_offset += raw_offset[j - 1];
if (!relative[j - 1])
break;
}
if (total_offset + raw_spec->length + offset > max_offset)
max_offset = total_offset + raw_spec->length + offset;
} else {
if (raw_spec->length + offset > max_offset)
max_offset = raw_spec->length + offset;
}
if ((raw_spec->length + offset + total_offset) >
IGB_FLEX_FILTER_MAXLEN) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by flex filter");
return -rte_errno;
}
if (raw_spec->relative == 0) {
for (j = 0; j < raw_spec->length; j++)
filter->bytes[offset + j] =
raw_spec->pattern[j];
j = offset / CHAR_BIT;
shift = offset % CHAR_BIT;
} else {
for (j = 0; j < raw_spec->length; j++)
filter->bytes[total_offset + offset + j] =
raw_spec->pattern[j];
j = (total_offset + offset) / CHAR_BIT;
shift = (total_offset + offset) % CHAR_BIT;
}
i = 0;
for ( ; shift < CHAR_BIT; shift++) {
filter->mask[j] |= (0x80 >> shift);
i++;
if (i == raw_spec->length)
break;
if (shift == (CHAR_BIT - 1)) {
j++;
shift = -1;
}
}
relative[raw_index] = raw_spec->relative;
raw_offset[raw_index] = offset + raw_spec->length;
raw_index++;
/* check if the next not void item is RAW */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_RAW &&
item->type != RTE_FLOW_ITEM_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by flex filter");
return -rte_errno;
}
/* go back to parser */
if (item->type == RTE_FLOW_ITEM_TYPE_RAW) {
/* if the item is RAW, the content should be parse */
goto item_loop;
}
filter->len = RTE_ALIGN(max_offset, 8);
/* parse action */
index = 0;
/* check if the first not void action is QUEUE. */
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_QUEUE) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
act_q = (const struct rte_flow_action_queue *)act->conf;
filter->queue = act_q->index;
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
if (attr->priority > 0xFFFF) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Error priority.");
return -rte_errno;
}
filter->priority = (uint16_t)attr->priority;
return 0;
}
static int
igb_parse_flex_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct igb_flex_filter *filter,
struct rte_flow_error *error)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret;
MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
ret = cons_parse_flex_filter(attr, pattern,
actions, filter, error);
if (filter->queue >= IGB_MAX_RX_QUEUE_NUM) {
memset(filter, 0, sizeof(struct igb_flex_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "queue number not supported by flex filter");
return -rte_errno;
}
if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN ||
filter->len % sizeof(uint64_t) != 0) {
PMD_DRV_LOG(ERR, "filter's length is out of range");
return -EINVAL;
}
if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
PMD_DRV_LOG(ERR, "filter's priority is out of range");
return -EINVAL;
}
if (ret)
return ret;
return 0;
}
static int
igb_parse_rss_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_action actions[],
struct igb_rte_flow_rss_conf *rss_conf,
struct rte_flow_error *error)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
const struct rte_flow_action *act;
const struct rte_flow_action_rss *rss;
uint16_t n, index;
/**
* rss only supports forwarding,
* check if the first not void action is RSS.
*/
index = 0;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_RSS) {
memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
rss = (const struct rte_flow_action_rss *)act->conf;
if (!rss || !rss->queue_num) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"no valid queues");
return -rte_errno;
}
for (n = 0; n < rss->queue_num; n++) {
if (rss->queue[n] >= dev->data->nb_rx_queues) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act,
"queue id > max number of queues");
return -rte_errno;
}
}
if (rss->func != RTE_ETH_HASH_FUNCTION_DEFAULT)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"non-default RSS hash functions are not supported");
if (rss->level)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"a nonzero RSS encapsulation level is not supported");
if (rss->key_len && rss->key_len != RTE_DIM(rss_conf->key))
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"RSS hash key must be exactly 40 bytes");
if (((hw->mac.type == e1000_82576) &&
(rss->queue_num > IGB_MAX_RX_QUEUE_NUM_82576)) ||
((hw->mac.type != e1000_82576) &&
(rss->queue_num > IGB_MAX_RX_QUEUE_NUM)))
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION, act,
"too many queues for RSS context");
if (igb_rss_conf_init(dev, rss_conf, rss))
return rte_flow_error_set
(error, EINVAL, RTE_FLOW_ERROR_TYPE_ACTION, act,
"RSS context initialization failure");
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
return -rte_errno;
}
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* not supported */
if (attr->egress) {
memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* not supported */
if (attr->transfer) {
memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer.");
return -rte_errno;
}
if (attr->priority > 0xFFFF) {
memset(rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Error priority.");
return -rte_errno;
}
return 0;
}
/**
* Create a flow rule.
* Theorically one rule can match more than one filters.
* We will let it use the filter which it hitt first.
* So, the sequence matters.
*/
static struct rte_flow *
igb_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
int ret;
struct rte_eth_ntuple_filter ntuple_filter;
struct rte_eth_ethertype_filter ethertype_filter;
struct rte_eth_syn_filter syn_filter;
struct igb_flex_filter flex_filter;
struct igb_rte_flow_rss_conf rss_conf;
struct rte_flow *flow = NULL;
struct igb_ntuple_filter_ele *ntuple_filter_ptr;
struct igb_ethertype_filter_ele *ethertype_filter_ptr;
struct igb_eth_syn_filter_ele *syn_filter_ptr;
struct igb_flex_filter_ele *flex_filter_ptr;
struct igb_rss_conf_ele *rss_filter_ptr;
struct igb_flow_mem *igb_flow_mem_ptr;
flow = rte_zmalloc("igb_rte_flow", sizeof(struct rte_flow), 0);
if (!flow) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return (struct rte_flow *)flow;
}
igb_flow_mem_ptr = rte_zmalloc("igb_flow_mem",
sizeof(struct igb_flow_mem), 0);
if (!igb_flow_mem_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
rte_free(flow);
return NULL;
}
igb_flow_mem_ptr->flow = flow;
igb_flow_mem_ptr->dev = dev;
TAILQ_INSERT_TAIL(&igb_flow_list,
igb_flow_mem_ptr, entries);
memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter));
ret = igb_parse_ntuple_filter(dev, attr, pattern,
actions, &ntuple_filter, error);
if (!ret) {
ret = igb_add_del_ntuple_filter(dev, &ntuple_filter, TRUE);
if (!ret) {
ntuple_filter_ptr = rte_zmalloc("igb_ntuple_filter",
sizeof(struct igb_ntuple_filter_ele), 0);
if (!ntuple_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&ntuple_filter_ptr->filter_info,
&ntuple_filter,
sizeof(struct rte_eth_ntuple_filter));
TAILQ_INSERT_TAIL(&igb_filter_ntuple_list,
ntuple_filter_ptr, entries);
flow->rule = ntuple_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_NTUPLE;
return flow;
}
goto out;
}
memset(&ethertype_filter, 0, sizeof(struct rte_eth_ethertype_filter));
ret = igb_parse_ethertype_filter(dev, attr, pattern,
actions, &ethertype_filter, error);
if (!ret) {
ret = igb_add_del_ethertype_filter(dev,
&ethertype_filter, TRUE);
if (!ret) {
ethertype_filter_ptr = rte_zmalloc(
"igb_ethertype_filter",
sizeof(struct igb_ethertype_filter_ele), 0);
if (!ethertype_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&ethertype_filter_ptr->filter_info,
&ethertype_filter,
sizeof(struct rte_eth_ethertype_filter));
TAILQ_INSERT_TAIL(&igb_filter_ethertype_list,
ethertype_filter_ptr, entries);
flow->rule = ethertype_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_ETHERTYPE;
return flow;
}
goto out;
}
memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter));
ret = igb_parse_syn_filter(dev, attr, pattern,
actions, &syn_filter, error);
if (!ret) {
ret = eth_igb_syn_filter_set(dev, &syn_filter, TRUE);
if (!ret) {
syn_filter_ptr = rte_zmalloc("igb_syn_filter",
sizeof(struct igb_eth_syn_filter_ele), 0);
if (!syn_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&syn_filter_ptr->filter_info,
&syn_filter,
sizeof(struct rte_eth_syn_filter));
TAILQ_INSERT_TAIL(&igb_filter_syn_list,
syn_filter_ptr,
entries);
flow->rule = syn_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_SYN;
return flow;
}
goto out;
}
memset(&flex_filter, 0, sizeof(struct igb_flex_filter));
ret = igb_parse_flex_filter(dev, attr, pattern,
actions, &flex_filter, error);
if (!ret) {
ret = eth_igb_add_del_flex_filter(dev, &flex_filter, TRUE);
if (!ret) {
flex_filter_ptr = rte_zmalloc("igb_flex_filter",
sizeof(struct igb_flex_filter_ele), 0);
if (!flex_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
rte_memcpy(&flex_filter_ptr->filter_info,
&flex_filter,
sizeof(struct igb_flex_filter));
TAILQ_INSERT_TAIL(&igb_filter_flex_list,
flex_filter_ptr, entries);
flow->rule = flex_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_FLEXIBLE;
return flow;
}
}
memset(&rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
ret = igb_parse_rss_filter(dev, attr,
actions, &rss_conf, error);
if (!ret) {
ret = igb_config_rss_filter(dev, &rss_conf, TRUE);
if (!ret) {
rss_filter_ptr = rte_zmalloc("igb_rss_filter",
sizeof(struct igb_rss_conf_ele), 0);
if (!rss_filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
goto out;
}
igb_rss_conf_init(dev, &rss_filter_ptr->filter_info,
&rss_conf.conf);
TAILQ_INSERT_TAIL(&igb_filter_rss_list,
rss_filter_ptr, entries);
flow->rule = rss_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_HASH;
return flow;
}
}
out:
TAILQ_REMOVE(&igb_flow_list,
igb_flow_mem_ptr, entries);
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
rte_free(igb_flow_mem_ptr);
rte_free(flow);
return NULL;
}
/**
* Check if the flow rule is supported by igb.
* It only checkes the format. Don't guarantee the rule can be programmed into
* the HW. Because there can be no enough room for the rule.
*/
static int
igb_flow_validate(__rte_unused struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_eth_ntuple_filter ntuple_filter;
struct rte_eth_ethertype_filter ethertype_filter;
struct rte_eth_syn_filter syn_filter;
struct igb_flex_filter flex_filter;
struct igb_rte_flow_rss_conf rss_conf;
int ret;
memset(&ntuple_filter, 0, sizeof(struct rte_eth_ntuple_filter));
ret = igb_parse_ntuple_filter(dev, attr, pattern,
actions, &ntuple_filter, error);
if (!ret)
return 0;
memset(&ethertype_filter, 0, sizeof(struct rte_eth_ethertype_filter));
ret = igb_parse_ethertype_filter(dev, attr, pattern,
actions, &ethertype_filter, error);
if (!ret)
return 0;
memset(&syn_filter, 0, sizeof(struct rte_eth_syn_filter));
ret = igb_parse_syn_filter(dev, attr, pattern,
actions, &syn_filter, error);
if (!ret)
return 0;
memset(&flex_filter, 0, sizeof(struct igb_flex_filter));
ret = igb_parse_flex_filter(dev, attr, pattern,
actions, &flex_filter, error);
if (!ret)
return 0;
memset(&rss_conf, 0, sizeof(struct igb_rte_flow_rss_conf));
ret = igb_parse_rss_filter(dev, attr,
actions, &rss_conf, error);
return ret;
}
/* Destroy a flow rule on igb. */
static int
igb_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
int ret;
struct rte_flow *pmd_flow = flow;
enum rte_filter_type filter_type = pmd_flow->filter_type;
struct igb_ntuple_filter_ele *ntuple_filter_ptr;
struct igb_ethertype_filter_ele *ethertype_filter_ptr;
struct igb_eth_syn_filter_ele *syn_filter_ptr;
struct igb_flex_filter_ele *flex_filter_ptr;
struct igb_flow_mem *igb_flow_mem_ptr;
struct igb_rss_conf_ele *rss_filter_ptr;
switch (filter_type) {
case RTE_ETH_FILTER_NTUPLE:
ntuple_filter_ptr = (struct igb_ntuple_filter_ele *)
pmd_flow->rule;
ret = igb_add_del_ntuple_filter(dev,
&ntuple_filter_ptr->filter_info, FALSE);
if (!ret) {
TAILQ_REMOVE(&igb_filter_ntuple_list,
ntuple_filter_ptr, entries);
rte_free(ntuple_filter_ptr);
}
break;
case RTE_ETH_FILTER_ETHERTYPE:
ethertype_filter_ptr = (struct igb_ethertype_filter_ele *)
pmd_flow->rule;
ret = igb_add_del_ethertype_filter(dev,
&ethertype_filter_ptr->filter_info, FALSE);
if (!ret) {
TAILQ_REMOVE(&igb_filter_ethertype_list,
ethertype_filter_ptr, entries);
rte_free(ethertype_filter_ptr);
}
break;
case RTE_ETH_FILTER_SYN:
syn_filter_ptr = (struct igb_eth_syn_filter_ele *)
pmd_flow->rule;
ret = eth_igb_syn_filter_set(dev,
&syn_filter_ptr->filter_info, FALSE);
if (!ret) {
TAILQ_REMOVE(&igb_filter_syn_list,
syn_filter_ptr, entries);
rte_free(syn_filter_ptr);
}
break;
case RTE_ETH_FILTER_FLEXIBLE:
flex_filter_ptr = (struct igb_flex_filter_ele *)
pmd_flow->rule;
ret = eth_igb_add_del_flex_filter(dev,
&flex_filter_ptr->filter_info, FALSE);
if (!ret) {
TAILQ_REMOVE(&igb_filter_flex_list,
flex_filter_ptr, entries);
rte_free(flex_filter_ptr);
}
break;
case RTE_ETH_FILTER_HASH:
rss_filter_ptr = (struct igb_rss_conf_ele *)
pmd_flow->rule;
ret = igb_config_rss_filter(dev,
&rss_filter_ptr->filter_info, FALSE);
if (!ret) {
TAILQ_REMOVE(&igb_filter_rss_list,
rss_filter_ptr, entries);
rte_free(rss_filter_ptr);
}
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
ret = -EINVAL;
break;
}
if (ret) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to destroy flow");
return ret;
}
TAILQ_FOREACH(igb_flow_mem_ptr, &igb_flow_list, entries) {
if (igb_flow_mem_ptr->flow == pmd_flow) {
TAILQ_REMOVE(&igb_flow_list,
igb_flow_mem_ptr, entries);
rte_free(igb_flow_mem_ptr);
}
}
rte_free(flow);
return ret;
}
/* remove all the n-tuple filters */
static void
igb_clear_all_ntuple_filter(struct rte_eth_dev *dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_5tuple_filter *p_5tuple;
struct e1000_2tuple_filter *p_2tuple;
while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list)))
igb_delete_5tuple_filter_82576(dev, p_5tuple);
while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list)))
igb_delete_2tuple_filter(dev, p_2tuple);
}
/* remove all the ether type filters */
static void
igb_clear_all_ethertype_filter(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
int i;
for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
if (filter_info->ethertype_mask & (1 << i)) {
(void)igb_ethertype_filter_remove(filter_info,
(uint8_t)i);
E1000_WRITE_REG(hw, E1000_ETQF(i), 0);
E1000_WRITE_FLUSH(hw);
}
}
}
/* remove the SYN filter */
static void
igb_clear_syn_filter(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
if (filter_info->syn_info & E1000_SYN_FILTER_ENABLE) {
filter_info->syn_info = 0;
E1000_WRITE_REG(hw, E1000_SYNQF(0), 0);
E1000_WRITE_FLUSH(hw);
}
}
/* remove all the flex filters */
static void
igb_clear_all_flex_filter(struct rte_eth_dev *dev)
{
struct e1000_filter_info *filter_info =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
struct e1000_flex_filter *flex_filter;
while ((flex_filter = TAILQ_FIRST(&filter_info->flex_list)))
igb_remove_flex_filter(dev, flex_filter);
}
/* remove the rss filter */
static void
igb_clear_rss_filter(struct rte_eth_dev *dev)
{
struct e1000_filter_info *filter =
E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
if (filter->rss_info.conf.queue_num)
igb_config_rss_filter(dev, &filter->rss_info, FALSE);
}
void
igb_filterlist_flush(struct rte_eth_dev *dev)
{
struct igb_ntuple_filter_ele *ntuple_filter_ptr;
struct igb_ethertype_filter_ele *ethertype_filter_ptr;
struct igb_eth_syn_filter_ele *syn_filter_ptr;
struct igb_flex_filter_ele *flex_filter_ptr;
struct igb_rss_conf_ele *rss_filter_ptr;
struct igb_flow_mem *igb_flow_mem_ptr;
enum rte_filter_type filter_type;
struct rte_flow *pmd_flow;
TAILQ_FOREACH(igb_flow_mem_ptr, &igb_flow_list, entries) {
if (igb_flow_mem_ptr->dev == dev) {
pmd_flow = igb_flow_mem_ptr->flow;
filter_type = pmd_flow->filter_type;
switch (filter_type) {
case RTE_ETH_FILTER_NTUPLE:
ntuple_filter_ptr =
(struct igb_ntuple_filter_ele *)
pmd_flow->rule;
TAILQ_REMOVE(&igb_filter_ntuple_list,
ntuple_filter_ptr, entries);
rte_free(ntuple_filter_ptr);
break;
case RTE_ETH_FILTER_ETHERTYPE:
ethertype_filter_ptr =
(struct igb_ethertype_filter_ele *)
pmd_flow->rule;
TAILQ_REMOVE(&igb_filter_ethertype_list,
ethertype_filter_ptr, entries);
rte_free(ethertype_filter_ptr);
break;
case RTE_ETH_FILTER_SYN:
syn_filter_ptr =
(struct igb_eth_syn_filter_ele *)
pmd_flow->rule;
TAILQ_REMOVE(&igb_filter_syn_list,
syn_filter_ptr, entries);
rte_free(syn_filter_ptr);
break;
case RTE_ETH_FILTER_FLEXIBLE:
flex_filter_ptr =
(struct igb_flex_filter_ele *)
pmd_flow->rule;
TAILQ_REMOVE(&igb_filter_flex_list,
flex_filter_ptr, entries);
rte_free(flex_filter_ptr);
break;
case RTE_ETH_FILTER_HASH:
rss_filter_ptr =
(struct igb_rss_conf_ele *)
pmd_flow->rule;
TAILQ_REMOVE(&igb_filter_rss_list,
rss_filter_ptr, entries);
rte_free(rss_filter_ptr);
break;
default:
PMD_DRV_LOG(WARNING, "Filter type"
"(%d) not supported", filter_type);
break;
}
TAILQ_REMOVE(&igb_flow_list,
igb_flow_mem_ptr,
entries);
rte_free(igb_flow_mem_ptr->flow);
rte_free(igb_flow_mem_ptr);
}
}
}
/* Destroy all flow rules associated with a port on igb. */
static int
igb_flow_flush(struct rte_eth_dev *dev,
__rte_unused struct rte_flow_error *error)
{
igb_clear_all_ntuple_filter(dev);
igb_clear_all_ethertype_filter(dev);
igb_clear_syn_filter(dev);
igb_clear_all_flex_filter(dev);
igb_clear_rss_filter(dev);
igb_filterlist_flush(dev);
return 0;
}
const struct rte_flow_ops igb_flow_ops = {
.validate = igb_flow_validate,
.create = igb_flow_create,
.destroy = igb_flow_destroy,
.flush = igb_flow_flush,
};