numam-dpdk/app/test/test_ring_stress_impl.h
Konstantin Ananyev bf28df24e9 test/ring: add contention stress test
Introduce stress test for ring enqueue/dequeue operations.
Performs the following pattern on each slave worker:
dequeue/read-write data from the dequeued objects/enqueue.
Serves as both functional and performance test of ring
enqueue/dequeue operations under high contention
(for both over committed and non-over committed scenarios).

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
2020-04-21 11:34:09 +02:00

397 lines
8.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include "test_ring_stress.h"
/**
* Stress test for ring enqueue/dequeue operations.
* Performs the following pattern on each slave worker:
* dequeue/read-write data from the dequeued objects/enqueue.
* Serves as both functional and performance test of ring
* enqueue/dequeue operations under high contention
* (for both over committed and non-over committed scenarios).
*/
#define RING_NAME "RING_STRESS"
#define BULK_NUM 32
#define RING_SIZE (2 * BULK_NUM * RTE_MAX_LCORE)
enum {
WRK_CMD_STOP,
WRK_CMD_RUN,
};
static volatile uint32_t wrk_cmd __rte_cache_aligned;
/* test run-time in seconds */
static const uint32_t run_time = 60;
static const uint32_t verbose;
struct lcore_stat {
uint64_t nb_cycle;
struct {
uint64_t nb_call;
uint64_t nb_obj;
uint64_t nb_cycle;
uint64_t max_cycle;
uint64_t min_cycle;
} op;
};
struct lcore_arg {
struct rte_ring *rng;
struct lcore_stat stats;
} __rte_cache_aligned;
struct ring_elem {
uint32_t cnt[RTE_CACHE_LINE_SIZE / sizeof(uint32_t)];
} __rte_cache_aligned;
/*
* redefinable functions
*/
static uint32_t
_st_ring_dequeue_bulk(struct rte_ring *r, void **obj, uint32_t n,
uint32_t *avail);
static uint32_t
_st_ring_enqueue_bulk(struct rte_ring *r, void * const *obj, uint32_t n,
uint32_t *free);
static int
_st_ring_init(struct rte_ring *r, const char *name, uint32_t num);
static void
lcore_stat_update(struct lcore_stat *ls, uint64_t call, uint64_t obj,
uint64_t tm, int32_t prcs)
{
ls->op.nb_call += call;
ls->op.nb_obj += obj;
ls->op.nb_cycle += tm;
if (prcs) {
ls->op.max_cycle = RTE_MAX(ls->op.max_cycle, tm);
ls->op.min_cycle = RTE_MIN(ls->op.min_cycle, tm);
}
}
static void
lcore_op_stat_aggr(struct lcore_stat *ms, const struct lcore_stat *ls)
{
ms->op.nb_call += ls->op.nb_call;
ms->op.nb_obj += ls->op.nb_obj;
ms->op.nb_cycle += ls->op.nb_cycle;
ms->op.max_cycle = RTE_MAX(ms->op.max_cycle, ls->op.max_cycle);
ms->op.min_cycle = RTE_MIN(ms->op.min_cycle, ls->op.min_cycle);
}
static void
lcore_stat_aggr(struct lcore_stat *ms, const struct lcore_stat *ls)
{
ms->nb_cycle = RTE_MAX(ms->nb_cycle, ls->nb_cycle);
lcore_op_stat_aggr(ms, ls);
}
static void
lcore_stat_dump(FILE *f, uint32_t lc, const struct lcore_stat *ls)
{
long double st;
st = (long double)rte_get_timer_hz() / US_PER_S;
if (lc == UINT32_MAX)
fprintf(f, "%s(AGGREGATE)={\n", __func__);
else
fprintf(f, "%s(lcore=%u)={\n", __func__, lc);
fprintf(f, "\tnb_cycle=%" PRIu64 "(%.2Lf usec),\n",
ls->nb_cycle, (long double)ls->nb_cycle / st);
fprintf(f, "\tDEQ+ENQ={\n");
fprintf(f, "\t\tnb_call=%" PRIu64 ",\n", ls->op.nb_call);
fprintf(f, "\t\tnb_obj=%" PRIu64 ",\n", ls->op.nb_obj);
fprintf(f, "\t\tnb_cycle=%" PRIu64 ",\n", ls->op.nb_cycle);
fprintf(f, "\t\tobj/call(avg): %.2Lf\n",
(long double)ls->op.nb_obj / ls->op.nb_call);
fprintf(f, "\t\tcycles/obj(avg): %.2Lf\n",
(long double)ls->op.nb_cycle / ls->op.nb_obj);
fprintf(f, "\t\tcycles/call(avg): %.2Lf\n",
(long double)ls->op.nb_cycle / ls->op.nb_call);
/* if min/max cycles per call stats was collected */
if (ls->op.min_cycle != UINT64_MAX) {
fprintf(f, "\t\tmax cycles/call=%" PRIu64 "(%.2Lf usec),\n",
ls->op.max_cycle,
(long double)ls->op.max_cycle / st);
fprintf(f, "\t\tmin cycles/call=%" PRIu64 "(%.2Lf usec),\n",
ls->op.min_cycle,
(long double)ls->op.min_cycle / st);
}
fprintf(f, "\t},\n");
fprintf(f, "};\n");
}
static void
fill_ring_elm(struct ring_elem *elm, uint32_t fill)
{
uint32_t i;
for (i = 0; i != RTE_DIM(elm->cnt); i++)
elm->cnt[i] = fill;
}
static int32_t
check_updt_elem(struct ring_elem *elm[], uint32_t num,
const struct ring_elem *check, const struct ring_elem *fill)
{
uint32_t i;
static rte_spinlock_t dump_lock;
for (i = 0; i != num; i++) {
if (memcmp(check, elm[i], sizeof(*check)) != 0) {
rte_spinlock_lock(&dump_lock);
printf("%s(lc=%u, num=%u) failed at %u-th iter, "
"offending object: %p\n",
__func__, rte_lcore_id(), num, i, elm[i]);
rte_memdump(stdout, "expected", check, sizeof(*check));
rte_memdump(stdout, "result", elm[i], sizeof(elm[i]));
rte_spinlock_unlock(&dump_lock);
return -EINVAL;
}
memcpy(elm[i], fill, sizeof(*elm[i]));
}
return 0;
}
static int
check_ring_op(uint32_t exp, uint32_t res, uint32_t lc,
const char *fname, const char *opname)
{
if (exp != res) {
printf("%s(lc=%u) failure: %s expected: %u, returned %u\n",
fname, lc, opname, exp, res);
return -ENOSPC;
}
return 0;
}
static int
test_worker(void *arg, const char *fname, int32_t prcs)
{
int32_t rc;
uint32_t lc, n, num;
uint64_t cl, tm0, tm1;
struct lcore_arg *la;
struct ring_elem def_elm, loc_elm;
struct ring_elem *obj[2 * BULK_NUM];
la = arg;
lc = rte_lcore_id();
fill_ring_elm(&def_elm, UINT32_MAX);
fill_ring_elm(&loc_elm, lc);
while (wrk_cmd != WRK_CMD_RUN) {
rte_smp_rmb();
rte_pause();
}
cl = rte_rdtsc_precise();
do {
/* num in interval [7/8, 11/8] of BULK_NUM */
num = 7 * BULK_NUM / 8 + rte_rand() % (BULK_NUM / 2);
/* reset all pointer values */
memset(obj, 0, sizeof(obj));
/* dequeue num elems */
tm0 = (prcs != 0) ? rte_rdtsc_precise() : 0;
n = _st_ring_dequeue_bulk(la->rng, (void **)obj, num, NULL);
tm0 = (prcs != 0) ? rte_rdtsc_precise() - tm0 : 0;
/* check return value and objects */
rc = check_ring_op(num, n, lc, fname,
RTE_STR(_st_ring_dequeue_bulk));
if (rc == 0)
rc = check_updt_elem(obj, num, &def_elm, &loc_elm);
if (rc != 0)
break;
/* enqueue num elems */
rte_compiler_barrier();
rc = check_updt_elem(obj, num, &loc_elm, &def_elm);
if (rc != 0)
break;
tm1 = (prcs != 0) ? rte_rdtsc_precise() : 0;
n = _st_ring_enqueue_bulk(la->rng, (void **)obj, num, NULL);
tm1 = (prcs != 0) ? rte_rdtsc_precise() - tm1 : 0;
/* check return value */
rc = check_ring_op(num, n, lc, fname,
RTE_STR(_st_ring_enqueue_bulk));
if (rc != 0)
break;
lcore_stat_update(&la->stats, 1, num, tm0 + tm1, prcs);
} while (wrk_cmd == WRK_CMD_RUN);
cl = rte_rdtsc_precise() - cl;
if (prcs == 0)
lcore_stat_update(&la->stats, 0, 0, cl, 0);
la->stats.nb_cycle = cl;
return rc;
}
static int
test_worker_prcs(void *arg)
{
return test_worker(arg, __func__, 1);
}
static int
test_worker_avg(void *arg)
{
return test_worker(arg, __func__, 0);
}
static void
mt1_fini(struct rte_ring *rng, void *data)
{
rte_free(rng);
rte_free(data);
}
static int
mt1_init(struct rte_ring **rng, void **data, uint32_t num)
{
int32_t rc;
size_t sz;
uint32_t i, nr;
struct rte_ring *r;
struct ring_elem *elm;
void *p;
*rng = NULL;
*data = NULL;
sz = num * sizeof(*elm);
elm = rte_zmalloc(NULL, sz, __alignof__(*elm));
if (elm == NULL) {
printf("%s: alloc(%zu) for %u elems data failed",
__func__, sz, num);
return -ENOMEM;
}
*data = elm;
/* alloc ring */
nr = 2 * num;
sz = rte_ring_get_memsize(nr);
r = rte_zmalloc(NULL, sz, __alignof__(*r));
if (r == NULL) {
printf("%s: alloc(%zu) for FIFO with %u elems failed",
__func__, sz, nr);
return -ENOMEM;
}
*rng = r;
rc = _st_ring_init(r, RING_NAME, nr);
if (rc != 0) {
printf("%s: _st_ring_init(%p, %u) failed, error: %d(%s)\n",
__func__, r, nr, rc, strerror(-rc));
return rc;
}
for (i = 0; i != num; i++) {
fill_ring_elm(elm + i, UINT32_MAX);
p = elm + i;
if (_st_ring_enqueue_bulk(r, &p, 1, NULL) != 1)
break;
}
if (i != num) {
printf("%s: _st_ring_enqueue(%p, %u) returned %u\n",
__func__, r, num, i);
return -ENOSPC;
}
return 0;
}
static int
test_mt1(int (*test)(void *))
{
int32_t rc;
uint32_t lc, mc;
struct rte_ring *r;
void *data;
struct lcore_arg arg[RTE_MAX_LCORE];
static const struct lcore_stat init_stat = {
.op.min_cycle = UINT64_MAX,
};
rc = mt1_init(&r, &data, RING_SIZE);
if (rc != 0) {
mt1_fini(r, data);
return rc;
}
memset(arg, 0, sizeof(arg));
/* launch on all slaves */
RTE_LCORE_FOREACH_SLAVE(lc) {
arg[lc].rng = r;
arg[lc].stats = init_stat;
rte_eal_remote_launch(test, &arg[lc], lc);
}
/* signal worker to start test */
wrk_cmd = WRK_CMD_RUN;
rte_smp_wmb();
usleep(run_time * US_PER_S);
/* signal worker to start test */
wrk_cmd = WRK_CMD_STOP;
rte_smp_wmb();
/* wait for slaves and collect stats. */
mc = rte_lcore_id();
arg[mc].stats = init_stat;
rc = 0;
RTE_LCORE_FOREACH_SLAVE(lc) {
rc |= rte_eal_wait_lcore(lc);
lcore_stat_aggr(&arg[mc].stats, &arg[lc].stats);
if (verbose != 0)
lcore_stat_dump(stdout, lc, &arg[lc].stats);
}
lcore_stat_dump(stdout, UINT32_MAX, &arg[mc].stats);
mt1_fini(r, data);
return rc;
}
static const struct test_case tests[] = {
{
.name = "MT-WRK_ENQ_DEQ-MST_NONE-PRCS",
.func = test_mt1,
.wfunc = test_worker_prcs,
},
{
.name = "MT-WRK_ENQ_DEQ-MST_NONE-AVG",
.func = test_mt1,
.wfunc = test_worker_avg,
},
};