8dfe55a29d
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com> Signed-off-by: Paul M Stillwell Jr <paul.m.stillwell.jr@intel.com> Acked-by: Wenzhuo Lu <wenzhuo.lu@intel.com>
527 lines
13 KiB
C
527 lines
13 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _ICE_OSDEP_H_
|
|
#define _ICE_OSDEP_H_
|
|
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <inttypes.h>
|
|
#include <sys/queue.h>
|
|
#include <stdbool.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_log.h>
|
|
#include <rte_random.h>
|
|
#include <rte_io.h>
|
|
|
|
#include "../ice_logs.h"
|
|
|
|
#define INLINE inline
|
|
#define STATIC static
|
|
|
|
typedef uint8_t u8;
|
|
typedef int8_t s8;
|
|
typedef uint16_t u16;
|
|
typedef int16_t s16;
|
|
typedef uint32_t u32;
|
|
typedef int32_t s32;
|
|
typedef uint64_t u64;
|
|
typedef uint64_t s64;
|
|
|
|
#define __iomem
|
|
#define hw_dbg(hw, S, A...) do {} while (0)
|
|
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
|
|
#define lower_32_bits(n) ((u32)(n))
|
|
#define low_16_bits(x) ((x) & 0xFFFF)
|
|
#define high_16_bits(x) (((x) & 0xFFFF0000) >> 16)
|
|
|
|
#ifndef ETH_ADDR_LEN
|
|
#define ETH_ADDR_LEN 6
|
|
#endif
|
|
|
|
#ifndef __le16
|
|
#define __le16 uint16_t
|
|
#endif
|
|
#ifndef __le32
|
|
#define __le32 uint32_t
|
|
#endif
|
|
#ifndef __le64
|
|
#define __le64 uint64_t
|
|
#endif
|
|
#ifndef __be16
|
|
#define __be16 uint16_t
|
|
#endif
|
|
#ifndef __be32
|
|
#define __be32 uint32_t
|
|
#endif
|
|
#ifndef __be64
|
|
#define __be64 uint64_t
|
|
#endif
|
|
|
|
#ifndef __always_unused
|
|
#define __always_unused __attribute__((unused))
|
|
#endif
|
|
#ifndef __maybe_unused
|
|
#define __maybe_unused __attribute__((unused))
|
|
#endif
|
|
#ifndef __packed
|
|
#define __packed __attribute__((packed))
|
|
#endif
|
|
|
|
#ifndef BIT_ULL
|
|
#define BIT_ULL(a) (1ULL << (a))
|
|
#endif
|
|
|
|
#define FALSE 0
|
|
#define TRUE 1
|
|
#define false 0
|
|
#define true 1
|
|
|
|
#define min(a, b) RTE_MIN(a, b)
|
|
#define max(a, b) RTE_MAX(a, b)
|
|
|
|
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
|
|
#define FIELD_SIZEOF(t, f) (sizeof(((t *)0)->f))
|
|
#define MAKEMASK(m, s) ((m) << (s))
|
|
|
|
#define DEBUGOUT(S, A...) PMD_DRV_LOG_RAW(DEBUG, S, ##A)
|
|
#define DEBUGFUNC(F) PMD_DRV_LOG_RAW(DEBUG, F)
|
|
|
|
#define ice_debug(h, m, s, ...) \
|
|
do { \
|
|
if (((m) & (h)->debug_mask)) \
|
|
PMD_DRV_LOG_RAW(DEBUG, "ice %02x.%x " s, \
|
|
(h)->bus.device, (h)->bus.func, \
|
|
##__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
#define ice_info(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
|
|
#define ice_warn(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
|
|
#define ice_debug_array(hw, type, rowsize, groupsize, buf, len) \
|
|
do { \
|
|
struct ice_hw *hw_l = hw; \
|
|
u16 len_l = len; \
|
|
u8 *buf_l = buf; \
|
|
int i; \
|
|
for (i = 0; i < len_l; i += 8) \
|
|
ice_debug(hw_l, type, \
|
|
"0x%04X 0x%016"PRIx64"\n", \
|
|
i, *((u64 *)((buf_l) + i))); \
|
|
} while (0)
|
|
#define ice_snprintf snprintf
|
|
#ifndef SNPRINTF
|
|
#define SNPRINTF ice_snprintf
|
|
#endif
|
|
|
|
#define ICE_PCI_REG(reg) rte_read32(reg)
|
|
#define ICE_PCI_REG_ADDR(a, reg) \
|
|
((volatile uint32_t *)((char *)(a)->hw_addr + (reg)))
|
|
static inline uint32_t ice_read_addr(volatile void *addr)
|
|
{
|
|
return rte_le_to_cpu_32(ICE_PCI_REG(addr));
|
|
}
|
|
|
|
#define ICE_PCI_REG_WRITE(reg, value) \
|
|
rte_write32((rte_cpu_to_le_32(value)), reg)
|
|
|
|
#define ice_flush(a) ICE_READ_REG((a), GLGEN_STAT)
|
|
#define icevf_flush(a) ICE_READ_REG((a), VFGEN_RSTAT)
|
|
#define ICE_READ_REG(hw, reg) ice_read_addr(ICE_PCI_REG_ADDR((hw), (reg)))
|
|
#define ICE_WRITE_REG(hw, reg, value) \
|
|
ICE_PCI_REG_WRITE(ICE_PCI_REG_ADDR((hw), (reg)), (value))
|
|
|
|
#define rd32(a, reg) ice_read_addr(ICE_PCI_REG_ADDR((a), (reg)))
|
|
#define wr32(a, reg, value) \
|
|
ICE_PCI_REG_WRITE(ICE_PCI_REG_ADDR((a), (reg)), (value))
|
|
#define flush(a) ice_read_addr(ICE_PCI_REG_ADDR((a), (GLGEN_STAT)))
|
|
#define div64_long(n, d) ((n) / (d))
|
|
|
|
#define BITS_PER_BYTE 8
|
|
typedef u32 ice_bitmap_t;
|
|
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
|
|
#define BITS_TO_CHUNKS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(ice_bitmap_t))
|
|
#define ice_declare_bitmap(name, bits) \
|
|
ice_bitmap_t name[BITS_TO_CHUNKS(bits)]
|
|
|
|
#define BITS_CHUNK_MASK(nr) (((ice_bitmap_t)~0) >> \
|
|
((BITS_PER_BYTE * sizeof(ice_bitmap_t)) - \
|
|
(((nr) - 1) % (BITS_PER_BYTE * sizeof(ice_bitmap_t)) \
|
|
+ 1)))
|
|
#define BITS_PER_CHUNK (BITS_PER_BYTE * sizeof(ice_bitmap_t))
|
|
#define BIT_CHUNK(nr) ((nr) / BITS_PER_CHUNK)
|
|
#define BIT_IN_CHUNK(nr) BIT((nr) % BITS_PER_CHUNK)
|
|
|
|
static inline bool ice_is_bit_set(const ice_bitmap_t *bitmap, u16 nr)
|
|
{
|
|
return !!(bitmap[BIT_CHUNK(nr)] & BIT_IN_CHUNK(nr));
|
|
}
|
|
|
|
#define ice_and_bitmap(d, b1, b2, sz) \
|
|
ice_intersect_bitmaps((u8 *)d, (u8 *)b1, (const u8 *)b2, (u16)sz)
|
|
static inline int
|
|
ice_intersect_bitmaps(u8 *dst, const u8 *bmp1, const u8 *bmp2, u16 sz)
|
|
{
|
|
u32 res = 0;
|
|
int cnt;
|
|
u16 i;
|
|
|
|
/* Utilize 32-bit operations */
|
|
cnt = (sz % BITS_PER_BYTE) ?
|
|
(sz / BITS_PER_BYTE) + 1 : sz / BITS_PER_BYTE;
|
|
for (i = 0; i < cnt / 4; i++) {
|
|
((u32 *)dst)[i] = ((const u32 *)bmp1)[i] &
|
|
((const u32 *)bmp2)[i];
|
|
res |= ((u32 *)dst)[i];
|
|
}
|
|
|
|
for (i *= 4; i < cnt; i++) {
|
|
if ((sz % 8 == 0) || (i + 1 < cnt)) {
|
|
dst[i] = bmp1[i] & bmp2[i];
|
|
} else {
|
|
/* Remaining bits that do not occupy the whole byte */
|
|
u8 mask = ~0u >> (8 - (sz % 8));
|
|
|
|
dst[i] = bmp1[i] & bmp2[i] & mask;
|
|
}
|
|
|
|
res |= dst[i];
|
|
}
|
|
|
|
return res != 0;
|
|
}
|
|
|
|
static inline int ice_find_first_bit(ice_bitmap_t *name, u16 size)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = 0; i < BITS_PER_BYTE * (size / BITS_PER_BYTE); i++)
|
|
if (ice_is_bit_set(name, i))
|
|
return i;
|
|
return size;
|
|
}
|
|
|
|
static inline int ice_find_next_bit(ice_bitmap_t *name, u16 size, u16 bits)
|
|
{
|
|
u16 i;
|
|
|
|
for (i = bits; i < BITS_PER_BYTE * (size / BITS_PER_BYTE); i++)
|
|
if (ice_is_bit_set(name, i))
|
|
return i;
|
|
return bits;
|
|
}
|
|
|
|
#define for_each_set_bit(bit, addr, size) \
|
|
for ((bit) = ice_find_first_bit((addr), (size)); \
|
|
(bit) < (size); \
|
|
(bit) = ice_find_next_bit((addr), (size), (bit) + 1))
|
|
|
|
static inline bool ice_is_any_bit_set(ice_bitmap_t *bitmap, u32 bits)
|
|
{
|
|
u32 max_index = BITS_TO_CHUNKS(bits);
|
|
u32 i;
|
|
|
|
for (i = 0; i < max_index; i++) {
|
|
if (bitmap[i])
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* memory allocation tracking */
|
|
struct ice_dma_mem {
|
|
void *va;
|
|
u64 pa;
|
|
u32 size;
|
|
const void *zone;
|
|
} __attribute__((packed));
|
|
|
|
struct ice_virt_mem {
|
|
void *va;
|
|
u32 size;
|
|
} __attribute__((packed));
|
|
|
|
#define ice_malloc(h, s) rte_zmalloc(NULL, s, 0)
|
|
#define ice_calloc(h, c, s) rte_zmalloc(NULL, (c) * (s), 0)
|
|
#define ice_free(h, m) rte_free(m)
|
|
|
|
#define ice_memset(a, b, c, d) memset((a), (b), (c))
|
|
#define ice_memcpy(a, b, c, d) rte_memcpy((a), (b), (c))
|
|
#define ice_memdup(a, b, c, d) rte_memcpy(ice_malloc(a, c), b, c)
|
|
|
|
#define CPU_TO_BE16(o) rte_cpu_to_be_16(o)
|
|
#define CPU_TO_BE32(o) rte_cpu_to_be_32(o)
|
|
#define CPU_TO_BE64(o) rte_cpu_to_be_64(o)
|
|
#define CPU_TO_LE16(o) rte_cpu_to_le_16(o)
|
|
#define CPU_TO_LE32(s) rte_cpu_to_le_32(s)
|
|
#define CPU_TO_LE64(h) rte_cpu_to_le_64(h)
|
|
#define LE16_TO_CPU(a) rte_le_to_cpu_16(a)
|
|
#define LE32_TO_CPU(c) rte_le_to_cpu_32(c)
|
|
#define LE64_TO_CPU(k) rte_le_to_cpu_64(k)
|
|
|
|
#define NTOHS(a) rte_be_to_cpu_16(a)
|
|
#define NTOHL(a) rte_be_to_cpu_32(a)
|
|
#define HTONS(a) rte_cpu_to_be_16(a)
|
|
#define HTONL(a) rte_cpu_to_be_32(a)
|
|
|
|
static inline void
|
|
ice_set_bit(unsigned int nr, volatile ice_bitmap_t *addr)
|
|
{
|
|
__sync_fetch_and_or(addr, (1UL << nr));
|
|
}
|
|
|
|
static inline void
|
|
ice_clear_bit(unsigned int nr, volatile ice_bitmap_t *addr)
|
|
{
|
|
__sync_fetch_and_and(addr, (0UL << nr));
|
|
}
|
|
|
|
static inline void
|
|
ice_zero_bitmap(ice_bitmap_t *bmp, u16 size)
|
|
{
|
|
unsigned long mask;
|
|
u16 i;
|
|
|
|
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
|
|
bmp[i] = 0;
|
|
mask = BITS_CHUNK_MASK(size);
|
|
bmp[i] &= ~mask;
|
|
}
|
|
|
|
static inline void
|
|
ice_or_bitmap(ice_bitmap_t *dst, const ice_bitmap_t *bmp1,
|
|
const ice_bitmap_t *bmp2, u16 size)
|
|
{
|
|
unsigned long mask;
|
|
u16 i;
|
|
|
|
/* Handle all but last chunk*/
|
|
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
|
|
dst[i] = bmp1[i] | bmp2[i];
|
|
|
|
/* We want to only OR bits within the size. Furthermore, we also do
|
|
* not want to modify destination bits which are beyond the specified
|
|
* size. Use a bitmask to ensure that we only modify the bits that are
|
|
* within the specified size.
|
|
*/
|
|
mask = BITS_CHUNK_MASK(size);
|
|
dst[i] &= ~mask;
|
|
dst[i] |= (bmp1[i] | bmp2[i]) & mask;
|
|
}
|
|
|
|
static inline void ice_cp_bitmap(ice_bitmap_t *dst, ice_bitmap_t *src, u16 size)
|
|
{
|
|
ice_bitmap_t mask;
|
|
u16 i;
|
|
|
|
/* Handle all but last chunk*/
|
|
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
|
|
dst[i] = src[i];
|
|
|
|
/* We want to only copy bits within the size.*/
|
|
mask = BITS_CHUNK_MASK(size);
|
|
dst[i] &= ~mask;
|
|
dst[i] |= src[i] & mask;
|
|
}
|
|
|
|
static inline bool
|
|
ice_cmp_bitmap(ice_bitmap_t *bmp1, ice_bitmap_t *bmp2, u16 size)
|
|
{
|
|
ice_bitmap_t mask;
|
|
u16 i;
|
|
|
|
/* Handle all but last chunk*/
|
|
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
|
|
if (bmp1[i] != bmp2[i])
|
|
return false;
|
|
|
|
/* We want to only compare bits within the size.*/
|
|
mask = BITS_CHUNK_MASK(size);
|
|
if ((bmp1[i] & mask) != (bmp2[i] & mask))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* SW spinlock */
|
|
struct ice_lock {
|
|
rte_spinlock_t spinlock;
|
|
};
|
|
|
|
static inline void
|
|
ice_init_lock(struct ice_lock *sp)
|
|
{
|
|
rte_spinlock_init(&sp->spinlock);
|
|
}
|
|
|
|
static inline void
|
|
ice_acquire_lock(struct ice_lock *sp)
|
|
{
|
|
rte_spinlock_lock(&sp->spinlock);
|
|
}
|
|
|
|
static inline void
|
|
ice_release_lock(struct ice_lock *sp)
|
|
{
|
|
rte_spinlock_unlock(&sp->spinlock);
|
|
}
|
|
|
|
static inline void
|
|
ice_destroy_lock(__attribute__((unused)) struct ice_lock *sp)
|
|
{
|
|
}
|
|
|
|
struct ice_hw;
|
|
|
|
static inline void *
|
|
ice_alloc_dma_mem(__attribute__((unused)) struct ice_hw *hw,
|
|
struct ice_dma_mem *mem, u64 size)
|
|
{
|
|
const struct rte_memzone *mz = NULL;
|
|
char z_name[RTE_MEMZONE_NAMESIZE];
|
|
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
snprintf(z_name, sizeof(z_name), "ice_dma_%"PRIu64, rte_rand());
|
|
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
|
|
0, RTE_PGSIZE_2M);
|
|
if (!mz)
|
|
return NULL;
|
|
|
|
mem->size = size;
|
|
mem->va = mz->addr;
|
|
mem->pa = mz->phys_addr;
|
|
mem->zone = (const void *)mz;
|
|
PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: "
|
|
"%"PRIu64, mz->name, mem->pa);
|
|
|
|
return mem->va;
|
|
}
|
|
|
|
static inline void
|
|
ice_free_dma_mem(__attribute__((unused)) struct ice_hw *hw,
|
|
struct ice_dma_mem *mem)
|
|
{
|
|
PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: "
|
|
"%"PRIu64, ((const struct rte_memzone *)mem->zone)->name,
|
|
mem->pa);
|
|
rte_memzone_free((const struct rte_memzone *)mem->zone);
|
|
mem->zone = NULL;
|
|
mem->va = NULL;
|
|
mem->pa = (u64)0;
|
|
}
|
|
|
|
static inline u8
|
|
ice_hweight8(u32 num)
|
|
{
|
|
u8 bits = 0;
|
|
u32 i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
bits += (u8)(num & 0x1);
|
|
num >>= 1;
|
|
}
|
|
|
|
return bits;
|
|
}
|
|
|
|
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
|
|
#define DELAY(x) rte_delay_us(x)
|
|
#define ice_usec_delay(x) rte_delay_us(x)
|
|
#define ice_msec_delay(x, y) rte_delay_us(1000 * (x))
|
|
#define udelay(x) DELAY(x)
|
|
#define msleep(x) DELAY(1000 * (x))
|
|
#define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000))
|
|
|
|
struct ice_list_entry {
|
|
LIST_ENTRY(ice_list_entry) next;
|
|
};
|
|
|
|
LIST_HEAD(ice_list_head, ice_list_entry);
|
|
|
|
#define LIST_ENTRY_TYPE ice_list_entry
|
|
#define LIST_HEAD_TYPE ice_list_head
|
|
#define INIT_LIST_HEAD(list_head) LIST_INIT(list_head)
|
|
#define LIST_DEL(entry) LIST_REMOVE(entry, next)
|
|
/* LIST_EMPTY(list_head)) the same in sys/queue.h */
|
|
|
|
/*Note parameters are swapped*/
|
|
#define LIST_FIRST_ENTRY(head, type, field) (type *)((head)->lh_first)
|
|
#define LIST_NEXT_ENTRY(entry, type, field) \
|
|
((type *)(entry)->field.next.le_next)
|
|
#define LIST_ADD(entry, list_head) LIST_INSERT_HEAD(list_head, entry, next)
|
|
#define LIST_ADD_AFTER(entry, list_entry) \
|
|
LIST_INSERT_AFTER(list_entry, entry, next)
|
|
#define LIST_FOR_EACH_ENTRY(pos, head, type, member) \
|
|
for ((pos) = (head)->lh_first ? \
|
|
container_of((head)->lh_first, struct type, member) : \
|
|
0; \
|
|
(pos); \
|
|
(pos) = (pos)->member.next.le_next ? \
|
|
container_of((pos)->member.next.le_next, struct type, \
|
|
member) : \
|
|
0)
|
|
|
|
#define LIST_REPLACE_INIT(list_head, head) do { \
|
|
(head)->lh_first = (list_head)->lh_first; \
|
|
INIT_LIST_HEAD(list_head); \
|
|
} while (0)
|
|
|
|
#define HLIST_NODE_TYPE LIST_ENTRY_TYPE
|
|
#define HLIST_HEAD_TYPE LIST_HEAD_TYPE
|
|
#define INIT_HLIST_HEAD(list_head) INIT_LIST_HEAD(list_head)
|
|
#define HLIST_ADD_HEAD(entry, list_head) LIST_ADD(entry, list_head)
|
|
#define HLIST_EMPTY(list_head) LIST_EMPTY(list_head)
|
|
#define HLIST_DEL(entry) LIST_DEL(entry)
|
|
#define HLIST_FOR_EACH_ENTRY(pos, head, type, member) \
|
|
LIST_FOR_EACH_ENTRY(pos, head, type, member)
|
|
#define LIST_FOR_EACH_ENTRY_SAFE(pos, tmp, head, type, member) \
|
|
LIST_FOR_EACH_ENTRY(pos, head, type, member)
|
|
|
|
#ifndef ICE_DBG_TRACE
|
|
#define ICE_DBG_TRACE BIT_ULL(0)
|
|
#endif
|
|
|
|
#ifndef DIVIDE_AND_ROUND_UP
|
|
#define DIVIDE_AND_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
|
|
#endif
|
|
|
|
#ifndef ICE_INTEL_VENDOR_ID
|
|
#define ICE_INTEL_VENDOR_ID 0x8086
|
|
#endif
|
|
|
|
#ifndef IS_UNICAST_ETHER_ADDR
|
|
#define IS_UNICAST_ETHER_ADDR(addr) \
|
|
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 0))
|
|
#endif
|
|
|
|
#ifndef IS_MULTICAST_ETHER_ADDR
|
|
#define IS_MULTICAST_ETHER_ADDR(addr) \
|
|
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 1))
|
|
#endif
|
|
|
|
#ifndef IS_BROADCAST_ETHER_ADDR
|
|
/* Check whether an address is broadcast. */
|
|
#define IS_BROADCAST_ETHER_ADDR(addr) \
|
|
((bool)((((u16 *)(addr))[0] == ((u16)0xffff))))
|
|
#endif
|
|
|
|
#ifndef IS_ZERO_ETHER_ADDR
|
|
#define IS_ZERO_ETHER_ADDR(addr) \
|
|
(((bool)((((u16 *)(addr))[0] == ((u16)0x0)))) && \
|
|
((bool)((((u16 *)(addr))[1] == ((u16)0x0)))) && \
|
|
((bool)((((u16 *)(addr))[2] == ((u16)0x0)))))
|
|
#endif
|
|
|
|
#endif /* _ICE_OSDEP_H_ */
|