Gautam Dawar 05fa170a2b net/sfc/base: support data path with EVB module
ef10_nic_init() allocates a vAdaptor for the physical port in current
flow. In case of SR-IOV, this vAdaptor must be created for the PF as the
vSwitch is allocated on the physical port. So, the call to
efx_mcdi_vadaptor_alloc() should be avoided in ef10_nic_init() in SR-IOV
flow. To achieve this, for SR-IOV use case, the vSwitch is created
before NIC initialization and its handle is used to prevent vAdaptor
allocation in ef10_nic_init(). This approach has been taken to minimize
the changes in NIC initialization flow.

This is also the case with Linux driver where vSwitch creation happens
before NIC initialization.

Also, when DMA queues need to be allocated for Tx/Rx functionality
(MC_CMD_INIT_RXQ / MC_CMD_INIT_TXQ), the correct vPort is selected
based on efx_vswitch_t property of efx_nic_t structure - vport
corresponding to PF in case of SR-IOV use case and EVB_PORT_ID_ASSIGNED
for physical port.

Signed-off-by: Gautam Dawar <gdawar@solarflare.com>
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2019-06-20 23:42:04 +02:00

2669 lines
64 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2012-2018 Solarflare Communications Inc.
* All rights reserved.
*/
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_MON_MCDI
#include "mcdi_mon.h"
#endif
#if EFX_OPTS_EF10()
#include "ef10_tlv_layout.h"
__checkReturn efx_rc_t
efx_mcdi_get_port_assignment(
__in efx_nic_t *enp,
__out uint32_t *portp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_port_modes(
__in efx_nic_t *enp,
__out uint32_t *modesp,
__out_opt uint32_t *current_modep,
__out_opt uint32_t *default_modep)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PORT_MODES_IN_LEN,
MC_CMD_GET_PORT_MODES_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
req.emr_cmd = MC_CMD_GET_PORT_MODES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
/*
* Require only Modes and DefaultMode fields, unless the current mode
* was requested (CurrentMode field was added for Medford).
*/
if (req.emr_out_length_used <
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
rc = EMSGSIZE;
goto fail2;
}
if ((current_modep != NULL) && (req.emr_out_length_used <
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
rc = EMSGSIZE;
goto fail3;
}
*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
if (current_modep != NULL) {
*current_modep = MCDI_OUT_DWORD(req,
GET_PORT_MODES_OUT_CURRENT_MODE);
}
if (default_modep != NULL) {
*default_modep = MCDI_OUT_DWORD(req,
GET_PORT_MODES_OUT_DEFAULT_MODE);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_get_port_mode_bandwidth(
__in efx_nic_t *enp,
__out uint32_t *bandwidth_mbpsp)
{
uint32_t port_modes;
uint32_t current_mode;
efx_port_t *epp = &(enp->en_port);
uint32_t single_lane;
uint32_t dual_lane;
uint32_t quad_lane;
uint32_t bandwidth;
efx_rc_t rc;
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes,
&current_mode, NULL)) != 0) {
/* No port mode info available. */
goto fail1;
}
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_25000FDX))
single_lane = 25000;
else
single_lane = 10000;
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_50000FDX))
dual_lane = 50000;
else
dual_lane = 20000;
if (epp->ep_phy_cap_mask & (1 << EFX_PHY_CAP_100000FDX))
quad_lane = 100000;
else
quad_lane = 40000;
switch (current_mode) {
case TLV_PORT_MODE_1x1_NA: /* mode 0 */
bandwidth = single_lane;
break;
case TLV_PORT_MODE_1x2_NA: /* mode 10 */
case TLV_PORT_MODE_NA_1x2: /* mode 11 */
bandwidth = dual_lane;
break;
case TLV_PORT_MODE_1x1_1x1: /* mode 2 */
bandwidth = single_lane + single_lane;
break;
case TLV_PORT_MODE_4x1_NA: /* mode 4 */
case TLV_PORT_MODE_NA_4x1: /* mode 8 */
bandwidth = 4 * single_lane;
break;
case TLV_PORT_MODE_2x1_2x1: /* mode 5 */
bandwidth = (2 * single_lane) + (2 * single_lane);
break;
case TLV_PORT_MODE_1x2_1x2: /* mode 12 */
bandwidth = dual_lane + dual_lane;
break;
case TLV_PORT_MODE_1x2_2x1: /* mode 17 */
case TLV_PORT_MODE_2x1_1x2: /* mode 18 */
bandwidth = dual_lane + (2 * single_lane);
break;
/* Legacy Medford-only mode. Do not use (see bug63270) */
case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2: /* mode 9 */
bandwidth = 4 * single_lane;
break;
case TLV_PORT_MODE_1x4_NA: /* mode 1 */
case TLV_PORT_MODE_NA_1x4: /* mode 22 */
bandwidth = quad_lane;
break;
case TLV_PORT_MODE_2x2_NA: /* mode 13 */
case TLV_PORT_MODE_NA_2x2: /* mode 14 */
bandwidth = 2 * dual_lane;
break;
case TLV_PORT_MODE_1x4_2x1: /* mode 6 */
case TLV_PORT_MODE_2x1_1x4: /* mode 7 */
bandwidth = quad_lane + (2 * single_lane);
break;
case TLV_PORT_MODE_1x4_1x2: /* mode 15 */
case TLV_PORT_MODE_1x2_1x4: /* mode 16 */
bandwidth = quad_lane + dual_lane;
break;
case TLV_PORT_MODE_1x4_1x4: /* mode 3 */
bandwidth = quad_lane + quad_lane;
break;
default:
rc = EINVAL;
goto fail2;
}
*bandwidth_mbpsp = bandwidth;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_vadaptor_alloc(
__in efx_nic_t *enp,
__in uint32_t port_id)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_ALLOC_IN_LEN,
MC_CMD_VADAPTOR_ALLOC_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_vadaptor_free(
__in efx_nic_t *enp,
__in uint32_t port_id)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VADAPTOR_FREE_IN_LEN,
MC_CMD_VADAPTOR_FREE_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_VADAPTOR_FREE;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_mac_address_pf(
__in efx_nic_t *enp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
rc = ENOENT;
goto fail3;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
addrp = MCDI_OUT2(req, uint8_t,
GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_mac_address_vf(
__in efx_nic_t *enp,
__out_ecount_opt(6) uint8_t mac_addrp[6])
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
EVB_PORT_ID_ASSIGNED);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used <
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
rc = EMSGSIZE;
goto fail2;
}
if (MCDI_OUT_DWORD(req,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
rc = ENOENT;
goto fail3;
}
if (mac_addrp != NULL) {
uint8_t *addrp;
addrp = MCDI_OUT2(req, uint8_t,
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
}
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_clock(
__in efx_nic_t *enp,
__out uint32_t *sys_freqp,
__out uint32_t *dpcpu_freqp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CLOCK_IN_LEN,
MC_CMD_GET_CLOCK_OUT_LEN);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
req.emr_cmd = MC_CMD_GET_CLOCK;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
if (*sys_freqp == 0) {
rc = EINVAL;
goto fail3;
}
*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
if (*dpcpu_freqp == 0) {
rc = EINVAL;
goto fail4;
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_rxdp_config(
__in efx_nic_t *enp,
__out uint32_t *end_paddingp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_RXDP_CONFIG_IN_LEN,
MC_CMD_GET_RXDP_CONFIG_OUT_LEN);
uint32_t end_padding;
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_RXDP_CONFIG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_RXDP_CONFIG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_RXDP_CONFIG_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
GET_RXDP_CONFIG_OUT_PAD_HOST_DMA) == 0) {
/* RX DMA end padding is disabled */
end_padding = 0;
} else {
switch (MCDI_OUT_DWORD_FIELD(req, GET_RXDP_CONFIG_OUT_DATA,
GET_RXDP_CONFIG_OUT_PAD_HOST_LEN)) {
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_64:
end_padding = 64;
break;
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_128:
end_padding = 128;
break;
case MC_CMD_SET_RXDP_CONFIG_IN_PAD_HOST_256:
end_padding = 256;
break;
default:
rc = ENOTSUP;
goto fail2;
}
}
*end_paddingp = end_padding;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_get_vector_cfg(
__in efx_nic_t *enp,
__out_opt uint32_t *vec_basep,
__out_opt uint32_t *pf_nvecp,
__out_opt uint32_t *vf_nvecp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_VECTOR_CFG_IN_LEN,
MC_CMD_GET_VECTOR_CFG_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
if (vec_basep != NULL)
*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
if (pf_nvecp != NULL)
*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
if (vf_nvecp != NULL)
*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_alloc_vis(
__in efx_nic_t *enp,
__in uint32_t min_vi_count,
__in uint32_t max_vi_count,
__out uint32_t *vi_basep,
__out uint32_t *vi_countp,
__out uint32_t *vi_shiftp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_VIS_IN_LEN,
MC_CMD_ALLOC_VIS_EXT_OUT_LEN);
efx_rc_t rc;
if (vi_countp == NULL) {
rc = EINVAL;
goto fail1;
}
req.emr_cmd = MC_CMD_ALLOC_VIS;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
/* Report VI_SHIFT if available (always zero for Huntington) */
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
*vi_shiftp = 0;
else
*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_free_vis(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
efx_rc_t rc;
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
req.emr_cmd = MC_CMD_FREE_VIS;
req.emr_in_buf = NULL;
req.emr_in_length = 0;
req.emr_out_buf = NULL;
req.emr_out_length = 0;
efx_mcdi_execute_quiet(enp, &req);
/* Ignore ELREADY (no allocated VIs, so nothing to free) */
if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_alloc_piobuf(
__in efx_nic_t *enp,
__out efx_piobuf_handle_t *handlep)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ALLOC_PIOBUF_IN_LEN,
MC_CMD_ALLOC_PIOBUF_OUT_LEN);
efx_rc_t rc;
if (handlep == NULL) {
rc = EINVAL;
goto fail1;
}
req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_free_piobuf(
__in efx_nic_t *enp,
__in efx_piobuf_handle_t handle)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FREE_PIOBUF_IN_LEN,
MC_CMD_FREE_PIOBUF_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_FREE_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_link_piobuf(
__in efx_nic_t *enp,
__in uint32_t vi_index,
__in efx_piobuf_handle_t handle)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_LINK_PIOBUF_IN_LEN,
MC_CMD_LINK_PIOBUF_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_LINK_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
efx_mcdi_unlink_piobuf(
__in efx_nic_t *enp,
__in uint32_t vi_index)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_UNLINK_PIOBUF_IN_LEN,
MC_CMD_UNLINK_PIOBUF_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static void
ef10_nic_alloc_piobufs(
__in efx_nic_t *enp,
__in uint32_t max_piobuf_count)
{
efx_piobuf_handle_t *handlep;
unsigned int i;
EFSYS_ASSERT3U(max_piobuf_count, <=,
EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
enp->en_arch.ef10.ena_piobuf_count = 0;
for (i = 0; i < max_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
goto fail1;
enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
enp->en_arch.ef10.ena_piobuf_count++;
}
return;
fail1:
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
(void) efx_mcdi_free_piobuf(enp, *handlep);
*handlep = EFX_PIOBUF_HANDLE_INVALID;
}
enp->en_arch.ef10.ena_piobuf_count = 0;
}
static void
ef10_nic_free_piobufs(
__in efx_nic_t *enp)
{
efx_piobuf_handle_t *handlep;
unsigned int i;
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
(void) efx_mcdi_free_piobuf(enp, *handlep);
*handlep = EFX_PIOBUF_HANDLE_INVALID;
}
enp->en_arch.ef10.ena_piobuf_count = 0;
}
/* Sub-allocate a block from a piobuf */
__checkReturn efx_rc_t
ef10_nic_pio_alloc(
__inout efx_nic_t *enp,
__out uint32_t *bufnump,
__out efx_piobuf_handle_t *handlep,
__out uint32_t *blknump,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
uint32_t blk_per_buf;
uint32_t buf, blk;
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
EFSYS_ASSERT(bufnump);
EFSYS_ASSERT(handlep);
EFSYS_ASSERT(blknump);
EFSYS_ASSERT(offsetp);
EFSYS_ASSERT(sizep);
if ((edcp->edc_pio_alloc_size == 0) ||
(enp->en_arch.ef10.ena_piobuf_count == 0)) {
rc = ENOMEM;
goto fail1;
}
blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
if (~(*map) == 0)
continue;
EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
for (blk = 0; blk < blk_per_buf; blk++) {
if ((*map & (1u << blk)) == 0) {
*map |= (1u << blk);
goto done;
}
}
}
rc = ENOMEM;
goto fail2;
done:
*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
*bufnump = buf;
*blknump = blk;
*sizep = edcp->edc_pio_alloc_size;
*offsetp = blk * (*sizep);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
/* Free a piobuf sub-allocated block */
__checkReturn efx_rc_t
ef10_nic_pio_free(
__inout efx_nic_t *enp,
__in uint32_t bufnum,
__in uint32_t blknum)
{
uint32_t *map;
efx_rc_t rc;
if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
(blknum >= (8 * sizeof (*map)))) {
rc = EINVAL;
goto fail1;
}
map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
if ((*map & (1u << blknum)) == 0) {
rc = ENOENT;
goto fail2;
}
*map &= ~(1u << blknum);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_pio_link(
__inout efx_nic_t *enp,
__in uint32_t vi_index,
__in efx_piobuf_handle_t handle)
{
return (efx_mcdi_link_piobuf(enp, vi_index, handle));
}
__checkReturn efx_rc_t
ef10_nic_pio_unlink(
__inout efx_nic_t *enp,
__in uint32_t vi_index)
{
return (efx_mcdi_unlink_piobuf(enp, vi_index));
}
static __checkReturn efx_rc_t
ef10_mcdi_get_pf_count(
__in efx_nic_t *enp,
__out uint32_t *pf_countp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_PF_COUNT_IN_LEN,
MC_CMD_GET_PF_COUNT_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_PF_COUNT;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*pf_countp = *MCDI_OUT(req, uint8_t,
MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
EFSYS_ASSERT(*pf_countp != 0);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
ef10_get_datapath_caps(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_CAPABILITIES_IN_LEN,
MC_CMD_GET_CAPABILITIES_V5_OUT_LEN);
efx_rc_t rc;
if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
goto fail1;
req.emr_cmd = MC_CMD_GET_CAPABILITIES;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_CAPABILITIES_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_CAPABILITIES_V5_OUT_LEN;
efx_mcdi_execute_quiet(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail2;
}
if (req.emr_out_length_used < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
rc = EMSGSIZE;
goto fail3;
}
#define CAP_FLAGS1(_req, _flag) \
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_OUT_FLAGS1) & \
(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN)))
#define CAP_FLAGS2(_req, _flag) \
(((_req).emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) && \
(MCDI_OUT_DWORD((_req), GET_CAPABILITIES_V2_OUT_FLAGS2) & \
(1u << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## _flag ## _LBN))))
/*
* Huntington RXDP firmware inserts a 0 or 14 byte prefix.
* We only support the 14 byte prefix here.
*/
if (CAP_FLAGS1(req, RX_PREFIX_LEN_14) == 0) {
rc = ENOTSUP;
goto fail4;
}
encp->enc_rx_prefix_size = 14;
#if EFSYS_OPT_RX_SCALE
/* Check if the firmware supports additional RSS modes */
if (CAP_FLAGS1(req, ADDITIONAL_RSS_MODES))
encp->enc_rx_scale_additional_modes_supported = B_TRUE;
else
encp->enc_rx_scale_additional_modes_supported = B_FALSE;
#endif /* EFSYS_OPT_RX_SCALE */
/* Check if the firmware supports TSO */
if (CAP_FLAGS1(req, TX_TSO))
encp->enc_fw_assisted_tso_enabled = B_TRUE;
else
encp->enc_fw_assisted_tso_enabled = B_FALSE;
/* Check if the firmware supports FATSOv2 */
if (CAP_FLAGS2(req, TX_TSO_V2)) {
encp->enc_fw_assisted_tso_v2_enabled = B_TRUE;
encp->enc_fw_assisted_tso_v2_n_contexts = MCDI_OUT_WORD(req,
GET_CAPABILITIES_V2_OUT_TX_TSO_V2_N_CONTEXTS);
} else {
encp->enc_fw_assisted_tso_v2_enabled = B_FALSE;
encp->enc_fw_assisted_tso_v2_n_contexts = 0;
}
/* Check if the firmware supports FATSOv2 encap */
if (CAP_FLAGS2(req, TX_TSO_V2_ENCAP))
encp->enc_fw_assisted_tso_v2_encap_enabled = B_TRUE;
else
encp->enc_fw_assisted_tso_v2_encap_enabled = B_FALSE;
/* Check if the firmware has vadapter/vport/vswitch support */
if (CAP_FLAGS1(req, EVB))
encp->enc_datapath_cap_evb = B_TRUE;
else
encp->enc_datapath_cap_evb = B_FALSE;
/* Check if the firmware supports VLAN insertion */
if (CAP_FLAGS1(req, TX_VLAN_INSERTION))
encp->enc_hw_tx_insert_vlan_enabled = B_TRUE;
else
encp->enc_hw_tx_insert_vlan_enabled = B_FALSE;
/* Check if the firmware supports RX event batching */
if (CAP_FLAGS1(req, RX_BATCHING))
encp->enc_rx_batching_enabled = B_TRUE;
else
encp->enc_rx_batching_enabled = B_FALSE;
/*
* Even if batching isn't reported as supported, we may still get
* batched events (see bug61153).
*/
encp->enc_rx_batch_max = 16;
/* Check if the firmware supports disabling scatter on RXQs */
if (CAP_FLAGS1(req, RX_DISABLE_SCATTER))
encp->enc_rx_disable_scatter_supported = B_TRUE;
else
encp->enc_rx_disable_scatter_supported = B_FALSE;
/* Check if the firmware supports packed stream mode */
if (CAP_FLAGS1(req, RX_PACKED_STREAM))
encp->enc_rx_packed_stream_supported = B_TRUE;
else
encp->enc_rx_packed_stream_supported = B_FALSE;
/*
* Check if the firmware supports configurable buffer sizes
* for packed stream mode (otherwise buffer size is 1Mbyte)
*/
if (CAP_FLAGS1(req, RX_PACKED_STREAM_VAR_BUFFERS))
encp->enc_rx_var_packed_stream_supported = B_TRUE;
else
encp->enc_rx_var_packed_stream_supported = B_FALSE;
/* Check if the firmware supports equal stride super-buffer mode */
if (CAP_FLAGS2(req, EQUAL_STRIDE_SUPER_BUFFER))
encp->enc_rx_es_super_buffer_supported = B_TRUE;
else
encp->enc_rx_es_super_buffer_supported = B_FALSE;
/* Check if the firmware supports FW subvariant w/o Tx checksumming */
if (CAP_FLAGS2(req, FW_SUBVARIANT_NO_TX_CSUM))
encp->enc_fw_subvariant_no_tx_csum_supported = B_TRUE;
else
encp->enc_fw_subvariant_no_tx_csum_supported = B_FALSE;
/* Check if the firmware supports set mac with running filters */
if (CAP_FLAGS1(req, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED))
encp->enc_allow_set_mac_with_installed_filters = B_TRUE;
else
encp->enc_allow_set_mac_with_installed_filters = B_FALSE;
/*
* Check if firmware supports the extended MC_CMD_SET_MAC, which allows
* specifying which parameters to configure.
*/
if (CAP_FLAGS1(req, SET_MAC_ENHANCED))
encp->enc_enhanced_set_mac_supported = B_TRUE;
else
encp->enc_enhanced_set_mac_supported = B_FALSE;
/*
* Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
* us to let the firmware choose the settings to use on an EVQ.
*/
if (CAP_FLAGS2(req, INIT_EVQ_V2))
encp->enc_init_evq_v2_supported = B_TRUE;
else
encp->enc_init_evq_v2_supported = B_FALSE;
/*
* Check if the NO_CONT_EV mode for RX events is supported.
*/
if (CAP_FLAGS2(req, INIT_RXQ_NO_CONT_EV))
encp->enc_no_cont_ev_mode_supported = B_TRUE;
else
encp->enc_no_cont_ev_mode_supported = B_FALSE;
/*
* Check if buffer size may and must be specified on INIT_RXQ.
* It may be always specified to efx_rx_qcreate(), but will be
* just kept libefx internal if MCDI does not support it.
*/
if (CAP_FLAGS2(req, INIT_RXQ_WITH_BUFFER_SIZE))
encp->enc_init_rxq_with_buffer_size = B_TRUE;
else
encp->enc_init_rxq_with_buffer_size = B_FALSE;
/*
* Check if firmware-verified NVRAM updates must be used.
*
* The firmware trusted installer requires all NVRAM updates to use
* version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
* and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
* partition and report the result).
*/
if (CAP_FLAGS2(req, NVRAM_UPDATE_REPORT_VERIFY_RESULT))
encp->enc_nvram_update_verify_result_supported = B_TRUE;
else
encp->enc_nvram_update_verify_result_supported = B_FALSE;
if (CAP_FLAGS2(req, NVRAM_UPDATE_POLL_VERIFY_RESULT))
encp->enc_nvram_update_poll_verify_result_supported = B_TRUE;
else
encp->enc_nvram_update_poll_verify_result_supported = B_FALSE;
/*
* Check if firmware update via the BUNDLE partition is supported
*/
if (CAP_FLAGS2(req, BUNDLE_UPDATE))
encp->enc_nvram_bundle_update_supported = B_TRUE;
else
encp->enc_nvram_bundle_update_supported = B_FALSE;
/*
* Check if firmware provides packet memory and Rx datapath
* counters.
*/
if (CAP_FLAGS1(req, PM_AND_RXDP_COUNTERS))
encp->enc_pm_and_rxdp_counters = B_TRUE;
else
encp->enc_pm_and_rxdp_counters = B_FALSE;
/*
* Check if the 40G MAC hardware is capable of reporting
* statistics for Tx size bins.
*/
if (CAP_FLAGS2(req, MAC_STATS_40G_TX_SIZE_BINS))
encp->enc_mac_stats_40g_tx_size_bins = B_TRUE;
else
encp->enc_mac_stats_40g_tx_size_bins = B_FALSE;
/*
* Check if firmware supports VXLAN and NVGRE tunnels.
* The capability indicates Geneve protocol support as well.
*/
if (CAP_FLAGS1(req, VXLAN_NVGRE)) {
encp->enc_tunnel_encapsulations_supported =
(1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
(1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
(1u << EFX_TUNNEL_PROTOCOL_NVGRE);
EFX_STATIC_ASSERT(EFX_TUNNEL_MAXNENTRIES ==
MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
encp->enc_tunnel_config_udp_entries_max =
EFX_TUNNEL_MAXNENTRIES;
} else {
encp->enc_tunnel_config_udp_entries_max = 0;
}
/*
* Check if firmware reports the VI window mode.
* Medford2 has a variable VI window size (8K, 16K or 64K).
* Medford and Huntington have a fixed 8K VI window size.
*/
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
uint8_t mode =
MCDI_OUT_BYTE(req, GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
switch (mode) {
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_8K:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
break;
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_16K:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_16K;
break;
case MC_CMD_GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE_64K:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_64K;
break;
default:
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
break;
}
} else if ((enp->en_family == EFX_FAMILY_HUNTINGTON) ||
(enp->en_family == EFX_FAMILY_MEDFORD)) {
/* Huntington and Medford have fixed 8K window size */
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_8K;
} else {
encp->enc_vi_window_shift = EFX_VI_WINDOW_SHIFT_INVALID;
}
/* Check if firmware supports extended MAC stats. */
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
/* Extended stats buffer supported */
encp->enc_mac_stats_nstats = MCDI_OUT_WORD(req,
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
} else {
/* Use Siena-compatible legacy MAC stats */
encp->enc_mac_stats_nstats = MC_CMD_MAC_NSTATS;
}
if (encp->enc_mac_stats_nstats >= MC_CMD_MAC_NSTATS_V2)
encp->enc_fec_counters = B_TRUE;
else
encp->enc_fec_counters = B_FALSE;
/* Check if the firmware provides head-of-line blocking counters */
if (CAP_FLAGS2(req, RXDP_HLB_IDLE))
encp->enc_hlb_counters = B_TRUE;
else
encp->enc_hlb_counters = B_FALSE;
#if EFSYS_OPT_RX_SCALE
if (CAP_FLAGS1(req, RX_RSS_LIMITED)) {
/* Only one exclusive RSS context is available per port. */
encp->enc_rx_scale_max_exclusive_contexts = 1;
switch (enp->en_family) {
case EFX_FAMILY_MEDFORD2:
encp->enc_rx_scale_hash_alg_mask =
(1U << EFX_RX_HASHALG_TOEPLITZ);
break;
case EFX_FAMILY_MEDFORD:
case EFX_FAMILY_HUNTINGTON:
/*
* Packed stream firmware variant maintains a
* non-standard algorithm for hash computation.
* It implies explicit XORing together
* source + destination IP addresses (or last
* four bytes in the case of IPv6) and using the
* resulting value as the input to a Toeplitz hash.
*/
encp->enc_rx_scale_hash_alg_mask =
(1U << EFX_RX_HASHALG_PACKED_STREAM);
break;
default:
rc = EINVAL;
goto fail5;
}
/* Port numbers cannot contribute to the hash value */
encp->enc_rx_scale_l4_hash_supported = B_FALSE;
} else {
/*
* Maximum number of exclusive RSS contexts.
* EF10 hardware supports 64 in total, but 6 are reserved
* for shared contexts. They are a global resource so
* not all may be available.
*/
encp->enc_rx_scale_max_exclusive_contexts = 64 - 6;
encp->enc_rx_scale_hash_alg_mask =
(1U << EFX_RX_HASHALG_TOEPLITZ);
/*
* It is possible to use port numbers as
* the input data for hash computation.
*/
encp->enc_rx_scale_l4_hash_supported = B_TRUE;
}
#endif /* EFSYS_OPT_RX_SCALE */
/* Check if the firmware supports "FLAG" and "MARK" filter actions */
if (CAP_FLAGS2(req, FILTER_ACTION_FLAG))
encp->enc_filter_action_flag_supported = B_TRUE;
else
encp->enc_filter_action_flag_supported = B_FALSE;
if (CAP_FLAGS2(req, FILTER_ACTION_MARK))
encp->enc_filter_action_mark_supported = B_TRUE;
else
encp->enc_filter_action_mark_supported = B_FALSE;
/* Get maximum supported value for "MARK" filter action */
if (req.emr_out_length_used >= MC_CMD_GET_CAPABILITIES_V5_OUT_LEN)
encp->enc_filter_action_mark_max = MCDI_OUT_DWORD(req,
GET_CAPABILITIES_V5_OUT_FILTER_ACTION_MARK_MAX);
else
encp->enc_filter_action_mark_max = 0;
#undef CAP_FLAGS1
#undef CAP_FLAGS2
return (0);
#if EFSYS_OPT_RX_SCALE
fail5:
EFSYS_PROBE(fail5);
#endif /* EFSYS_OPT_RX_SCALE */
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#define EF10_LEGACY_PF_PRIVILEGE_MASK \
(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \
MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
#define EF10_LEGACY_VF_PRIVILEGE_MASK 0
__checkReturn efx_rc_t
ef10_get_privilege_mask(
__in efx_nic_t *enp,
__out uint32_t *maskp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t mask;
efx_rc_t rc;
if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
&mask)) != 0) {
if (rc != ENOTSUP)
goto fail1;
/* Fallback for old firmware without privilege mask support */
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
/* Assume PF has admin privilege */
mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
} else {
/* VF is always unprivileged by default */
mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
}
}
*maskp = mask;
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#define EFX_EXT_PORT_MAX 4
#define EFX_EXT_PORT_NA 0xFF
/*
* Table of mapping schemes from port number to external number.
*
* Each port number ultimately corresponds to a connector: either as part of
* a cable assembly attached to a module inserted in an SFP+/QSFP+ cage on
* the board, or fixed to the board (e.g. 10GBASE-T magjack on SFN5121T
* "Salina"). In general:
*
* Port number (0-based)
* |
* port mapping (n:1)
* |
* v
* External port number (1-based)
* |
* fixed (1:1) or cable assembly (1:m)
* |
* v
* Connector
*
* The external numbering refers to the cages or magjacks on the board,
* as visibly annotated on the board or back panel. This table describes
* how to determine which external cage/magjack corresponds to the port
* numbers used by the driver.
*
* The count of consecutive port numbers that map to each external number,
* is determined by the chip family and the current port mode.
*
* For the Huntington family, the current port mode cannot be discovered,
* but a single mapping is used by all modes for a given chip variant,
* so the mapping used is instead the last match in the table to the full
* set of port modes to which the NIC can be configured. Therefore the
* ordering of entries in the mapping table is significant.
*/
static struct ef10_external_port_map_s {
efx_family_t family;
uint32_t modes_mask;
uint8_t base_port[EFX_EXT_PORT_MAX];
} __ef10_external_port_mappings[] = {
/*
* Modes used by Huntington family controllers where each port
* number maps to a separate cage.
* SFN7x22F (Torino):
* port 0 -> cage 1
* port 1 -> cage 2
* SFN7xx4F (Pavia):
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 3
* port 3 -> cage 4
*/
{
EFX_FAMILY_HUNTINGTON,
(1U << TLV_PORT_MODE_10G) | /* mode 0 */
(1U << TLV_PORT_MODE_10G_10G) | /* mode 2 */
(1U << TLV_PORT_MODE_10G_10G_10G_10G), /* mode 4 */
{ 0, 1, 2, 3 }
},
/*
* Modes which for Huntington identify a chip variant where 2
* adjacent port numbers map to each cage.
* SFN7x42Q (Monza):
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_HUNTINGTON,
(1U << TLV_PORT_MODE_40G) | /* mode 1 */
(1U << TLV_PORT_MODE_40G_40G) | /* mode 3 */
(1U << TLV_PORT_MODE_40G_10G_10G) | /* mode 6 */
(1U << TLV_PORT_MODE_10G_10G_40G), /* mode 7 */
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford allocate each port number to a separate
* cage.
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 3
* port 3 -> cage 4
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
(1U << TLV_PORT_MODE_1x1_1x1), /* mode 2 */
{ 0, 1, 2, 3 }
},
/*
* Modes that on Medford allocate 2 adjacent port numbers to each
* cage.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */
(1U << TLV_PORT_MODE_2x1_2x1) | /* mode 5 */
(1U << TLV_PORT_MODE_1x4_2x1) | /* mode 6 */
(1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */
/* Do not use 10G_10G_10G_10G_Q1_Q2 (see bug63270) */
(1U << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2), /* mode 9 */
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford allocate 4 adjacent port numbers to
* cage 1.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 1
* port 3 -> cage 1
*/
{
EFX_FAMILY_MEDFORD,
/* Do not use 10G_10G_10G_10G_Q1 (see bug63270) */
(1U << TLV_PORT_MODE_4x1_NA), /* mode 4 */
{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford allocate 4 adjacent port numbers to
* cage 2.
* port 0 -> cage 2
* port 1 -> cage 2
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD,
(1U << TLV_PORT_MODE_NA_4x1), /* mode 8 */
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate each port number to a separate
* cage.
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 3
* port 3 -> cage 4
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_1x1_NA) | /* mode 0 */
(1U << TLV_PORT_MODE_1x4_NA) | /* mode 1 */
(1U << TLV_PORT_MODE_1x1_1x1) | /* mode 2 */
(1U << TLV_PORT_MODE_1x4_1x4) | /* mode 3 */
(1U << TLV_PORT_MODE_1x2_NA) | /* mode 10 */
(1U << TLV_PORT_MODE_1x2_1x2) | /* mode 12 */
(1U << TLV_PORT_MODE_1x4_1x2) | /* mode 15 */
(1U << TLV_PORT_MODE_1x2_1x4), /* mode 16 */
{ 0, 1, 2, 3 }
},
/*
* Modes that on Medford2 allocate 1 port to cage 1 and the rest
* to cage 2.
* port 0 -> cage 1
* port 1 -> cage 2
* port 2 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_1x2_2x1) | /* mode 17 */
(1U << TLV_PORT_MODE_1x4_2x1), /* mode 6 */
{ 0, 1, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate 2 adjacent port numbers to cage 1
* and the rest to cage 2.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_2x1_2x1) | /* mode 4 */
(1U << TLV_PORT_MODE_2x1_1x4) | /* mode 7 */
(1U << TLV_PORT_MODE_2x2_NA) | /* mode 13 */
(1U << TLV_PORT_MODE_2x1_1x2), /* mode 18 */
{ 0, 2, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate up to 4 adjacent port numbers
* to cage 1.
* port 0 -> cage 1
* port 1 -> cage 1
* port 2 -> cage 1
* port 3 -> cage 1
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_4x1_NA), /* mode 5 */
{ 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
/*
* Modes that on Medford2 allocate up to 4 adjacent port numbers
* to cage 2.
* port 0 -> cage 2
* port 1 -> cage 2
* port 2 -> cage 2
* port 3 -> cage 2
*/
{
EFX_FAMILY_MEDFORD2,
(1U << TLV_PORT_MODE_NA_4x1) | /* mode 8 */
(1U << TLV_PORT_MODE_NA_1x2) | /* mode 11 */
(1U << TLV_PORT_MODE_NA_2x2), /* mode 14 */
{ EFX_EXT_PORT_NA, 0, EFX_EXT_PORT_NA, EFX_EXT_PORT_NA }
},
};
static __checkReturn efx_rc_t
ef10_external_port_mapping(
__in efx_nic_t *enp,
__in uint32_t port,
__out uint8_t *external_portp)
{
efx_rc_t rc;
int i;
uint32_t port_modes;
uint32_t matches;
uint32_t current;
struct ef10_external_port_map_s *mapp = NULL;
int ext_index = port; /* Default 1-1 mapping */
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, &current,
NULL)) != 0) {
/*
* No current port mode information (i.e. Huntington)
* - infer mapping from available modes
*/
if ((rc = efx_mcdi_get_port_modes(enp,
&port_modes, NULL, NULL)) != 0) {
/*
* No port mode information available
* - use default mapping
*/
goto out;
}
} else {
/* Only need to scan the current mode */
port_modes = 1 << current;
}
/*
* Infer the internal port -> external number mapping from
* the possible port modes for this NIC.
*/
for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
struct ef10_external_port_map_s *eepmp =
&__ef10_external_port_mappings[i];
if (eepmp->family != enp->en_family)
continue;
matches = (eepmp->modes_mask & port_modes);
if (matches != 0) {
/*
* Some modes match. For some Huntington boards
* there will be multiple matches. The mapping on the
* last match is used.
*/
mapp = eepmp;
port_modes &= ~matches;
}
}
if (port_modes != 0) {
/* Some advertised modes are not supported */
rc = ENOTSUP;
goto fail1;
}
out:
if (mapp != NULL) {
/*
* External ports are assigned a sequence of consecutive
* port numbers, so find the one with the closest base_port.
*/
uint32_t delta = EFX_EXT_PORT_NA;
for (i = 0; i < EFX_EXT_PORT_MAX; i++) {
uint32_t base = mapp->base_port[i];
if ((base != EFX_EXT_PORT_NA) && (base <= port)) {
if ((port - base) < delta) {
delta = (port - base);
ext_index = i;
}
}
}
}
*external_portp = (uint8_t)(ext_index + 1);
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
ef10_set_workaround_bug26807(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
uint32_t flags;
efx_rc_t rc;
/*
* If the bug26807 workaround is enabled, then firmware has enabled
* support for chained multicast filters. Firmware will reset (FLR)
* functions which have filters in the hardware filter table when the
* workaround is enabled/disabled.
*
* We must recheck if the workaround is enabled after inserting the
* first hardware filter, in case it has been changed since this check.
*/
rc = efx_mcdi_set_workaround(enp, MC_CMD_WORKAROUND_BUG26807,
B_TRUE, &flags);
if (rc == 0) {
encp->enc_bug26807_workaround = B_TRUE;
if (flags & (1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN)) {
/*
* Other functions had installed filters before the
* workaround was enabled, and they have been reset
* by firmware.
*/
EFSYS_PROBE(bug26807_workaround_flr_done);
/* FIXME: bump MC warm boot count ? */
}
} else if (rc == EACCES) {
/*
* Unprivileged functions cannot enable the workaround in older
* firmware.
*/
encp->enc_bug26807_workaround = B_FALSE;
} else if ((rc == ENOTSUP) || (rc == ENOENT)) {
encp->enc_bug26807_workaround = B_FALSE;
} else {
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
ef10_nic_board_cfg(
__in efx_nic_t *enp)
{
const efx_nic_ops_t *enop = enp->en_enop;
efx_mcdi_iface_t *emip = &(enp->en_mcdi.em_emip);
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
ef10_link_state_t els;
efx_port_t *epp = &(enp->en_port);
uint32_t board_type = 0;
uint32_t base, nvec;
uint32_t port;
uint32_t mask;
uint32_t pf;
uint32_t vf;
uint8_t mac_addr[6] = { 0 };
efx_rc_t rc;
/* Get the (zero-based) MCDI port number */
if ((rc = efx_mcdi_get_port_assignment(enp, &port)) != 0)
goto fail1;
/* EFX MCDI interface uses one-based port numbers */
emip->emi_port = port + 1;
encp->enc_assigned_port = port;
if ((rc = ef10_external_port_mapping(enp, port,
&encp->enc_external_port)) != 0)
goto fail2;
/*
* Get PCIe function number from firmware (used for
* per-function privilege and dynamic config info).
* - PCIe PF: pf = PF number, vf = 0xffff.
* - PCIe VF: pf = parent PF, vf = VF number.
*/
if ((rc = efx_mcdi_get_function_info(enp, &pf, &vf)) != 0)
goto fail3;
encp->enc_pf = pf;
encp->enc_vf = vf;
/* MAC address for this function */
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
rc = efx_mcdi_get_mac_address_pf(enp, mac_addr);
#if EFSYS_OPT_ALLOW_UNCONFIGURED_NIC
/*
* Disable static config checking, ONLY for manufacturing test
* and setup at the factory, to allow the static config to be
* installed.
*/
#else /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
if ((rc == 0) && (mac_addr[0] & 0x02)) {
/*
* If the static config does not include a global MAC
* address pool then the board may return a locally
* administered MAC address (this should only happen on
* incorrectly programmed boards).
*/
rc = EINVAL;
}
#endif /* EFSYS_OPT_ALLOW_UNCONFIGURED_NIC */
} else {
rc = efx_mcdi_get_mac_address_vf(enp, mac_addr);
}
if (rc != 0)
goto fail4;
EFX_MAC_ADDR_COPY(encp->enc_mac_addr, mac_addr);
/* Board configuration (legacy) */
rc = efx_mcdi_get_board_cfg(enp, &board_type, NULL, NULL);
if (rc != 0) {
/* Unprivileged functions may not be able to read board cfg */
if (rc == EACCES)
board_type = 0;
else
goto fail5;
}
encp->enc_board_type = board_type;
encp->enc_clk_mult = 1; /* not used for EF10 */
/* Fill out fields in enp->en_port and enp->en_nic_cfg from MCDI */
if ((rc = efx_mcdi_get_phy_cfg(enp)) != 0)
goto fail6;
/*
* Firmware with support for *_FEC capability bits does not
* report that the corresponding *_FEC_REQUESTED bits are supported.
* Add them here so that drivers understand that they are supported.
*/
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_BASER_FEC))
epp->ep_phy_cap_mask |=
(1u << EFX_PHY_CAP_BASER_FEC_REQUESTED);
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_RS_FEC))
epp->ep_phy_cap_mask |=
(1u << EFX_PHY_CAP_RS_FEC_REQUESTED);
if (epp->ep_phy_cap_mask & (1u << EFX_PHY_CAP_25G_BASER_FEC))
epp->ep_phy_cap_mask |=
(1u << EFX_PHY_CAP_25G_BASER_FEC_REQUESTED);
/* Obtain the default PHY advertised capabilities */
if ((rc = ef10_phy_get_link(enp, &els)) != 0)
goto fail7;
epp->ep_default_adv_cap_mask = els.epls.epls_adv_cap_mask;
epp->ep_adv_cap_mask = els.epls.epls_adv_cap_mask;
/* Check capabilities of running datapath firmware */
if ((rc = ef10_get_datapath_caps(enp)) != 0)
goto fail8;
/* Alignment for WPTR updates */
encp->enc_rx_push_align = EF10_RX_WPTR_ALIGN;
encp->enc_tx_dma_desc_size_max = EFX_MASK32(ESF_DZ_RX_KER_BYTE_CNT);
/* No boundary crossing limits */
encp->enc_tx_dma_desc_boundary = 0;
/*
* Maximum number of bytes into the frame the TCP header can start for
* firmware assisted TSO to work.
*/
encp->enc_tx_tso_tcp_header_offset_limit = EF10_TCP_HEADER_OFFSET_LIMIT;
/*
* Set resource limits for MC_CMD_ALLOC_VIS. Note that we cannot use
* MC_CMD_GET_RESOURCE_LIMITS here as that reports the available
* resources (allocated to this PCIe function), which is zero until
* after we have allocated VIs.
*/
encp->enc_evq_limit = 1024;
encp->enc_rxq_limit = EFX_RXQ_LIMIT_TARGET;
encp->enc_txq_limit = EFX_TXQ_LIMIT_TARGET;
encp->enc_buftbl_limit = UINT32_MAX;
/* Get interrupt vector limits */
if ((rc = efx_mcdi_get_vector_cfg(enp, &base, &nvec, NULL)) != 0) {
if (EFX_PCI_FUNCTION_IS_PF(encp))
goto fail9;
/* Ignore error (cannot query vector limits from a VF). */
base = 0;
nvec = 1024;
}
encp->enc_intr_vec_base = base;
encp->enc_intr_limit = nvec;
/*
* Get the current privilege mask. Note that this may be modified
* dynamically, so this value is informational only. DO NOT use
* the privilege mask to check for sufficient privileges, as that
* can result in time-of-check/time-of-use bugs.
*/
if ((rc = ef10_get_privilege_mask(enp, &mask)) != 0)
goto fail10;
encp->enc_privilege_mask = mask;
if ((rc = ef10_set_workaround_bug26807(enp)) != 0)
goto fail11;
/* Get remaining controller-specific board config */
if ((rc = enop->eno_board_cfg(enp)) != 0)
if (rc != EACCES)
goto fail12;
return (0);
fail12:
EFSYS_PROBE(fail12);
fail11:
EFSYS_PROBE(fail11);
fail10:
EFSYS_PROBE(fail10);
fail9:
EFSYS_PROBE(fail9);
fail8:
EFSYS_PROBE(fail8);
fail7:
EFSYS_PROBE(fail7);
fail6:
EFSYS_PROBE(fail6);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_probe(
__in efx_nic_t *enp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
/* Read and clear any assertion state */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
/* Exit the assertion handler */
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
if (rc != EACCES)
goto fail2;
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
goto fail3;
if ((rc = ef10_nic_board_cfg(enp)) != 0)
goto fail4;
/*
* Set default driver config limits (based on board config).
*
* FIXME: For now allocate a fixed number of VIs which is likely to be
* sufficient and small enough to allow multiple functions on the same
* port.
*/
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
/* The client driver must configure and enable PIO buffer support */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
#if EFSYS_OPT_MAC_STATS
/* Wipe the MAC statistics */
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
goto fail5;
#endif
#if EFSYS_OPT_LOOPBACK
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
goto fail6;
#endif
#if EFSYS_OPT_MON_STATS
if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
/* Unprivileged functions do not have access to sensors */
if (rc != EACCES)
goto fail7;
}
#endif
encp->enc_features = enp->en_features;
return (0);
#if EFSYS_OPT_MON_STATS
fail7:
EFSYS_PROBE(fail7);
#endif
#if EFSYS_OPT_LOOPBACK
fail6:
EFSYS_PROBE(fail6);
#endif
#if EFSYS_OPT_MAC_STATS
fail5:
EFSYS_PROBE(fail5);
#endif
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_set_drv_limits(
__inout efx_nic_t *enp,
__in efx_drv_limits_t *edlp)
{
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_evq_count, max_evq_count;
uint32_t min_rxq_count, max_rxq_count;
uint32_t min_txq_count, max_txq_count;
efx_rc_t rc;
if (edlp == NULL) {
rc = EINVAL;
goto fail1;
}
/* Get minimum required and maximum usable VI limits */
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
edcp->edc_min_vi_count =
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
edcp->edc_max_vi_count =
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
/*
* Check limits for sub-allocated piobuf blocks.
* PIO is optional, so don't fail if the limits are incorrect.
*/
if ((encp->enc_piobuf_size == 0) ||
(encp->enc_piobuf_limit == 0) ||
(edlp->edl_min_pio_alloc_size == 0) ||
(edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
/* Disable PIO */
edcp->edc_max_piobuf_count = 0;
edcp->edc_pio_alloc_size = 0;
} else {
uint32_t blk_size, blk_count, blks_per_piobuf;
blk_size =
MAX(edlp->edl_min_pio_alloc_size,
encp->enc_piobuf_min_alloc_size);
blks_per_piobuf = encp->enc_piobuf_size / blk_size;
EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
/* A zero max pio alloc count means unlimited */
if ((edlp->edl_max_pio_alloc_count > 0) &&
(edlp->edl_max_pio_alloc_count < blk_count)) {
blk_count = edlp->edl_max_pio_alloc_count;
}
edcp->edc_pio_alloc_size = blk_size;
edcp->edc_max_piobuf_count =
(blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_reset(
__in efx_nic_t *enp)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_ENTITY_RESET_IN_LEN,
MC_CMD_ENTITY_RESET_OUT_LEN);
efx_rc_t rc;
/* ef10_nic_reset() is called to recover from BADASSERT failures. */
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
goto fail1;
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
goto fail2;
req.emr_cmd = MC_CMD_ENTITY_RESET;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail3;
}
/* Clear RX/TX DMA queue errors */
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
static __checkReturn efx_rc_t
ef10_upstream_port_vadaptor_alloc(
__in efx_nic_t *enp)
{
uint32_t retry;
uint32_t delay_us;
efx_rc_t rc;
/*
* On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
* driver has yet to bring up the EVB port. See bug 56147. In this case,
* retry the request several times after waiting a while. The wait time
* between retries starts small (10ms) and exponentially increases.
* Total wait time is a little over two seconds. Retry logic in the
* client driver may mean this whole loop is repeated if it continues to
* fail.
*/
retry = 0;
delay_us = 10000;
while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
(rc != ENOENT)) {
/*
* Do not retry alloc for PF, or for other errors on
* a VF.
*/
goto fail1;
}
/* VF startup before PF is ready. Retry allocation. */
if (retry > 5) {
/* Too many attempts */
rc = EINVAL;
goto fail2;
}
EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
EFSYS_SLEEP(delay_us);
retry++;
if (delay_us < 500000)
delay_us <<= 2;
}
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_init(
__in efx_nic_t *enp)
{
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
uint32_t min_vi_count, max_vi_count;
uint32_t vi_count, vi_base, vi_shift;
uint32_t i;
uint32_t vi_window_size;
efx_rc_t rc;
boolean_t alloc_vadaptor = B_TRUE;
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
enp->en_family == EFX_FAMILY_MEDFORD ||
enp->en_family == EFX_FAMILY_MEDFORD2);
/* Enable reporting of some events (e.g. link change) */
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
goto fail1;
/* Allocate (optional) on-chip PIO buffers */
ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
/*
* For best performance, PIO writes should use a write-combined
* (WC) memory mapping. Using a separate WC mapping for the PIO
* aperture of each VI would be a burden to drivers (and not
* possible if the host page size is >4Kbyte).
*
* To avoid this we use a single uncached (UC) mapping for VI
* register access, and a single WC mapping for extra VIs used
* for PIO writes.
*
* Each piobuf must be linked to a VI in the WC mapping, and to
* each VI that is using a sub-allocated block from the piobuf.
*/
min_vi_count = edcp->edc_min_vi_count;
max_vi_count =
edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
/* Ensure that the previously attached driver's VIs are freed */
if ((rc = efx_mcdi_free_vis(enp)) != 0)
goto fail2;
/*
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
* fails then retrying the request for fewer VI resources may succeed.
*/
vi_count = 0;
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
&vi_base, &vi_count, &vi_shift)) != 0)
goto fail3;
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
if (vi_count < min_vi_count) {
rc = ENOMEM;
goto fail4;
}
enp->en_arch.ef10.ena_vi_base = vi_base;
enp->en_arch.ef10.ena_vi_count = vi_count;
enp->en_arch.ef10.ena_vi_shift = vi_shift;
if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
/* Not enough extra VIs to map piobufs */
ef10_nic_free_piobufs(enp);
}
enp->en_arch.ef10.ena_pio_write_vi_base =
vi_count - enp->en_arch.ef10.ena_piobuf_count;
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, !=,
EFX_VI_WINDOW_SHIFT_INVALID);
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_vi_window_shift, <=,
EFX_VI_WINDOW_SHIFT_64K);
vi_window_size = 1U << enp->en_nic_cfg.enc_vi_window_shift;
/* Save UC memory mapping details */
enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
enp->en_arch.ef10.ena_uc_mem_map_size =
(vi_window_size *
enp->en_arch.ef10.ena_pio_write_vi_base);
} else {
enp->en_arch.ef10.ena_uc_mem_map_size =
(vi_window_size *
enp->en_arch.ef10.ena_vi_count);
}
/* Save WC memory mapping details */
enp->en_arch.ef10.ena_wc_mem_map_offset =
enp->en_arch.ef10.ena_uc_mem_map_offset +
enp->en_arch.ef10.ena_uc_mem_map_size;
enp->en_arch.ef10.ena_wc_mem_map_size =
(vi_window_size *
enp->en_arch.ef10.ena_piobuf_count);
/* Link piobufs to extra VIs in WC mapping */
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
rc = efx_mcdi_link_piobuf(enp,
enp->en_arch.ef10.ena_pio_write_vi_base + i,
enp->en_arch.ef10.ena_piobuf_handle[i]);
if (rc != 0)
break;
}
}
/*
* For SR-IOV use case, vAdaptor is allocated for PF and associated VFs
* during NIC initialization when vSwitch is created and vports are
* allocated. Hence, skip vAdaptor allocation for EVB and update vport
* id in NIC structure with the one allocated for PF.
*/
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
#if EFSYS_OPT_EVB
if ((enp->en_vswitchp != NULL) && (enp->en_vswitchp->ev_evcp != NULL)) {
/* For EVB use vport allocated on vswitch */
enp->en_vport_id = enp->en_vswitchp->ev_evcp->evc_vport_id;
alloc_vadaptor = B_FALSE;
}
#endif
if (alloc_vadaptor != B_FALSE) {
/* Allocate a vAdaptor attached to our upstream vPort/pPort */
if ((rc = ef10_upstream_port_vadaptor_alloc(enp)) != 0)
goto fail5;
}
enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
return (0);
fail5:
EFSYS_PROBE(fail5);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
ef10_nic_free_piobufs(enp);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
ef10_nic_get_vi_pool(
__in efx_nic_t *enp,
__out uint32_t *vi_countp)
{
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
/*
* Report VIs that the client driver can use.
* Do not include VIs used for PIO buffer writes.
*/
*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
return (0);
}
__checkReturn efx_rc_t
ef10_nic_get_bar_region(
__in efx_nic_t *enp,
__in efx_nic_region_t region,
__out uint32_t *offsetp,
__out size_t *sizep)
{
efx_rc_t rc;
EFSYS_ASSERT(EFX_FAMILY_IS_EF10(enp));
/*
* TODO: Specify host memory mapping alignment and granularity
* in efx_drv_limits_t so that they can be taken into account
* when allocating extra VIs for PIO writes.
*/
switch (region) {
case EFX_REGION_VI:
/* UC mapped memory BAR region for VI registers */
*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
break;
case EFX_REGION_PIO_WRITE_VI:
/* WC mapped memory BAR region for piobuf writes */
*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
break;
default:
rc = EINVAL;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn boolean_t
ef10_nic_hw_unavailable(
__in efx_nic_t *enp)
{
efx_dword_t dword;
if (enp->en_reset_flags & EFX_RESET_HW_UNAVAIL)
return (B_TRUE);
EFX_BAR_READD(enp, ER_DZ_BIU_MC_SFT_STATUS_REG, &dword, B_FALSE);
if (EFX_DWORD_FIELD(dword, EFX_DWORD_0) == 0xffffffff)
goto unavail;
return (B_FALSE);
unavail:
ef10_nic_set_hw_unavailable(enp);
return (B_TRUE);
}
void
ef10_nic_set_hw_unavailable(
__in efx_nic_t *enp)
{
EFSYS_PROBE(hw_unavail);
enp->en_reset_flags |= EFX_RESET_HW_UNAVAIL;
}
void
ef10_nic_fini(
__in efx_nic_t *enp)
{
uint32_t i;
efx_rc_t rc;
boolean_t do_vadaptor_free = B_TRUE;
#if EFSYS_OPT_EVB
if (enp->en_vswitchp != NULL) {
/*
* For SR-IOV the vAdaptor is freed with the vswitch,
* so do not free it here.
*/
do_vadaptor_free = B_FALSE;
}
#endif
if (do_vadaptor_free != B_FALSE) {
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
enp->en_vport_id = EVB_PORT_ID_NULL;
}
/* Unlink piobufs from extra VIs in WC mapping */
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
rc = efx_mcdi_unlink_piobuf(enp,
enp->en_arch.ef10.ena_pio_write_vi_base + i);
if (rc != 0)
break;
}
}
ef10_nic_free_piobufs(enp);
(void) efx_mcdi_free_vis(enp);
enp->en_arch.ef10.ena_vi_count = 0;
}
void
ef10_nic_unprobe(
__in efx_nic_t *enp)
{
#if EFSYS_OPT_MON_STATS
mcdi_mon_cfg_free(enp);
#endif /* EFSYS_OPT_MON_STATS */
(void) efx_mcdi_drv_attach(enp, B_FALSE);
}
#if EFSYS_OPT_DIAG
__checkReturn efx_rc_t
ef10_nic_register_test(
__in efx_nic_t *enp)
{
efx_rc_t rc;
/* FIXME */
_NOTE(ARGUNUSED(enp))
_NOTE(CONSTANTCONDITION)
if (B_FALSE) {
rc = ENOTSUP;
goto fail1;
}
/* FIXME */
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_DIAG */
#if EFSYS_OPT_FW_SUBVARIANT_AWARE
__checkReturn efx_rc_t
efx_mcdi_get_nic_global(
__in efx_nic_t *enp,
__in uint32_t key,
__out uint32_t *valuep)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_GET_NIC_GLOBAL_IN_LEN,
MC_CMD_GET_NIC_GLOBAL_OUT_LEN);
efx_rc_t rc;
req.emr_cmd = MC_CMD_GET_NIC_GLOBAL;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_GET_NIC_GLOBAL_IN_LEN;
req.emr_out_buf = payload;
req.emr_out_length = MC_CMD_GET_NIC_GLOBAL_OUT_LEN;
MCDI_IN_SET_DWORD(req, GET_NIC_GLOBAL_IN_KEY, key);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
if (req.emr_out_length_used != MC_CMD_GET_NIC_GLOBAL_OUT_LEN) {
rc = EMSGSIZE;
goto fail2;
}
*valuep = MCDI_OUT_DWORD(req, GET_NIC_GLOBAL_OUT_VALUE);
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_mcdi_set_nic_global(
__in efx_nic_t *enp,
__in uint32_t key,
__in uint32_t value)
{
efx_mcdi_req_t req;
EFX_MCDI_DECLARE_BUF(payload, MC_CMD_SET_NIC_GLOBAL_IN_LEN, 0);
efx_rc_t rc;
req.emr_cmd = MC_CMD_SET_NIC_GLOBAL;
req.emr_in_buf = payload;
req.emr_in_length = MC_CMD_SET_NIC_GLOBAL_IN_LEN;
req.emr_out_buf = NULL;
req.emr_out_length = 0;
MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_KEY, key);
MCDI_IN_SET_DWORD(req, SET_NIC_GLOBAL_IN_VALUE, value);
efx_mcdi_execute(enp, &req);
if (req.emr_rc != 0) {
rc = req.emr_rc;
goto fail1;
}
return (0);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif /* EFSYS_OPT_FW_SUBVARIANT_AWARE */
#endif /* EFX_OPTS_EF10() */