numam-dpdk/drivers/net/mlx5/mlx5_txpp.c
Viacheslav Ovsiienko aef1e20ebe net/mlx5: allocate packet pacing context
This patch allocates the Packet Pacing context from the kernel,
configures one according to requested pace send scheduling
granularity and assigns to Clock Queue.

Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Matan Azrad <matan@mellanox.com>
2020-07-21 15:44:36 +02:00

718 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*/
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_interrupts.h>
#include <rte_alarm.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include "mlx5.h"
#include "mlx5_rxtx.h"
#include "mlx5_common_os.h"
/* Destroy Event Queue Notification Channel. */
static void
mlx5_txpp_destroy_eqn(struct mlx5_dev_ctx_shared *sh)
{
if (sh->txpp.echan) {
mlx5_glue->devx_destroy_event_channel(sh->txpp.echan);
sh->txpp.echan = NULL;
}
sh->txpp.eqn = 0;
}
/* Create Event Queue Notification Channel. */
static int
mlx5_txpp_create_eqn(struct mlx5_dev_ctx_shared *sh)
{
uint32_t lcore;
MLX5_ASSERT(!sh->txpp.echan);
lcore = (uint32_t)rte_lcore_to_cpu_id(-1);
if (mlx5_glue->devx_query_eqn(sh->ctx, lcore, &sh->txpp.eqn)) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to query EQ number %d.", rte_errno);
sh->txpp.eqn = 0;
return -rte_errno;
}
sh->txpp.echan = mlx5_glue->devx_create_event_channel(sh->ctx,
MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA);
if (!sh->txpp.echan) {
sh->txpp.eqn = 0;
rte_errno = errno;
DRV_LOG(ERR, "Failed to create event channel %d.",
rte_errno);
return -rte_errno;
}
return 0;
}
static void
mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh)
{
if (sh->txpp.pp) {
mlx5_glue->dv_free_pp(sh->txpp.pp);
sh->txpp.pp = NULL;
sh->txpp.pp_id = 0;
}
}
/* Allocate Packet Pacing index from kernel via mlx5dv call. */
static int
mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh)
{
#ifdef HAVE_MLX5DV_PP_ALLOC
uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)];
uint64_t rate;
MLX5_ASSERT(!sh->txpp.pp);
memset(&pp, 0, sizeof(pp));
rate = NS_PER_S / sh->txpp.tick;
if (rate * sh->txpp.tick != NS_PER_S)
DRV_LOG(WARNING, "Packet pacing frequency is not precise.");
if (sh->txpp.test) {
uint32_t len;
len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE,
(size_t)RTE_ETHER_MIN_LEN);
MLX5_SET(set_pp_rate_limit_context, &pp,
burst_upper_bound, len);
MLX5_SET(set_pp_rate_limit_context, &pp,
typical_packet_size, len);
/* Convert packets per second into kilobits. */
rate = (rate * len) / (1000ul / CHAR_BIT);
DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate);
}
MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate);
MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode,
sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE);
sh->txpp.pp = mlx5_glue->dv_alloc_pp
(sh->ctx, sizeof(pp), &pp,
MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX);
if (sh->txpp.pp == NULL) {
DRV_LOG(ERR, "Failed to allocate packet pacing index.");
rte_errno = errno;
return -errno;
}
if (!sh->txpp.pp->index) {
DRV_LOG(ERR, "Zero packet pacing index allocated.");
mlx5_txpp_free_pp_index(sh);
rte_errno = ENOTSUP;
return -ENOTSUP;
}
sh->txpp.pp_id = sh->txpp.pp->index;
return 0;
#else
RTE_SET_USED(sh);
DRV_LOG(ERR, "Allocating pacing index is not supported.");
rte_errno = ENOTSUP;
return -ENOTSUP;
#endif
}
static void
mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq)
{
if (wq->sq)
claim_zero(mlx5_devx_cmd_destroy(wq->sq));
if (wq->sq_umem)
claim_zero(mlx5_glue->devx_umem_dereg(wq->sq_umem));
if (wq->sq_buf)
rte_free((void *)(uintptr_t)wq->sq_buf);
if (wq->cq)
claim_zero(mlx5_devx_cmd_destroy(wq->cq));
if (wq->cq_umem)
claim_zero(mlx5_glue->devx_umem_dereg(wq->cq_umem));
if (wq->cq_buf)
rte_free((void *)(uintptr_t)wq->cq_buf);
memset(wq, 0, sizeof(*wq));
}
static void
mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
mlx5_txpp_destroy_send_queue(wq);
}
static void
mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
mlx5_txpp_destroy_send_queue(wq);
}
static void
mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
uint32_t i;
for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) {
cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK;
++cqe;
}
}
static void
mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
uint32_t i;
for (i = 0; i < wq->sq_size; i += 2) {
struct mlx5_wqe_cseg *cs;
struct mlx5_wqe_qseg *qs;
uint32_t index;
/* Build SEND_EN request with slave WQE index. */
cs = &wqe[i + 0].cseg;
cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0);
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
cs->flags = RTE_BE32(MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) &
((1 << MLX5_WQ_INDEX_WIDTH) - 1);
qs->max_index = rte_cpu_to_be_32(index);
qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id);
/* Build WAIT request with slave CQE index. */
cs = &wqe[i + 1].cseg;
cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0);
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) &
((1 << MLX5_CQ_INDEX_WIDTH) - 1);
qs->max_index = rte_cpu_to_be_32(index);
qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id);
}
}
/* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */
static int
mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_devx_create_sq_attr sq_attr = { 0 };
struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
struct mlx5_devx_cq_attr cq_attr = { 0 };
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
size_t page_size = sysconf(_SC_PAGESIZE);
uint32_t umem_size, umem_dbrec;
int ret;
/* Allocate memory buffer for CQEs and doorbell record. */
umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->cq_buf = rte_zmalloc_socket(__func__, umem_size,
page_size, sh->numa_node);
if (!wq->cq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
return -ENOMEM;
}
/* Register allocated buffer in user space with DevX. */
wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->cq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->cq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
goto error;
}
/* Create completion queue object for Rearm Queue. */
cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
cq_attr.uar_page_id = sh->tx_uar->page_id;
cq_attr.eqn = sh->txpp.eqn;
cq_attr.q_umem_valid = 1;
cq_attr.q_umem_offset = 0;
cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
cq_attr.db_umem_valid = 1;
cq_attr.db_umem_offset = umem_dbrec;
cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE);
cq_attr.log_page_size = rte_log2_u32(page_size);
wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
if (!wq->cq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create CQ for Rearm Queue.");
goto error;
}
wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
wq->cq_ci = 0;
wq->arm_sn = 0;
/* Mark all CQEs initially as invalid. */
mlx5_txpp_fill_cqe_rearm_queue(sh);
/*
* Allocate memory buffer for Send Queue WQEs.
* There should be no WQE leftovers in the cyclic queue.
*/
wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE;
MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
umem_size = MLX5_WQE_SIZE * wq->sq_size;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->sq_buf = rte_zmalloc_socket(__func__, umem_size,
page_size, sh->numa_node);
if (!wq->sq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
rte_errno = ENOMEM;
goto error;
}
/* Register allocated buffer in user space with DevX. */
wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->sq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->sq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
goto error;
}
/* Create send queue object for Rearm Queue. */
sq_attr.state = MLX5_SQC_STATE_RST;
sq_attr.tis_lst_sz = 1;
sq_attr.tis_num = sh->tis->id;
sq_attr.cqn = wq->cq->id;
sq_attr.cd_master = 1;
sq_attr.wq_attr.uar_page = sh->tx_uar->page_id;
sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
sq_attr.wq_attr.pd = sh->pdn;
sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
sq_attr.wq_attr.dbr_umem_valid = 1;
sq_attr.wq_attr.dbr_addr = umem_dbrec;
sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
sq_attr.wq_attr.wq_umem_valid = 1;
sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
sq_attr.wq_attr.wq_umem_offset = 0;
wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
if (!wq->sq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create SQ for Rearm Queue.");
goto error;
}
wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
MLX5_SND_DBR * sizeof(uint32_t));
/* Build the WQEs in the Send Queue before goto Ready state. */
mlx5_txpp_fill_wqe_rearm_queue(sh);
/* Change queue state to ready. */
msq_attr.sq_state = MLX5_SQC_STATE_RST;
msq_attr.state = MLX5_SQC_STATE_RDY;
ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
if (ret) {
DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue.");
goto error;
}
return 0;
error:
ret = -rte_errno;
mlx5_txpp_destroy_rearm_queue(sh);
rte_errno = -ret;
return ret;
}
static void
mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
struct mlx5_wqe_cseg *cs = &wqe->cseg;
uint32_t wqe_size, opcode, i;
uint8_t *dst;
/* For test purposes fill the WQ with SEND inline packet. */
if (sh->txpp.test) {
wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
MLX5_WQE_CSEG_SIZE +
2 * MLX5_WQE_ESEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE,
MLX5_WSEG_SIZE);
opcode = MLX5_OPCODE_SEND;
} else {
wqe_size = MLX5_WSEG_SIZE;
opcode = MLX5_OPCODE_NOP;
}
cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) |
(wqe_size / MLX5_WSEG_SIZE));
cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE);
if (sh->txpp.test) {
struct mlx5_wqe_eseg *es = &wqe->eseg;
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ip_hdr;
struct rte_udp_hdr *udp_hdr;
/* Build the inline test packet pattern. */
MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX);
MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >=
(sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr)));
es->flags = 0;
es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
es->swp_offs = 0;
es->metadata = 0;
es->swp_flags = 0;
es->mss = 0;
es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE);
/* Build test packet L2 header (Ethernet). */
dst = (uint8_t *)&es->inline_data;
eth_hdr = (struct rte_ether_hdr *)dst;
rte_eth_random_addr(&eth_hdr->d_addr.addr_bytes[0]);
rte_eth_random_addr(&eth_hdr->s_addr.addr_bytes[0]);
eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
/* Build test packet L3 header (IP v4). */
dst += sizeof(struct rte_ether_hdr);
ip_hdr = (struct rte_ipv4_hdr *)dst;
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = 64;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
sizeof(struct rte_ether_hdr));
/* use RFC5735 / RFC2544 reserved network test addresses */
ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) |
(0 << 8) | 1);
ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) |
(0 << 8) | 2);
if (MLX5_TXPP_TEST_PKT_SIZE <
(sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr)))
goto wcopy;
/* Build test packet L4 header (UDP). */
dst += sizeof(struct rte_ipv4_hdr);
udp_hdr = (struct rte_udp_hdr *)dst;
udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */
udp_hdr->dst_port = RTE_BE16(9);
udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
sizeof(struct rte_ether_hdr) -
sizeof(struct rte_ipv4_hdr));
udp_hdr->dgram_cksum = 0;
/* Fill the test packet data. */
dst += sizeof(struct rte_udp_hdr);
for (i = sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr);
i < MLX5_TXPP_TEST_PKT_SIZE; i++)
*dst++ = (uint8_t)(i & 0xFF);
}
wcopy:
/* Duplicate the pattern to the next WQEs. */
dst = (uint8_t *)(uintptr_t)wq->sq_buf;
for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) {
dst += wqe_size;
rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size);
}
}
/* Creates the Clock Queue for packet pacing, returns zero on success. */
static int
mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_devx_create_sq_attr sq_attr = { 0 };
struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
struct mlx5_devx_cq_attr cq_attr = { 0 };
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
size_t page_size = sysconf(_SC_PAGESIZE);
uint32_t umem_size, umem_dbrec;
int ret;
/* Allocate memory buffer for CQEs and doorbell record. */
umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->cq_buf = rte_zmalloc_socket(__func__, umem_size,
page_size, sh->numa_node);
if (!wq->cq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
return -ENOMEM;
}
/* Register allocated buffer in user space with DevX. */
wq->cq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->cq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->cq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
goto error;
}
/* Create completion queue object for Clock Queue. */
cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
cq_attr.use_first_only = 1;
cq_attr.overrun_ignore = 1;
cq_attr.uar_page_id = sh->tx_uar->page_id;
cq_attr.eqn = sh->txpp.eqn;
cq_attr.q_umem_valid = 1;
cq_attr.q_umem_offset = 0;
cq_attr.q_umem_id = wq->cq_umem->umem_id;
cq_attr.db_umem_valid = 1;
cq_attr.db_umem_offset = umem_dbrec;
cq_attr.db_umem_id = wq->cq_umem->umem_id;
cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE);
cq_attr.log_page_size = rte_log2_u32(page_size);
wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
if (!wq->cq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create CQ for Clock Queue.");
goto error;
}
wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
wq->cq_ci = 0;
/* Allocate memory buffer for Send Queue WQEs. */
if (sh->txpp.test) {
wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
MLX5_WQE_CSEG_SIZE +
2 * MLX5_WQE_ESEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE,
MLX5_WQE_SIZE) / MLX5_WQE_SIZE;
wq->sq_size *= MLX5_TXPP_CLKQ_SIZE;
} else {
wq->sq_size = MLX5_TXPP_CLKQ_SIZE;
}
/* There should not be WQE leftovers in the cyclic queue. */
MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
umem_size = MLX5_WQE_SIZE * wq->sq_size;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->sq_buf = rte_zmalloc_socket(__func__, umem_size,
page_size, sh->numa_node);
if (!wq->sq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
rte_errno = ENOMEM;
goto error;
}
/* Register allocated buffer in user space with DevX. */
wq->sq_umem = mlx5_glue->devx_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->sq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->sq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
goto error;
}
/* Create send queue object for Clock Queue. */
if (sh->txpp.test) {
sq_attr.tis_lst_sz = 1;
sq_attr.tis_num = sh->tis->id;
sq_attr.non_wire = 0;
sq_attr.static_sq_wq = 1;
} else {
sq_attr.non_wire = 1;
sq_attr.static_sq_wq = 1;
}
sq_attr.state = MLX5_SQC_STATE_RST;
sq_attr.cqn = wq->cq->id;
sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id;
sq_attr.wq_attr.cd_slave = 1;
sq_attr.wq_attr.uar_page = sh->tx_uar->page_id;
sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
sq_attr.wq_attr.pd = sh->pdn;
sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
sq_attr.wq_attr.dbr_umem_valid = 1;
sq_attr.wq_attr.dbr_addr = umem_dbrec;
sq_attr.wq_attr.dbr_umem_id = wq->sq_umem->umem_id;
sq_attr.wq_attr.wq_umem_valid = 1;
sq_attr.wq_attr.wq_umem_id = wq->sq_umem->umem_id;
/* umem_offset must be zero for static_sq_wq queue. */
sq_attr.wq_attr.wq_umem_offset = 0;
wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
if (!wq->sq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create SQ for Clock Queue.");
goto error;
}
wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
MLX5_SND_DBR * sizeof(uint32_t));
/* Build the WQEs in the Send Queue before goto Ready state. */
mlx5_txpp_fill_wqe_clock_queue(sh);
/* Change queue state to ready. */
msq_attr.sq_state = MLX5_SQC_STATE_RST;
msq_attr.state = MLX5_SQC_STATE_RDY;
wq->sq_ci = 0;
ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
if (ret) {
DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue.");
goto error;
}
return 0;
error:
ret = -rte_errno;
mlx5_txpp_destroy_clock_queue(sh);
rte_errno = -ret;
return ret;
}
/*
* The routine initializes the packet pacing infrastructure:
* - allocates PP context
* - Clock CQ/SQ
* - Rearm CQ/SQ
* - attaches rearm interrupt handler
* - starts Clock Queue
*
* Returns 0 on success, negative otherwise
*/
static int
mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv)
{
int tx_pp = priv->config.tx_pp;
int ret;
/* Store the requested pacing parameters. */
sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp;
sh->txpp.test = !!(tx_pp < 0);
sh->txpp.skew = priv->config.tx_skew;
sh->txpp.freq = priv->config.hca_attr.dev_freq_khz;
ret = mlx5_txpp_create_eqn(sh);
if (ret)
goto exit;
ret = mlx5_txpp_alloc_pp_index(sh);
if (ret)
goto exit;
ret = mlx5_txpp_create_clock_queue(sh);
if (ret)
goto exit;
ret = mlx5_txpp_create_rearm_queue(sh);
if (ret)
goto exit;
exit:
if (ret) {
mlx5_txpp_destroy_rearm_queue(sh);
mlx5_txpp_destroy_clock_queue(sh);
mlx5_txpp_free_pp_index(sh);
mlx5_txpp_destroy_eqn(sh);
sh->txpp.tick = 0;
sh->txpp.test = 0;
sh->txpp.skew = 0;
}
return ret;
}
/*
* The routine destroys the packet pacing infrastructure:
* - detaches rearm interrupt handler
* - Rearm CQ/SQ
* - Clock CQ/SQ
* - PP context
*/
static void
mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh)
{
mlx5_txpp_destroy_rearm_queue(sh);
mlx5_txpp_destroy_clock_queue(sh);
mlx5_txpp_free_pp_index(sh);
mlx5_txpp_destroy_eqn(sh);
sh->txpp.tick = 0;
sh->txpp.test = 0;
sh->txpp.skew = 0;
}
/**
* Creates and starts packet pacing infrastructure on specified device.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_txpp_start(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
int err = 0;
int ret;
if (!priv->config.tx_pp) {
/* Packet pacing is not requested for the device. */
MLX5_ASSERT(priv->txpp_en == 0);
return 0;
}
if (priv->txpp_en) {
/* Packet pacing is already enabled for the device. */
MLX5_ASSERT(sh->txpp.refcnt);
return 0;
}
if (priv->config.tx_pp > 0) {
ret = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
if (ret < 0)
return 0;
}
ret = pthread_mutex_lock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
if (sh->txpp.refcnt) {
priv->txpp_en = 1;
++sh->txpp.refcnt;
} else {
err = mlx5_txpp_create(sh, priv);
if (!err) {
MLX5_ASSERT(sh->txpp.tick);
priv->txpp_en = 1;
sh->txpp.refcnt = 1;
} else {
rte_errno = -err;
}
}
ret = pthread_mutex_unlock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
return err;
}
/**
* Stops and destroys packet pacing infrastructure on specified device.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
void
mlx5_txpp_stop(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
int ret;
if (!priv->txpp_en) {
/* Packet pacing is already disabled for the device. */
return;
}
priv->txpp_en = 0;
ret = pthread_mutex_lock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
MLX5_ASSERT(sh->txpp.refcnt);
if (!sh->txpp.refcnt || --sh->txpp.refcnt)
return;
/* No references any more, do actual destroy. */
mlx5_txpp_destroy(sh);
ret = pthread_mutex_unlock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
}