numam-dpdk/drivers/net/mlx5/mlx5_rxtx_vec.h
Alexander Kozyrev 0f20acbf5e net/mlx5: implement vectorized MPRQ burst
MPRQ (Multi-Packet Rx Queue) processes one packet at a time using
simple scalar instructions. MPRQ works by posting a single large buffer
(consisted of multiple fixed-size strides) in order to receive multiple
packets at once on this buffer. A Rx packet is then copied to a
user-provided mbuf or PMD attaches the Rx packet to the mbuf by the
pointer to an external buffer.

There is an opportunity to speed up the packet receiving by processing
4 packets simultaneously using SIMD (single instruction, multiple data)
extensions. Allocate mbufs in batches for every MPRQ buffer and process
the packets in groups of 4 until all the strides are exhausted. Then
switch to another MPRQ buffer and repeat the process over again.

The vectorized MPRQ burst routine is engaged automatically in case
the mprq_en=1 devarg is specified and the vectorization is not disabled
explicitly by providing rx_vec_en=0 devarg. There is a limitation:
LRO is not supported and scalar MPRQ is selected if it is on.

Signed-off-by: Alexander Kozyrev <akozyrev@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
2020-11-03 23:24:25 +01:00

71 lines
2.5 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 6WIND S.A.
* Copyright 2017 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_RXTX_VEC_H_
#define RTE_PMD_MLX5_RXTX_VEC_H_
#include <rte_common.h>
#include <rte_mbuf.h>
#include <mlx5_prm.h>
#include "mlx5_autoconf.h"
#include "mlx5_mr.h"
/* HW checksum offload capabilities of vectorized Tx. */
#define MLX5_VEC_TX_CKSUM_OFFLOAD_CAP \
(DEV_TX_OFFLOAD_IPV4_CKSUM | \
DEV_TX_OFFLOAD_UDP_CKSUM | \
DEV_TX_OFFLOAD_TCP_CKSUM | \
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
/*
* Compile time sanity check for vectorized functions.
*/
#define S_ASSERT_RTE_MBUF(s) \
static_assert(s, "A field of struct rte_mbuf is changed")
#define S_ASSERT_MLX5_CQE(s) \
static_assert(s, "A field of struct mlx5_cqe is changed")
/* rxq_cq_decompress_v() */
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, pkt_len) ==
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, data_len) ==
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, hash) ==
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* rxq_cq_to_ptype_oflags_v() */
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, ol_flags) ==
offsetof(struct rte_mbuf, rearm_data) + 8);
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, rearm_data) ==
RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
/* rxq_burst_v() */
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, pkt_len) ==
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
S_ASSERT_RTE_MBUF(offsetof(struct rte_mbuf, data_len) ==
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
#if (RTE_CACHE_LINE_SIZE == 128)
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, pkt_info) == 64);
#else
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, pkt_info) == 0);
#endif
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, rx_hash_res) ==
offsetof(struct mlx5_cqe, pkt_info) + 12);
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, rsvd1) + 11 ==
offsetof(struct mlx5_cqe, hdr_type_etc));
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, vlan_info) ==
offsetof(struct mlx5_cqe, hdr_type_etc) + 2);
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, lro_num_seg) + 12 ==
offsetof(struct mlx5_cqe, byte_cnt));
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, sop_drop_qpn) ==
RTE_ALIGN(offsetof(struct mlx5_cqe, sop_drop_qpn), 8));
S_ASSERT_MLX5_CQE(offsetof(struct mlx5_cqe, op_own) ==
offsetof(struct mlx5_cqe, sop_drop_qpn) + 7);
#endif /* RTE_PMD_MLX5_RXTX_VEC_H_ */