numam-dpdk/lib/librte_eal/linux/eal_memalloc.c
Tal Shnaiderman 57a2efb304 eal: move OS common config objects
Move common functions between Unix and Windows to eal_common_config.c.

Those functions are getter functions for IOVA,
configuration, Multi-process.

Move rte_config, internal_config, early_mem_config and runtime_dir
to be defined in the common file with getter functions.

Refactor the users of the config variables above to use
the getter functions.

Signed-off-by: Tal Shnaiderman <talshn@mellanox.com>
2020-06-30 00:02:53 +02:00

1649 lines
42 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2018 Intel Corporation
*/
#include <errno.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/queue.h>
#include <sys/file.h>
#include <unistd.h>
#include <limits.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <signal.h>
#include <setjmp.h>
#ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
#include <linux/memfd.h>
#define MEMFD_SUPPORTED
#endif
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
#include <numa.h>
#include <numaif.h>
#endif
#include <linux/falloc.h>
#include <linux/mman.h> /* for hugetlb-related mmap flags */
#include <rte_common.h>
#include <rte_log.h>
#include <rte_eal.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_spinlock.h>
#include "eal_filesystem.h"
#include "eal_internal_cfg.h"
#include "eal_memalloc.h"
#include "eal_memcfg.h"
#include "eal_private.h"
const int anonymous_hugepages_supported =
#ifdef MAP_HUGE_SHIFT
1;
#define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
#else
0;
#define RTE_MAP_HUGE_SHIFT 26
#endif
/*
* we've already checked memfd support at compile-time, but we also need to
* check if we can create hugepage files with memfd.
*
* also, this is not a constant, because while we may be *compiled* with memfd
* hugetlbfs support, we might not be *running* on a system that supports memfd
* and/or memfd with hugetlbfs, so we need to be able to adjust this flag at
* runtime, and fall back to anonymous memory.
*/
static int memfd_create_supported =
#ifdef MFD_HUGETLB
1;
#define RTE_MFD_HUGETLB MFD_HUGETLB
#else
0;
#define RTE_MFD_HUGETLB 4U
#endif
/*
* not all kernel version support fallocate on hugetlbfs, so fall back to
* ftruncate and disallow deallocation if fallocate is not supported.
*/
static int fallocate_supported = -1; /* unknown */
/*
* we have two modes - single file segments, and file-per-page mode.
*
* for single-file segments, we use memseg_list_fd to store the segment fd,
* while the fds[] will not be allocated, and len will be set to 0.
*
* for file-per-page mode, each page will have its own fd, so 'memseg_list_fd'
* will be invalid (set to -1), and we'll use 'fds' to keep track of page fd's.
*
* we cannot know how many pages a system will have in advance, but we do know
* that they come in lists, and we know lengths of these lists. so, simply store
* a malloc'd array of fd's indexed by list and segment index.
*
* they will be initialized at startup, and filled as we allocate/deallocate
* segments.
*/
static struct {
int *fds; /**< dynamically allocated array of segment lock fd's */
int memseg_list_fd; /**< memseg list fd */
int len; /**< total length of the array */
int count; /**< entries used in an array */
} fd_list[RTE_MAX_MEMSEG_LISTS];
/** local copy of a memory map, used to synchronize memory hotplug in MP */
static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
static sigjmp_buf huge_jmpenv;
static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
{
siglongjmp(huge_jmpenv, 1);
}
/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
* non-static local variable in the stack frame calling sigsetjmp might be
* clobbered by a call to longjmp.
*/
static int __rte_unused huge_wrap_sigsetjmp(void)
{
return sigsetjmp(huge_jmpenv, 1);
}
static struct sigaction huge_action_old;
static int huge_need_recover;
static void __rte_unused
huge_register_sigbus(void)
{
sigset_t mask;
struct sigaction action;
sigemptyset(&mask);
sigaddset(&mask, SIGBUS);
action.sa_flags = 0;
action.sa_mask = mask;
action.sa_handler = huge_sigbus_handler;
huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
}
static void __rte_unused
huge_recover_sigbus(void)
{
if (huge_need_recover) {
sigaction(SIGBUS, &huge_action_old, NULL);
huge_need_recover = 0;
}
}
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
static bool
check_numa(void)
{
bool ret = true;
/* Check if kernel supports NUMA. */
if (numa_available() != 0) {
RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
ret = false;
}
return ret;
}
static void
prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
{
RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
if (get_mempolicy(oldpolicy, oldmask->maskp,
oldmask->size + 1, 0, 0) < 0) {
RTE_LOG(ERR, EAL,
"Failed to get current mempolicy: %s. "
"Assuming MPOL_DEFAULT.\n", strerror(errno));
*oldpolicy = MPOL_DEFAULT;
}
RTE_LOG(DEBUG, EAL,
"Setting policy MPOL_PREFERRED for socket %d\n",
socket_id);
numa_set_preferred(socket_id);
}
static void
restore_numa(int *oldpolicy, struct bitmask *oldmask)
{
RTE_LOG(DEBUG, EAL,
"Restoring previous memory policy: %d\n", *oldpolicy);
if (*oldpolicy == MPOL_DEFAULT) {
numa_set_localalloc();
} else if (set_mempolicy(*oldpolicy, oldmask->maskp,
oldmask->size + 1) < 0) {
RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
strerror(errno));
numa_set_localalloc();
}
numa_free_cpumask(oldmask);
}
#endif
/*
* uses fstat to report the size of a file on disk
*/
static off_t
get_file_size(int fd)
{
struct stat st;
if (fstat(fd, &st) < 0)
return 0;
return st.st_size;
}
static int
pagesz_flags(uint64_t page_sz)
{
/* as per mmap() manpage, all page sizes are log2 of page size
* shifted by MAP_HUGE_SHIFT
*/
int log2 = rte_log2_u64(page_sz);
return log2 << RTE_MAP_HUGE_SHIFT;
}
/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
static int lock(int fd, int type)
{
int ret;
/* flock may be interrupted */
do {
ret = flock(fd, type | LOCK_NB);
} while (ret && errno == EINTR);
if (ret && errno == EWOULDBLOCK) {
/* couldn't lock */
return 0;
} else if (ret) {
RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
__func__, strerror(errno));
return -1;
}
/* lock was successful */
return 1;
}
static int
get_seg_memfd(struct hugepage_info *hi __rte_unused,
unsigned int list_idx __rte_unused,
unsigned int seg_idx __rte_unused)
{
#ifdef MEMFD_SUPPORTED
int fd;
char segname[250]; /* as per manpage, limit is 249 bytes plus null */
int flags = RTE_MFD_HUGETLB | pagesz_flags(hi->hugepage_sz);
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (internal_conf->single_file_segments) {
fd = fd_list[list_idx].memseg_list_fd;
if (fd < 0) {
snprintf(segname, sizeof(segname), "seg_%i", list_idx);
fd = memfd_create(segname, flags);
if (fd < 0) {
RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
__func__, strerror(errno));
return -1;
}
fd_list[list_idx].memseg_list_fd = fd;
}
} else {
fd = fd_list[list_idx].fds[seg_idx];
if (fd < 0) {
snprintf(segname, sizeof(segname), "seg_%i-%i",
list_idx, seg_idx);
fd = memfd_create(segname, flags);
if (fd < 0) {
RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
__func__, strerror(errno));
return -1;
}
fd_list[list_idx].fds[seg_idx] = fd;
}
}
return fd;
#endif
return -1;
}
static int
get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
unsigned int list_idx, unsigned int seg_idx)
{
int fd;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* for in-memory mode, we only make it here when we're sure we support
* memfd, and this is a special case.
*/
if (internal_conf->in_memory)
return get_seg_memfd(hi, list_idx, seg_idx);
if (internal_conf->single_file_segments) {
/* create a hugepage file path */
eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
fd = fd_list[list_idx].memseg_list_fd;
if (fd < 0) {
fd = open(path, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
__func__, strerror(errno));
return -1;
}
/* take out a read lock and keep it indefinitely */
if (lock(fd, LOCK_SH) < 0) {
RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
__func__, strerror(errno));
close(fd);
return -1;
}
fd_list[list_idx].memseg_list_fd = fd;
}
} else {
/* create a hugepage file path */
eal_get_hugefile_path(path, buflen, hi->hugedir,
list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
fd = fd_list[list_idx].fds[seg_idx];
if (fd < 0) {
fd = open(path, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n",
__func__, strerror(errno));
return -1;
}
/* take out a read lock */
if (lock(fd, LOCK_SH) < 0) {
RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
__func__, strerror(errno));
close(fd);
return -1;
}
fd_list[list_idx].fds[seg_idx] = fd;
}
}
return fd;
}
static int
resize_hugefile_in_memory(int fd, uint64_t fa_offset,
uint64_t page_sz, bool grow)
{
int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
FALLOC_FL_KEEP_SIZE;
int ret;
/* grow or shrink the file */
ret = fallocate(fd, flags, fa_offset, page_sz);
if (ret < 0) {
RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
__func__,
strerror(errno));
return -1;
}
return 0;
}
static int
resize_hugefile_in_filesystem(int fd, uint64_t fa_offset, uint64_t page_sz,
bool grow)
{
bool again = false;
do {
if (fallocate_supported == 0) {
/* we cannot deallocate memory if fallocate() is not
* supported, and hugepage file is already locked at
* creation, so no further synchronization needed.
*/
if (!grow) {
RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
__func__);
return -1;
}
uint64_t new_size = fa_offset + page_sz;
uint64_t cur_size = get_file_size(fd);
/* fallocate isn't supported, fall back to ftruncate */
if (new_size > cur_size &&
ftruncate(fd, new_size) < 0) {
RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
__func__, strerror(errno));
return -1;
}
} else {
int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
FALLOC_FL_KEEP_SIZE;
int ret;
/*
* technically, it is perfectly safe for both primary
* and secondary to grow and shrink the page files:
* growing the file repeatedly has no effect because
* a page can only be allocated once, while mmap ensures
* that secondaries hold on to the page even after the
* page itself is removed from the filesystem.
*
* however, leaving growing/shrinking to the primary
* tends to expose bugs in fdlist page count handling,
* so leave this here just in case.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* grow or shrink the file */
ret = fallocate(fd, flags, fa_offset, page_sz);
if (ret < 0) {
if (fallocate_supported == -1 &&
errno == ENOTSUP) {
RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
__func__);
again = true;
fallocate_supported = 0;
} else {
RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
__func__,
strerror(errno));
return -1;
}
} else
fallocate_supported = 1;
}
} while (again);
return 0;
}
static void
close_hugefile(int fd, char *path, int list_idx)
{
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/*
* primary process must unlink the file, but only when not in in-memory
* mode (as in that case there is no file to unlink).
*/
if (!internal_conf->in_memory &&
rte_eal_process_type() == RTE_PROC_PRIMARY &&
unlink(path))
RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
__func__, path, strerror(errno));
close(fd);
fd_list[list_idx].memseg_list_fd = -1;
}
static int
resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, bool grow)
{
/* in-memory mode is a special case, because we can be sure that
* fallocate() is supported.
*/
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (internal_conf->in_memory)
return resize_hugefile_in_memory(fd, fa_offset,
page_sz, grow);
return resize_hugefile_in_filesystem(fd, fa_offset, page_sz,
grow);
}
static int
alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
struct hugepage_info *hi, unsigned int list_idx,
unsigned int seg_idx)
{
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
int cur_socket_id = 0;
#endif
uint64_t map_offset;
rte_iova_t iova;
void *va;
char path[PATH_MAX];
int ret = 0;
int fd;
size_t alloc_sz;
int flags;
void *new_addr;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
alloc_sz = hi->hugepage_sz;
/* these are checked at init, but code analyzers don't know that */
if (internal_conf->in_memory && !anonymous_hugepages_supported) {
RTE_LOG(ERR, EAL, "Anonymous hugepages not supported, in-memory mode cannot allocate memory\n");
return -1;
}
if (internal_conf->in_memory && !memfd_create_supported &&
internal_conf->single_file_segments) {
RTE_LOG(ERR, EAL, "Single-file segments are not supported without memfd support\n");
return -1;
}
/* in-memory without memfd is a special case */
int mmap_flags;
if (internal_conf->in_memory && !memfd_create_supported) {
const int in_memory_flags = MAP_HUGETLB | MAP_FIXED |
MAP_PRIVATE | MAP_ANONYMOUS;
int pagesz_flag;
pagesz_flag = pagesz_flags(alloc_sz);
fd = -1;
mmap_flags = in_memory_flags | pagesz_flag;
/* single-file segments codepath will never be active
* here because in-memory mode is incompatible with the
* fallback path, and it's stopped at EAL initialization
* stage.
*/
map_offset = 0;
} else {
/* takes out a read lock on segment or segment list */
fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
return -1;
}
if (internal_conf->single_file_segments) {
map_offset = seg_idx * alloc_sz;
ret = resize_hugefile(fd, map_offset, alloc_sz, true);
if (ret < 0)
goto resized;
fd_list[list_idx].count++;
} else {
map_offset = 0;
if (ftruncate(fd, alloc_sz) < 0) {
RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
__func__, strerror(errno));
goto resized;
}
if (internal_conf->hugepage_unlink &&
!internal_conf->in_memory) {
if (unlink(path)) {
RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
__func__, strerror(errno));
goto resized;
}
}
}
mmap_flags = MAP_SHARED | MAP_POPULATE | MAP_FIXED;
}
/*
* map the segment, and populate page tables, the kernel fills
* this segment with zeros if it's a new page.
*/
va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, mmap_flags, fd,
map_offset);
if (va == MAP_FAILED) {
RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
strerror(errno));
/* mmap failed, but the previous region might have been
* unmapped anyway. try to remap it
*/
goto unmapped;
}
if (va != addr) {
RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
munmap(va, alloc_sz);
goto resized;
}
/* In linux, hugetlb limitations, like cgroup, are
* enforced at fault time instead of mmap(), even
* with the option of MAP_POPULATE. Kernel will send
* a SIGBUS signal. To avoid to be killed, save stack
* environment here, if SIGBUS happens, we can jump
* back here.
*/
if (huge_wrap_sigsetjmp()) {
RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
(unsigned int)(alloc_sz >> 20));
goto mapped;
}
/* we need to trigger a write to the page to enforce page fault and
* ensure that page is accessible to us, but we can't overwrite value
* that is already there, so read the old value, and write itback.
* kernel populates the page with zeroes initially.
*/
*(volatile int *)addr = *(volatile int *)addr;
iova = rte_mem_virt2iova(addr);
if (iova == RTE_BAD_PHYS_ADDR) {
RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
__func__);
goto mapped;
}
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
ret = get_mempolicy(&cur_socket_id, NULL, 0, addr,
MPOL_F_NODE | MPOL_F_ADDR);
if (ret < 0) {
RTE_LOG(DEBUG, EAL, "%s(): get_mempolicy: %s\n",
__func__, strerror(errno));
goto mapped;
} else if (cur_socket_id != socket_id) {
RTE_LOG(DEBUG, EAL,
"%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
__func__, socket_id, cur_socket_id);
goto mapped;
}
#else
if (rte_socket_count() > 1)
RTE_LOG(DEBUG, EAL, "%s(): not checking hugepage NUMA node.\n",
__func__);
#endif
ms->addr = addr;
ms->hugepage_sz = alloc_sz;
ms->len = alloc_sz;
ms->nchannel = rte_memory_get_nchannel();
ms->nrank = rte_memory_get_nrank();
ms->iova = iova;
ms->socket_id = socket_id;
return 0;
mapped:
munmap(addr, alloc_sz);
unmapped:
flags = EAL_RESERVE_FORCE_ADDRESS;
new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
if (new_addr != addr) {
if (new_addr != NULL)
munmap(new_addr, alloc_sz);
/* we're leaving a hole in our virtual address space. if
* somebody else maps this hole now, we could accidentally
* override it in the future.
*/
RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
}
/* roll back the ref count */
if (internal_conf->single_file_segments)
fd_list[list_idx].count--;
resized:
/* some codepaths will return negative fd, so exit early */
if (fd < 0)
return -1;
if (internal_conf->single_file_segments) {
resize_hugefile(fd, map_offset, alloc_sz, false);
/* ignore failure, can't make it any worse */
/* if refcount is at zero, close the file */
if (fd_list[list_idx].count == 0)
close_hugefile(fd, path, list_idx);
} else {
/* only remove file if we can take out a write lock */
if (internal_conf->hugepage_unlink == 0 &&
internal_conf->in_memory == 0 &&
lock(fd, LOCK_EX) == 1)
unlink(path);
close(fd);
fd_list[list_idx].fds[seg_idx] = -1;
}
return -1;
}
static int
free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
unsigned int list_idx, unsigned int seg_idx)
{
uint64_t map_offset;
char path[PATH_MAX];
int fd, ret = 0;
bool exit_early;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* erase page data */
memset(ms->addr, 0, ms->len);
if (mmap(ms->addr, ms->len, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
MAP_FAILED) {
RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
return -1;
}
eal_mem_set_dump(ms->addr, ms->len, false);
exit_early = false;
/* if we're using anonymous hugepages, nothing to be done */
if (internal_conf->in_memory && !memfd_create_supported)
exit_early = true;
/* if we've already unlinked the page, nothing needs to be done */
if (!internal_conf->in_memory && internal_conf->hugepage_unlink)
exit_early = true;
if (exit_early) {
memset(ms, 0, sizeof(*ms));
return 0;
}
/* if we are not in single file segments mode, we're going to unmap the
* segment and thus drop the lock on original fd, but hugepage dir is
* now locked so we can take out another one without races.
*/
fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
if (fd < 0)
return -1;
if (internal_conf->single_file_segments) {
map_offset = seg_idx * ms->len;
if (resize_hugefile(fd, map_offset, ms->len, false))
return -1;
if (--(fd_list[list_idx].count) == 0)
close_hugefile(fd, path, list_idx);
ret = 0;
} else {
/* if we're able to take out a write lock, we're the last one
* holding onto this page.
*/
if (!internal_conf->in_memory) {
ret = lock(fd, LOCK_EX);
if (ret >= 0) {
/* no one else is using this page */
if (ret == 1)
unlink(path);
}
}
/* closing fd will drop the lock */
close(fd);
fd_list[list_idx].fds[seg_idx] = -1;
}
memset(ms, 0, sizeof(*ms));
return ret < 0 ? -1 : 0;
}
struct alloc_walk_param {
struct hugepage_info *hi;
struct rte_memseg **ms;
size_t page_sz;
unsigned int segs_allocated;
unsigned int n_segs;
int socket;
bool exact;
};
static int
alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct alloc_walk_param *wa = arg;
struct rte_memseg_list *cur_msl;
size_t page_sz;
int cur_idx, start_idx, j, dir_fd = -1;
unsigned int msl_idx, need, i;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (msl->page_sz != wa->page_sz)
return 0;
if (msl->socket_id != wa->socket)
return 0;
page_sz = (size_t)msl->page_sz;
msl_idx = msl - mcfg->memsegs;
cur_msl = &mcfg->memsegs[msl_idx];
need = wa->n_segs;
/* try finding space in memseg list */
if (wa->exact) {
/* if we require exact number of pages in a list, find them */
cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0,
need);
if (cur_idx < 0)
return 0;
start_idx = cur_idx;
} else {
int cur_len;
/* we don't require exact number of pages, so we're going to go
* for best-effort allocation. that means finding the biggest
* unused block, and going with that.
*/
cur_idx = rte_fbarray_find_biggest_free(&cur_msl->memseg_arr,
0);
if (cur_idx < 0)
return 0;
start_idx = cur_idx;
/* adjust the size to possibly be smaller than original
* request, but do not allow it to be bigger.
*/
cur_len = rte_fbarray_find_contig_free(&cur_msl->memseg_arr,
cur_idx);
need = RTE_MIN(need, (unsigned int)cur_len);
}
/* do not allow any page allocations during the time we're allocating,
* because file creation and locking operations are not atomic,
* and we might be the first or the last ones to use a particular page,
* so we need to ensure atomicity of every operation.
*
* during init, we already hold a write lock, so don't try to take out
* another one.
*/
if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
dir_fd = open(wa->hi->hugedir, O_RDONLY);
if (dir_fd < 0) {
RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
__func__, wa->hi->hugedir, strerror(errno));
return -1;
}
/* blocking writelock */
if (flock(dir_fd, LOCK_EX)) {
RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
__func__, wa->hi->hugedir, strerror(errno));
close(dir_fd);
return -1;
}
}
for (i = 0; i < need; i++, cur_idx++) {
struct rte_memseg *cur;
void *map_addr;
cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
map_addr = RTE_PTR_ADD(cur_msl->base_va,
cur_idx * page_sz);
if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
msl_idx, cur_idx)) {
RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
need, i);
/* if exact number wasn't requested, stop */
if (!wa->exact)
goto out;
/* clean up */
for (j = start_idx; j < cur_idx; j++) {
struct rte_memseg *tmp;
struct rte_fbarray *arr =
&cur_msl->memseg_arr;
tmp = rte_fbarray_get(arr, j);
rte_fbarray_set_free(arr, j);
/* free_seg may attempt to create a file, which
* may fail.
*/
if (free_seg(tmp, wa->hi, msl_idx, j))
RTE_LOG(DEBUG, EAL, "Cannot free page\n");
}
/* clear the list */
if (wa->ms)
memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
if (dir_fd >= 0)
close(dir_fd);
return -1;
}
if (wa->ms)
wa->ms[i] = cur;
rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
}
out:
wa->segs_allocated = i;
if (i > 0)
cur_msl->version++;
if (dir_fd >= 0)
close(dir_fd);
/* if we didn't allocate any segments, move on to the next list */
return i > 0;
}
struct free_walk_param {
struct hugepage_info *hi;
struct rte_memseg *ms;
};
static int
free_seg_walk(const struct rte_memseg_list *msl, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *found_msl;
struct free_walk_param *wa = arg;
uintptr_t start_addr, end_addr;
int msl_idx, seg_idx, ret, dir_fd = -1;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
start_addr = (uintptr_t) msl->base_va;
end_addr = start_addr + msl->len;
if ((uintptr_t)wa->ms->addr < start_addr ||
(uintptr_t)wa->ms->addr >= end_addr)
return 0;
msl_idx = msl - mcfg->memsegs;
seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
/* msl is const */
found_msl = &mcfg->memsegs[msl_idx];
/* do not allow any page allocations during the time we're freeing,
* because file creation and locking operations are not atomic,
* and we might be the first or the last ones to use a particular page,
* so we need to ensure atomicity of every operation.
*
* during init, we already hold a write lock, so don't try to take out
* another one.
*/
if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
dir_fd = open(wa->hi->hugedir, O_RDONLY);
if (dir_fd < 0) {
RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
__func__, wa->hi->hugedir, strerror(errno));
return -1;
}
/* blocking writelock */
if (flock(dir_fd, LOCK_EX)) {
RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
__func__, wa->hi->hugedir, strerror(errno));
close(dir_fd);
return -1;
}
}
found_msl->version++;
rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
if (dir_fd >= 0)
close(dir_fd);
if (ret < 0)
return -1;
return 1;
}
int
eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
int socket, bool exact)
{
int i, ret = -1;
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
bool have_numa = false;
int oldpolicy;
struct bitmask *oldmask;
#endif
struct alloc_walk_param wa;
struct hugepage_info *hi = NULL;
struct internal_config *internal_conf =
eal_get_internal_configuration();
memset(&wa, 0, sizeof(wa));
/* dynamic allocation not supported in legacy mode */
if (internal_conf->legacy_mem)
return -1;
for (i = 0; i < (int) RTE_DIM(internal_conf->hugepage_info); i++) {
if (page_sz ==
internal_conf->hugepage_info[i].hugepage_sz) {
hi = &internal_conf->hugepage_info[i];
break;
}
}
if (!hi) {
RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
__func__);
return -1;
}
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
if (check_numa()) {
oldmask = numa_allocate_nodemask();
prepare_numa(&oldpolicy, oldmask, socket);
have_numa = true;
}
#endif
wa.exact = exact;
wa.hi = hi;
wa.ms = ms;
wa.n_segs = n_segs;
wa.page_sz = page_sz;
wa.socket = socket;
wa.segs_allocated = 0;
/* memalloc is locked, so it's safe to use thread-unsafe version */
ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
if (ret == 0) {
RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
__func__);
ret = -1;
} else if (ret > 0) {
ret = (int)wa.segs_allocated;
}
#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
if (have_numa)
restore_numa(&oldpolicy, oldmask);
#endif
return ret;
}
struct rte_memseg *
eal_memalloc_alloc_seg(size_t page_sz, int socket)
{
struct rte_memseg *ms;
if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
return NULL;
/* return pointer to newly allocated memseg */
return ms;
}
int
eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
{
int seg, ret = 0;
struct internal_config *internal_conf =
eal_get_internal_configuration();
/* dynamic free not supported in legacy mode */
if (internal_conf->legacy_mem)
return -1;
for (seg = 0; seg < n_segs; seg++) {
struct rte_memseg *cur = ms[seg];
struct hugepage_info *hi = NULL;
struct free_walk_param wa;
int i, walk_res;
/* if this page is marked as unfreeable, fail */
if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
ret = -1;
continue;
}
memset(&wa, 0, sizeof(wa));
for (i = 0; i < (int)RTE_DIM(internal_conf->hugepage_info);
i++) {
hi = &internal_conf->hugepage_info[i];
if (cur->hugepage_sz == hi->hugepage_sz)
break;
}
if (i == (int)RTE_DIM(internal_conf->hugepage_info)) {
RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
ret = -1;
continue;
}
wa.ms = cur;
wa.hi = hi;
/* memalloc is locked, so it's safe to use thread-unsafe version
*/
walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
&wa);
if (walk_res == 1)
continue;
if (walk_res == 0)
RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
ret = -1;
}
return ret;
}
int
eal_memalloc_free_seg(struct rte_memseg *ms)
{
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* dynamic free not supported in legacy mode */
if (internal_conf->legacy_mem)
return -1;
return eal_memalloc_free_seg_bulk(&ms, 1);
}
static int
sync_chunk(struct rte_memseg_list *primary_msl,
struct rte_memseg_list *local_msl, struct hugepage_info *hi,
unsigned int msl_idx, bool used, int start, int end)
{
struct rte_fbarray *l_arr, *p_arr;
int i, ret, chunk_len, diff_len;
l_arr = &local_msl->memseg_arr;
p_arr = &primary_msl->memseg_arr;
/* we need to aggregate allocations/deallocations into bigger chunks,
* as we don't want to spam the user with per-page callbacks.
*
* to avoid any potential issues, we also want to trigger
* deallocation callbacks *before* we actually deallocate
* memory, so that the user application could wrap up its use
* before it goes away.
*/
chunk_len = end - start;
/* find how many contiguous pages we can map/unmap for this chunk */
diff_len = used ?
rte_fbarray_find_contig_free(l_arr, start) :
rte_fbarray_find_contig_used(l_arr, start);
/* has to be at least one page */
if (diff_len < 1)
return -1;
diff_len = RTE_MIN(chunk_len, diff_len);
/* if we are freeing memory, notify the application */
if (!used) {
struct rte_memseg *ms;
void *start_va;
size_t len, page_sz;
ms = rte_fbarray_get(l_arr, start);
start_va = ms->addr;
page_sz = (size_t)primary_msl->page_sz;
len = page_sz * diff_len;
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
start_va, len);
}
for (i = 0; i < diff_len; i++) {
struct rte_memseg *p_ms, *l_ms;
int seg_idx = start + i;
l_ms = rte_fbarray_get(l_arr, seg_idx);
p_ms = rte_fbarray_get(p_arr, seg_idx);
if (l_ms == NULL || p_ms == NULL)
return -1;
if (used) {
ret = alloc_seg(l_ms, p_ms->addr,
p_ms->socket_id, hi,
msl_idx, seg_idx);
if (ret < 0)
return -1;
rte_fbarray_set_used(l_arr, seg_idx);
} else {
ret = free_seg(l_ms, hi, msl_idx, seg_idx);
rte_fbarray_set_free(l_arr, seg_idx);
if (ret < 0)
return -1;
}
}
/* if we just allocated memory, notify the application */
if (used) {
struct rte_memseg *ms;
void *start_va;
size_t len, page_sz;
ms = rte_fbarray_get(l_arr, start);
start_va = ms->addr;
page_sz = (size_t)primary_msl->page_sz;
len = page_sz * diff_len;
eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
start_va, len);
}
/* calculate how much we can advance until next chunk */
diff_len = used ?
rte_fbarray_find_contig_used(l_arr, start) :
rte_fbarray_find_contig_free(l_arr, start);
ret = RTE_MIN(chunk_len, diff_len);
return ret;
}
static int
sync_status(struct rte_memseg_list *primary_msl,
struct rte_memseg_list *local_msl, struct hugepage_info *hi,
unsigned int msl_idx, bool used)
{
struct rte_fbarray *l_arr, *p_arr;
int p_idx, l_chunk_len, p_chunk_len, ret;
int start, end;
/* this is a little bit tricky, but the basic idea is - walk both lists
* and spot any places where there are discrepancies. walking both lists
* and noting discrepancies in a single go is a hard problem, so we do
* it in two passes - first we spot any places where allocated segments
* mismatch (i.e. ensure that everything that's allocated in the primary
* is also allocated in the secondary), and then we do it by looking at
* free segments instead.
*
* we also need to aggregate changes into chunks, as we have to call
* callbacks per allocation, not per page.
*/
l_arr = &local_msl->memseg_arr;
p_arr = &primary_msl->memseg_arr;
if (used)
p_idx = rte_fbarray_find_next_used(p_arr, 0);
else
p_idx = rte_fbarray_find_next_free(p_arr, 0);
while (p_idx >= 0) {
int next_chunk_search_idx;
if (used) {
p_chunk_len = rte_fbarray_find_contig_used(p_arr,
p_idx);
l_chunk_len = rte_fbarray_find_contig_used(l_arr,
p_idx);
} else {
p_chunk_len = rte_fbarray_find_contig_free(p_arr,
p_idx);
l_chunk_len = rte_fbarray_find_contig_free(l_arr,
p_idx);
}
/* best case scenario - no differences (or bigger, which will be
* fixed during next iteration), look for next chunk
*/
if (l_chunk_len >= p_chunk_len) {
next_chunk_search_idx = p_idx + p_chunk_len;
goto next_chunk;
}
/* if both chunks start at the same point, skip parts we know
* are identical, and sync the rest. each call to sync_chunk
* will only sync contiguous segments, so we need to call this
* until we are sure there are no more differences in this
* chunk.
*/
start = p_idx + l_chunk_len;
end = p_idx + p_chunk_len;
do {
ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
used, start, end);
start += ret;
} while (start < end && ret >= 0);
/* if ret is negative, something went wrong */
if (ret < 0)
return -1;
next_chunk_search_idx = p_idx + p_chunk_len;
next_chunk:
/* skip to end of this chunk */
if (used) {
p_idx = rte_fbarray_find_next_used(p_arr,
next_chunk_search_idx);
} else {
p_idx = rte_fbarray_find_next_free(p_arr,
next_chunk_search_idx);
}
}
return 0;
}
static int
sync_existing(struct rte_memseg_list *primary_msl,
struct rte_memseg_list *local_msl, struct hugepage_info *hi,
unsigned int msl_idx)
{
int ret, dir_fd;
/* do not allow any page allocations during the time we're allocating,
* because file creation and locking operations are not atomic,
* and we might be the first or the last ones to use a particular page,
* so we need to ensure atomicity of every operation.
*/
dir_fd = open(hi->hugedir, O_RDONLY);
if (dir_fd < 0) {
RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
hi->hugedir, strerror(errno));
return -1;
}
/* blocking writelock */
if (flock(dir_fd, LOCK_EX)) {
RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
hi->hugedir, strerror(errno));
close(dir_fd);
return -1;
}
/* ensure all allocated space is the same in both lists */
ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
if (ret < 0)
goto fail;
/* ensure all unallocated space is the same in both lists */
ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
if (ret < 0)
goto fail;
/* update version number */
local_msl->version = primary_msl->version;
close(dir_fd);
return 0;
fail:
close(dir_fd);
return -1;
}
static int
sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *primary_msl, *local_msl;
struct hugepage_info *hi = NULL;
unsigned int i;
int msl_idx;
struct internal_config *internal_conf =
eal_get_internal_configuration();
if (msl->external)
return 0;
msl_idx = msl - mcfg->memsegs;
primary_msl = &mcfg->memsegs[msl_idx];
local_msl = &local_memsegs[msl_idx];
for (i = 0; i < RTE_DIM(internal_conf->hugepage_info); i++) {
uint64_t cur_sz =
internal_conf->hugepage_info[i].hugepage_sz;
uint64_t msl_sz = primary_msl->page_sz;
if (msl_sz == cur_sz) {
hi = &internal_conf->hugepage_info[i];
break;
}
}
if (!hi) {
RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
return -1;
}
/* if versions don't match, synchronize everything */
if (local_msl->version != primary_msl->version &&
sync_existing(primary_msl, local_msl, hi, msl_idx))
return -1;
return 0;
}
int
eal_memalloc_sync_with_primary(void)
{
/* nothing to be done in primary */
if (rte_eal_process_type() == RTE_PROC_PRIMARY)
return 0;
/* memalloc is locked, so it's safe to call thread-unsafe version */
if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
return -1;
return 0;
}
static int
secondary_msl_create_walk(const struct rte_memseg_list *msl,
void *arg __rte_unused)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *primary_msl, *local_msl;
char name[PATH_MAX];
int msl_idx, ret;
if (msl->external)
return 0;
msl_idx = msl - mcfg->memsegs;
primary_msl = &mcfg->memsegs[msl_idx];
local_msl = &local_memsegs[msl_idx];
/* create distinct fbarrays for each secondary */
snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
primary_msl->memseg_arr.name, getpid());
ret = rte_fbarray_init(&local_msl->memseg_arr, name,
primary_msl->memseg_arr.len,
primary_msl->memseg_arr.elt_sz);
if (ret < 0) {
RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
return -1;
}
local_msl->base_va = primary_msl->base_va;
local_msl->len = primary_msl->len;
return 0;
}
static int
alloc_list(int list_idx, int len)
{
int *data;
int i;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* single-file segments mode does not need fd list */
if (!internal_conf->single_file_segments) {
/* ensure we have space to store fd per each possible segment */
data = malloc(sizeof(int) * len);
if (data == NULL) {
RTE_LOG(ERR, EAL, "Unable to allocate space for file descriptors\n");
return -1;
}
/* set all fd's as invalid */
for (i = 0; i < len; i++)
data[i] = -1;
fd_list[list_idx].fds = data;
fd_list[list_idx].len = len;
} else {
fd_list[list_idx].fds = NULL;
fd_list[list_idx].len = 0;
}
fd_list[list_idx].count = 0;
fd_list[list_idx].memseg_list_fd = -1;
return 0;
}
static int
fd_list_create_walk(const struct rte_memseg_list *msl,
void *arg __rte_unused)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned int len;
int msl_idx;
if (msl->external)
return 0;
msl_idx = msl - mcfg->memsegs;
len = msl->memseg_arr.len;
return alloc_list(msl_idx, len);
}
int
eal_memalloc_set_seg_fd(int list_idx, int seg_idx, int fd)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* single file segments mode doesn't support individual segment fd's */
if (internal_conf->single_file_segments)
return -ENOTSUP;
/* if list is not allocated, allocate it */
if (fd_list[list_idx].len == 0) {
int len = mcfg->memsegs[list_idx].memseg_arr.len;
if (alloc_list(list_idx, len) < 0)
return -ENOMEM;
}
fd_list[list_idx].fds[seg_idx] = fd;
return 0;
}
int
eal_memalloc_set_seg_list_fd(int list_idx, int fd)
{
const struct internal_config *internal_conf =
eal_get_internal_configuration();
/* non-single file segment mode doesn't support segment list fd's */
if (!internal_conf->single_file_segments)
return -ENOTSUP;
fd_list[list_idx].memseg_list_fd = fd;
return 0;
}
int
eal_memalloc_get_seg_fd(int list_idx, int seg_idx)
{
int fd;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
#ifndef MEMFD_SUPPORTED
/* in in-memory or no-huge mode, we rely on memfd support */
return -ENOTSUP;
#endif
/* memfd supported, but hugetlbfs memfd may not be */
if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
return -ENOTSUP;
}
if (internal_conf->single_file_segments) {
fd = fd_list[list_idx].memseg_list_fd;
} else if (fd_list[list_idx].len == 0) {
/* list not initialized */
fd = -1;
} else {
fd = fd_list[list_idx].fds[seg_idx];
}
if (fd < 0)
return -ENODEV;
return fd;
}
static int
test_memfd_create(void)
{
#ifdef MEMFD_SUPPORTED
const struct internal_config *internal_conf =
eal_get_internal_configuration();
unsigned int i;
for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
uint64_t pagesz = internal_conf->hugepage_info[i].hugepage_sz;
int pagesz_flag = pagesz_flags(pagesz);
int flags;
flags = pagesz_flag | RTE_MFD_HUGETLB;
int fd = memfd_create("test", flags);
if (fd < 0) {
/* we failed - let memalloc know this isn't working */
if (errno == EINVAL) {
memfd_create_supported = 0;
return 0; /* not supported */
}
/* we got other error - something's wrong */
return -1; /* error */
}
close(fd);
return 1; /* supported */
}
#endif
return 0; /* not supported */
}
int
eal_memalloc_get_seg_fd_offset(int list_idx, int seg_idx, size_t *offset)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
#ifndef MEMFD_SUPPORTED
/* in in-memory or no-huge mode, we rely on memfd support */
return -ENOTSUP;
#endif
/* memfd supported, but hugetlbfs memfd may not be */
if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
return -ENOTSUP;
}
if (internal_conf->single_file_segments) {
size_t pgsz = mcfg->memsegs[list_idx].page_sz;
/* segment not active? */
if (fd_list[list_idx].memseg_list_fd < 0)
return -ENOENT;
*offset = pgsz * seg_idx;
} else {
/* fd_list not initialized? */
if (fd_list[list_idx].len == 0)
return -ENODEV;
/* segment not active? */
if (fd_list[list_idx].fds[seg_idx] < 0)
return -ENOENT;
*offset = 0;
}
return 0;
}
int
eal_memalloc_init(void)
{
const struct internal_config *internal_conf =
eal_get_internal_configuration();
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
return -1;
if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
internal_conf->in_memory) {
int mfd_res = test_memfd_create();
if (mfd_res < 0) {
RTE_LOG(ERR, EAL, "Unable to check if memfd is supported\n");
return -1;
}
if (mfd_res == 1)
RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
else
RTE_LOG(INFO, EAL, "Using memfd is not supported, falling back to anonymous hugepages\n");
/* we only support single-file segments mode with in-memory mode
* if we support hugetlbfs with memfd_create. this code will
* test if we do.
*/
if (internal_conf->single_file_segments &&
mfd_res != 1) {
RTE_LOG(ERR, EAL, "Single-file segments mode cannot be used without memfd support\n");
return -1;
}
/* this cannot ever happen but better safe than sorry */
if (!anonymous_hugepages_supported) {
RTE_LOG(ERR, EAL, "Using anonymous memory is not supported\n");
return -1;
}
}
/* initialize all of the fd lists */
if (rte_memseg_list_walk(fd_list_create_walk, NULL))
return -1;
return 0;
}