Alexander Kozyrev 6c55b622a9 net/mlx5: set dynamic flow metadata in Rx queues
Using a global mbuf dynamic field for metadata incurs some
performance penalty on a datapath. Store this information in
the Rx queue descriptor for a better cache locality.

Fixes: a18ac6113331 ("net/mlx5: add metadata support to Rx datapath")
Cc: stable@dpdk.org

Signed-off-by: Alexander Kozyrev <akozyrev@mellanox.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
2020-04-21 22:28:06 +02:00

1253 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include <rte_string_fns.h>
#include <rte_mbuf.h>
#include <rte_mbuf_dyn.h>
#include "rte_ethdev.h"
#include "rte_flow_driver.h"
#include "rte_flow.h"
/* Mbuf dynamic field name for metadata. */
int32_t rte_flow_dynf_metadata_offs = -1;
/* Mbuf dynamic field flag bit number for metadata. */
uint64_t rte_flow_dynf_metadata_mask;
/**
* Flow elements description tables.
*/
struct rte_flow_desc_data {
const char *name;
size_t size;
};
/** Generate flow_item[] entry. */
#define MK_FLOW_ITEM(t, s) \
[RTE_FLOW_ITEM_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
}
/** Information about known flow pattern items. */
static const struct rte_flow_desc_data rte_flow_desc_item[] = {
MK_FLOW_ITEM(END, 0),
MK_FLOW_ITEM(VOID, 0),
MK_FLOW_ITEM(INVERT, 0),
MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
MK_FLOW_ITEM(PF, 0),
MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
MK_FLOW_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
MK_FLOW_ITEM(META, sizeof(struct rte_flow_item_meta)),
MK_FLOW_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
MK_FLOW_ITEM(GRE_KEY, sizeof(rte_be32_t)),
MK_FLOW_ITEM(GTP_PSC, sizeof(struct rte_flow_item_gtp_psc)),
MK_FLOW_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
MK_FLOW_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
MK_FLOW_ITEM(PPPOE_PROTO_ID,
sizeof(struct rte_flow_item_pppoe_proto_id)),
MK_FLOW_ITEM(NSH, sizeof(struct rte_flow_item_nsh)),
MK_FLOW_ITEM(IGMP, sizeof(struct rte_flow_item_igmp)),
MK_FLOW_ITEM(AH, sizeof(struct rte_flow_item_ah)),
MK_FLOW_ITEM(HIGIG2, sizeof(struct rte_flow_item_higig2_hdr)),
MK_FLOW_ITEM(L2TPV3OIP, sizeof(struct rte_flow_item_l2tpv3oip)),
MK_FLOW_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
};
/** Generate flow_action[] entry. */
#define MK_FLOW_ACTION(t, s) \
[RTE_FLOW_ACTION_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
}
/** Information about known flow actions. */
static const struct rte_flow_desc_data rte_flow_desc_action[] = {
MK_FLOW_ACTION(END, 0),
MK_FLOW_ACTION(VOID, 0),
MK_FLOW_ACTION(PASSTHRU, 0),
MK_FLOW_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
MK_FLOW_ACTION(FLAG, 0),
MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
MK_FLOW_ACTION(DROP, 0),
MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
MK_FLOW_ACTION(PF, 0),
MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
MK_FLOW_ACTION(SECURITY, sizeof(struct rte_flow_action_security)),
MK_FLOW_ACTION(OF_SET_MPLS_TTL,
sizeof(struct rte_flow_action_of_set_mpls_ttl)),
MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
MK_FLOW_ACTION(OF_SET_NW_TTL,
sizeof(struct rte_flow_action_of_set_nw_ttl)),
MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
MK_FLOW_ACTION(OF_POP_VLAN, 0),
MK_FLOW_ACTION(OF_PUSH_VLAN,
sizeof(struct rte_flow_action_of_push_vlan)),
MK_FLOW_ACTION(OF_SET_VLAN_VID,
sizeof(struct rte_flow_action_of_set_vlan_vid)),
MK_FLOW_ACTION(OF_SET_VLAN_PCP,
sizeof(struct rte_flow_action_of_set_vlan_pcp)),
MK_FLOW_ACTION(OF_POP_MPLS,
sizeof(struct rte_flow_action_of_pop_mpls)),
MK_FLOW_ACTION(OF_PUSH_MPLS,
sizeof(struct rte_flow_action_of_push_mpls)),
MK_FLOW_ACTION(VXLAN_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
MK_FLOW_ACTION(VXLAN_DECAP, 0),
MK_FLOW_ACTION(NVGRE_ENCAP, sizeof(struct rte_flow_action_vxlan_encap)),
MK_FLOW_ACTION(NVGRE_DECAP, 0),
MK_FLOW_ACTION(RAW_ENCAP, sizeof(struct rte_flow_action_raw_encap)),
MK_FLOW_ACTION(RAW_DECAP, sizeof(struct rte_flow_action_raw_decap)),
MK_FLOW_ACTION(SET_IPV4_SRC,
sizeof(struct rte_flow_action_set_ipv4)),
MK_FLOW_ACTION(SET_IPV4_DST,
sizeof(struct rte_flow_action_set_ipv4)),
MK_FLOW_ACTION(SET_IPV6_SRC,
sizeof(struct rte_flow_action_set_ipv6)),
MK_FLOW_ACTION(SET_IPV6_DST,
sizeof(struct rte_flow_action_set_ipv6)),
MK_FLOW_ACTION(SET_TP_SRC,
sizeof(struct rte_flow_action_set_tp)),
MK_FLOW_ACTION(SET_TP_DST,
sizeof(struct rte_flow_action_set_tp)),
MK_FLOW_ACTION(MAC_SWAP, 0),
MK_FLOW_ACTION(DEC_TTL, 0),
MK_FLOW_ACTION(SET_TTL, sizeof(struct rte_flow_action_set_ttl)),
MK_FLOW_ACTION(SET_MAC_SRC, sizeof(struct rte_flow_action_set_mac)),
MK_FLOW_ACTION(SET_MAC_DST, sizeof(struct rte_flow_action_set_mac)),
MK_FLOW_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
MK_FLOW_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
MK_FLOW_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
MK_FLOW_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
MK_FLOW_ACTION(SET_TAG, sizeof(struct rte_flow_action_set_tag)),
MK_FLOW_ACTION(SET_META, sizeof(struct rte_flow_action_set_meta)),
MK_FLOW_ACTION(SET_IPV4_DSCP, sizeof(struct rte_flow_action_set_dscp)),
MK_FLOW_ACTION(SET_IPV6_DSCP, sizeof(struct rte_flow_action_set_dscp)),
MK_FLOW_ACTION(AGE, sizeof(struct rte_flow_action_age)),
};
int
rte_flow_dynf_metadata_register(void)
{
int offset;
int flag;
static const struct rte_mbuf_dynfield desc_offs = {
.name = RTE_MBUF_DYNFIELD_METADATA_NAME,
.size = sizeof(uint32_t),
.align = __alignof__(uint32_t),
};
static const struct rte_mbuf_dynflag desc_flag = {
.name = RTE_MBUF_DYNFLAG_METADATA_NAME,
};
offset = rte_mbuf_dynfield_register(&desc_offs);
if (offset < 0)
goto error;
flag = rte_mbuf_dynflag_register(&desc_flag);
if (flag < 0)
goto error;
rte_flow_dynf_metadata_offs = offset;
rte_flow_dynf_metadata_mask = (1ULL << flag);
return 0;
error:
rte_flow_dynf_metadata_offs = -1;
rte_flow_dynf_metadata_mask = 0ULL;
return -rte_errno;
}
static int
flow_err(uint16_t port_id, int ret, struct rte_flow_error *error)
{
if (ret == 0)
return 0;
if (rte_eth_dev_is_removed(port_id))
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(EIO));
return ret;
}
static enum rte_flow_item_type
rte_flow_expand_rss_item_complete(const struct rte_flow_item *item)
{
enum rte_flow_item_type ret = RTE_FLOW_ITEM_TYPE_VOID;
uint16_t ether_type = 0;
uint16_t ether_type_m;
uint8_t ip_next_proto = 0;
uint8_t ip_next_proto_m;
if (item == NULL || item->spec == NULL)
return ret;
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
if (item->mask)
ether_type_m = ((const struct rte_flow_item_eth *)
(item->mask))->type;
else
ether_type_m = rte_flow_item_eth_mask.type;
if (ether_type_m != RTE_BE16(0xFFFF))
break;
ether_type = ((const struct rte_flow_item_eth *)
(item->spec))->type;
if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
ret = RTE_FLOW_ITEM_TYPE_IPV4;
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
ret = RTE_FLOW_ITEM_TYPE_IPV6;
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
ret = RTE_FLOW_ITEM_TYPE_VLAN;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
if (item->mask)
ether_type_m = ((const struct rte_flow_item_vlan *)
(item->mask))->inner_type;
else
ether_type_m = rte_flow_item_vlan_mask.inner_type;
if (ether_type_m != RTE_BE16(0xFFFF))
break;
ether_type = ((const struct rte_flow_item_vlan *)
(item->spec))->inner_type;
if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV4)
ret = RTE_FLOW_ITEM_TYPE_IPV4;
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_IPV6)
ret = RTE_FLOW_ITEM_TYPE_IPV6;
else if (rte_be_to_cpu_16(ether_type) == RTE_ETHER_TYPE_VLAN)
ret = RTE_FLOW_ITEM_TYPE_VLAN;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
if (item->mask)
ip_next_proto_m = ((const struct rte_flow_item_ipv4 *)
(item->mask))->hdr.next_proto_id;
else
ip_next_proto_m =
rte_flow_item_ipv4_mask.hdr.next_proto_id;
if (ip_next_proto_m != 0xFF)
break;
ip_next_proto = ((const struct rte_flow_item_ipv4 *)
(item->spec))->hdr.next_proto_id;
if (ip_next_proto == IPPROTO_UDP)
ret = RTE_FLOW_ITEM_TYPE_UDP;
else if (ip_next_proto == IPPROTO_TCP)
ret = RTE_FLOW_ITEM_TYPE_TCP;
else if (ip_next_proto == IPPROTO_IP)
ret = RTE_FLOW_ITEM_TYPE_IPV4;
else if (ip_next_proto == IPPROTO_IPV6)
ret = RTE_FLOW_ITEM_TYPE_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
if (item->mask)
ip_next_proto_m = ((const struct rte_flow_item_ipv6 *)
(item->mask))->hdr.proto;
else
ip_next_proto_m =
rte_flow_item_ipv6_mask.hdr.proto;
if (ip_next_proto_m != 0xFF)
break;
ip_next_proto = ((const struct rte_flow_item_ipv6 *)
(item->spec))->hdr.proto;
if (ip_next_proto == IPPROTO_UDP)
ret = RTE_FLOW_ITEM_TYPE_UDP;
else if (ip_next_proto == IPPROTO_TCP)
ret = RTE_FLOW_ITEM_TYPE_TCP;
else if (ip_next_proto == IPPROTO_IP)
ret = RTE_FLOW_ITEM_TYPE_IPV4;
else if (ip_next_proto == IPPROTO_IPV6)
ret = RTE_FLOW_ITEM_TYPE_IPV6;
break;
default:
ret = RTE_FLOW_ITEM_TYPE_VOID;
break;
}
return ret;
}
/* Get generic flow operations structure from a port. */
const struct rte_flow_ops *
rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops;
int code;
if (unlikely(!rte_eth_dev_is_valid_port(port_id)))
code = ENODEV;
else if (unlikely(!dev->dev_ops->filter_ctrl ||
dev->dev_ops->filter_ctrl(dev,
RTE_ETH_FILTER_GENERIC,
RTE_ETH_FILTER_GET,
&ops) ||
!ops))
code = ENOSYS;
else
return ops;
rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(code));
return NULL;
}
/* Check whether a flow rule can be created on a given port. */
int
rte_flow_validate(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->validate))
return flow_err(port_id, ops->validate(dev, attr, pattern,
actions, error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Create a flow rule on a given port. */
struct rte_flow *
rte_flow_create(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
struct rte_flow *flow;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return NULL;
if (likely(!!ops->create)) {
flow = ops->create(dev, attr, pattern, actions, error);
if (flow == NULL)
flow_err(port_id, -rte_errno, error);
return flow;
}
rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
return NULL;
}
/* Destroy a flow rule on a given port. */
int
rte_flow_destroy(uint16_t port_id,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->destroy))
return flow_err(port_id, ops->destroy(dev, flow, error),
error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Destroy all flow rules associated with a port. */
int
rte_flow_flush(uint16_t port_id,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->flush))
return flow_err(port_id, ops->flush(dev, error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Query an existing flow rule. */
int
rte_flow_query(uint16_t port_id,
struct rte_flow *flow,
const struct rte_flow_action *action,
void *data,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (!ops)
return -rte_errno;
if (likely(!!ops->query))
return flow_err(port_id, ops->query(dev, flow, action, data,
error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Restrict ingress traffic to the defined flow rules. */
int
rte_flow_isolate(uint16_t port_id,
int set,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (!ops)
return -rte_errno;
if (likely(!!ops->isolate))
return flow_err(port_id, ops->isolate(dev, set, error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Initialize flow error structure. */
int
rte_flow_error_set(struct rte_flow_error *error,
int code,
enum rte_flow_error_type type,
const void *cause,
const char *message)
{
if (error) {
*error = (struct rte_flow_error){
.type = type,
.cause = cause,
.message = message,
};
}
rte_errno = code;
return -code;
}
/** Pattern item specification types. */
enum rte_flow_conv_item_spec_type {
RTE_FLOW_CONV_ITEM_SPEC,
RTE_FLOW_CONV_ITEM_LAST,
RTE_FLOW_CONV_ITEM_MASK,
};
/**
* Copy pattern item specification.
*
* @param[out] buf
* Output buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p buf in bytes.
* @param[in] item
* Pattern item to copy specification from.
* @param type
* Specification selector for either @p spec, @p last or @p mask.
*
* @return
* Number of bytes needed to store pattern item specification regardless
* of @p size. @p buf contents are truncated to @p size if not large
* enough.
*/
static size_t
rte_flow_conv_item_spec(void *buf, const size_t size,
const struct rte_flow_item *item,
enum rte_flow_conv_item_spec_type type)
{
size_t off;
const void *data =
type == RTE_FLOW_CONV_ITEM_SPEC ? item->spec :
type == RTE_FLOW_CONV_ITEM_LAST ? item->last :
type == RTE_FLOW_CONV_ITEM_MASK ? item->mask :
NULL;
switch (item->type) {
union {
const struct rte_flow_item_raw *raw;
} spec;
union {
const struct rte_flow_item_raw *raw;
} last;
union {
const struct rte_flow_item_raw *raw;
} mask;
union {
const struct rte_flow_item_raw *raw;
} src;
union {
struct rte_flow_item_raw *raw;
} dst;
size_t tmp;
case RTE_FLOW_ITEM_TYPE_RAW:
spec.raw = item->spec;
last.raw = item->last ? item->last : item->spec;
mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
src.raw = data;
dst.raw = buf;
rte_memcpy(dst.raw,
(&(struct rte_flow_item_raw){
.relative = src.raw->relative,
.search = src.raw->search,
.reserved = src.raw->reserved,
.offset = src.raw->offset,
.limit = src.raw->limit,
.length = src.raw->length,
}),
size > sizeof(*dst.raw) ? sizeof(*dst.raw) : size);
off = sizeof(*dst.raw);
if (type == RTE_FLOW_CONV_ITEM_SPEC ||
(type == RTE_FLOW_CONV_ITEM_MASK &&
((spec.raw->length & mask.raw->length) >=
(last.raw->length & mask.raw->length))))
tmp = spec.raw->length & mask.raw->length;
else
tmp = last.raw->length & mask.raw->length;
if (tmp) {
off = RTE_ALIGN_CEIL(off, sizeof(*dst.raw->pattern));
if (size >= off + tmp)
dst.raw->pattern = rte_memcpy
((void *)((uintptr_t)dst.raw + off),
src.raw->pattern, tmp);
off += tmp;
}
break;
default:
off = rte_flow_desc_item[item->type].size;
rte_memcpy(buf, data, (size > off ? off : size));
break;
}
return off;
}
/**
* Copy action configuration.
*
* @param[out] buf
* Output buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p buf in bytes.
* @param[in] action
* Action to copy configuration from.
*
* @return
* Number of bytes needed to store pattern item specification regardless
* of @p size. @p buf contents are truncated to @p size if not large
* enough.
*/
static size_t
rte_flow_conv_action_conf(void *buf, const size_t size,
const struct rte_flow_action *action)
{
size_t off;
switch (action->type) {
union {
const struct rte_flow_action_rss *rss;
const struct rte_flow_action_vxlan_encap *vxlan_encap;
const struct rte_flow_action_nvgre_encap *nvgre_encap;
} src;
union {
struct rte_flow_action_rss *rss;
struct rte_flow_action_vxlan_encap *vxlan_encap;
struct rte_flow_action_nvgre_encap *nvgre_encap;
} dst;
size_t tmp;
int ret;
case RTE_FLOW_ACTION_TYPE_RSS:
src.rss = action->conf;
dst.rss = buf;
rte_memcpy(dst.rss,
(&(struct rte_flow_action_rss){
.func = src.rss->func,
.level = src.rss->level,
.types = src.rss->types,
.key_len = src.rss->key_len,
.queue_num = src.rss->queue_num,
}),
size > sizeof(*dst.rss) ? sizeof(*dst.rss) : size);
off = sizeof(*dst.rss);
if (src.rss->key_len) {
off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->key));
tmp = sizeof(*src.rss->key) * src.rss->key_len;
if (size >= off + tmp)
dst.rss->key = rte_memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->key, tmp);
off += tmp;
}
if (src.rss->queue_num) {
off = RTE_ALIGN_CEIL(off, sizeof(*dst.rss->queue));
tmp = sizeof(*src.rss->queue) * src.rss->queue_num;
if (size >= off + tmp)
dst.rss->queue = rte_memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->queue, tmp);
off += tmp;
}
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
src.vxlan_encap = action->conf;
dst.vxlan_encap = buf;
RTE_BUILD_BUG_ON(sizeof(*src.vxlan_encap) !=
sizeof(*src.nvgre_encap) ||
offsetof(struct rte_flow_action_vxlan_encap,
definition) !=
offsetof(struct rte_flow_action_nvgre_encap,
definition));
off = sizeof(*dst.vxlan_encap);
if (src.vxlan_encap->definition) {
off = RTE_ALIGN_CEIL
(off, sizeof(*dst.vxlan_encap->definition));
ret = rte_flow_conv
(RTE_FLOW_CONV_OP_PATTERN,
(void *)((uintptr_t)dst.vxlan_encap + off),
size > off ? size - off : 0,
src.vxlan_encap->definition, NULL);
if (ret < 0)
return 0;
if (size >= off + ret)
dst.vxlan_encap->definition =
(void *)((uintptr_t)dst.vxlan_encap +
off);
off += ret;
}
break;
default:
off = rte_flow_desc_action[action->type].size;
rte_memcpy(buf, action->conf, (size > off ? off : size));
break;
}
return off;
}
/**
* Copy a list of pattern items.
*
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Source pattern items.
* @param num
* Maximum number of pattern items to process from @p src or 0 to process
* the entire list. In both cases, processing stops after
* RTE_FLOW_ITEM_TYPE_END is encountered.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store
* pattern items regardless of @p size on success (@p buf contents are
* truncated to @p size if not large enough), a negative errno value
* otherwise and rte_errno is set.
*/
static int
rte_flow_conv_pattern(struct rte_flow_item *dst,
const size_t size,
const struct rte_flow_item *src,
unsigned int num,
struct rte_flow_error *error)
{
uintptr_t data = (uintptr_t)dst;
size_t off;
size_t ret;
unsigned int i;
for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
if ((size_t)src->type >= RTE_DIM(rte_flow_desc_item) ||
!rte_flow_desc_item[src->type].name)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ITEM, src,
"cannot convert unknown item type");
if (size >= off + sizeof(*dst))
*dst = (struct rte_flow_item){
.type = src->type,
};
off += sizeof(*dst);
if (!src->type)
num = i + 1;
}
num = i;
src -= num;
dst -= num;
do {
if (src->spec) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_item_spec
((void *)(data + off),
size > off ? size - off : 0, src,
RTE_FLOW_CONV_ITEM_SPEC);
if (size && size >= off + ret)
dst->spec = (void *)(data + off);
off += ret;
}
if (src->last) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_item_spec
((void *)(data + off),
size > off ? size - off : 0, src,
RTE_FLOW_CONV_ITEM_LAST);
if (size && size >= off + ret)
dst->last = (void *)(data + off);
off += ret;
}
if (src->mask) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_item_spec
((void *)(data + off),
size > off ? size - off : 0, src,
RTE_FLOW_CONV_ITEM_MASK);
if (size && size >= off + ret)
dst->mask = (void *)(data + off);
off += ret;
}
++src;
++dst;
} while (--num);
return off;
}
/**
* Copy a list of actions.
*
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Source actions.
* @param num
* Maximum number of actions to process from @p src or 0 to process the
* entire list. In both cases, processing stops after
* RTE_FLOW_ACTION_TYPE_END is encountered.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store
* actions regardless of @p size on success (@p buf contents are truncated
* to @p size if not large enough), a negative errno value otherwise and
* rte_errno is set.
*/
static int
rte_flow_conv_actions(struct rte_flow_action *dst,
const size_t size,
const struct rte_flow_action *src,
unsigned int num,
struct rte_flow_error *error)
{
uintptr_t data = (uintptr_t)dst;
size_t off;
size_t ret;
unsigned int i;
for (i = 0, off = 0; !num || i != num; ++i, ++src, ++dst) {
if ((size_t)src->type >= RTE_DIM(rte_flow_desc_action) ||
!rte_flow_desc_action[src->type].name)
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_ACTION,
src, "cannot convert unknown action type");
if (size >= off + sizeof(*dst))
*dst = (struct rte_flow_action){
.type = src->type,
};
off += sizeof(*dst);
if (!src->type)
num = i + 1;
}
num = i;
src -= num;
dst -= num;
do {
if (src->conf) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_action_conf
((void *)(data + off),
size > off ? size - off : 0, src);
if (size && size >= off + ret)
dst->conf = (void *)(data + off);
off += ret;
}
++src;
++dst;
} while (--num);
return off;
}
/**
* Copy flow rule components.
*
* This comprises the flow rule descriptor itself, attributes, pattern and
* actions list. NULL components in @p src are skipped.
*
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Source flow rule descriptor.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store all
* components including the descriptor regardless of @p size on success
* (@p buf contents are truncated to @p size if not large enough), a
* negative errno value otherwise and rte_errno is set.
*/
static int
rte_flow_conv_rule(struct rte_flow_conv_rule *dst,
const size_t size,
const struct rte_flow_conv_rule *src,
struct rte_flow_error *error)
{
size_t off;
int ret;
rte_memcpy(dst,
(&(struct rte_flow_conv_rule){
.attr = NULL,
.pattern = NULL,
.actions = NULL,
}),
size > sizeof(*dst) ? sizeof(*dst) : size);
off = sizeof(*dst);
if (src->attr_ro) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
if (size && size >= off + sizeof(*dst->attr))
dst->attr = rte_memcpy
((void *)((uintptr_t)dst + off),
src->attr_ro, sizeof(*dst->attr));
off += sizeof(*dst->attr);
}
if (src->pattern_ro) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_pattern((void *)((uintptr_t)dst + off),
size > off ? size - off : 0,
src->pattern_ro, 0, error);
if (ret < 0)
return ret;
if (size && size >= off + (size_t)ret)
dst->pattern = (void *)((uintptr_t)dst + off);
off += ret;
}
if (src->actions_ro) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
ret = rte_flow_conv_actions((void *)((uintptr_t)dst + off),
size > off ? size - off : 0,
src->actions_ro, 0, error);
if (ret < 0)
return ret;
if (size >= off + (size_t)ret)
dst->actions = (void *)((uintptr_t)dst + off);
off += ret;
}
return off;
}
/**
* Retrieve the name of a pattern item/action type.
*
* @param is_action
* Nonzero when @p src represents an action type instead of a pattern item
* type.
* @param is_ptr
* Nonzero to write string address instead of contents into @p dst.
* @param[out] dst
* Destination buffer. Can be NULL if @p size is zero.
* @param size
* Size of @p dst in bytes.
* @param[in] src
* Depending on @p is_action, source pattern item or action type cast as a
* pointer.
* @param[out] error
* Perform verbose error reporting if not NULL.
*
* @return
* A positive value representing the number of bytes needed to store the
* name or its address regardless of @p size on success (@p buf contents
* are truncated to @p size if not large enough), a negative errno value
* otherwise and rte_errno is set.
*/
static int
rte_flow_conv_name(int is_action,
int is_ptr,
char *dst,
const size_t size,
const void *src,
struct rte_flow_error *error)
{
struct desc_info {
const struct rte_flow_desc_data *data;
size_t num;
};
static const struct desc_info info_rep[2] = {
{ rte_flow_desc_item, RTE_DIM(rte_flow_desc_item), },
{ rte_flow_desc_action, RTE_DIM(rte_flow_desc_action), },
};
const struct desc_info *const info = &info_rep[!!is_action];
unsigned int type = (uintptr_t)src;
if (type >= info->num)
return rte_flow_error_set
(error, EINVAL, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unknown object type to retrieve the name of");
if (!is_ptr)
return strlcpy(dst, info->data[type].name, size);
if (size >= sizeof(const char **))
*((const char **)dst) = info->data[type].name;
return sizeof(const char **);
}
/** Helper function to convert flow API objects. */
int
rte_flow_conv(enum rte_flow_conv_op op,
void *dst,
size_t size,
const void *src,
struct rte_flow_error *error)
{
switch (op) {
const struct rte_flow_attr *attr;
case RTE_FLOW_CONV_OP_NONE:
return 0;
case RTE_FLOW_CONV_OP_ATTR:
attr = src;
if (size > sizeof(*attr))
size = sizeof(*attr);
rte_memcpy(dst, attr, size);
return sizeof(*attr);
case RTE_FLOW_CONV_OP_ITEM:
return rte_flow_conv_pattern(dst, size, src, 1, error);
case RTE_FLOW_CONV_OP_ACTION:
return rte_flow_conv_actions(dst, size, src, 1, error);
case RTE_FLOW_CONV_OP_PATTERN:
return rte_flow_conv_pattern(dst, size, src, 0, error);
case RTE_FLOW_CONV_OP_ACTIONS:
return rte_flow_conv_actions(dst, size, src, 0, error);
case RTE_FLOW_CONV_OP_RULE:
return rte_flow_conv_rule(dst, size, src, error);
case RTE_FLOW_CONV_OP_ITEM_NAME:
return rte_flow_conv_name(0, 0, dst, size, src, error);
case RTE_FLOW_CONV_OP_ACTION_NAME:
return rte_flow_conv_name(1, 0, dst, size, src, error);
case RTE_FLOW_CONV_OP_ITEM_NAME_PTR:
return rte_flow_conv_name(0, 1, dst, size, src, error);
case RTE_FLOW_CONV_OP_ACTION_NAME_PTR:
return rte_flow_conv_name(1, 1, dst, size, src, error);
}
return rte_flow_error_set
(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"unknown object conversion operation");
}
/** Store a full rte_flow description. */
size_t
rte_flow_copy(struct rte_flow_desc *desc, size_t len,
const struct rte_flow_attr *attr,
const struct rte_flow_item *items,
const struct rte_flow_action *actions)
{
/*
* Overlap struct rte_flow_conv with struct rte_flow_desc in order
* to convert the former to the latter without wasting space.
*/
struct rte_flow_conv_rule *dst =
len ?
(void *)((uintptr_t)desc +
(offsetof(struct rte_flow_desc, actions) -
offsetof(struct rte_flow_conv_rule, actions))) :
NULL;
size_t dst_size =
len > sizeof(*desc) - sizeof(*dst) ?
len - (sizeof(*desc) - sizeof(*dst)) :
0;
struct rte_flow_conv_rule src = {
.attr_ro = NULL,
.pattern_ro = items,
.actions_ro = actions,
};
int ret;
RTE_BUILD_BUG_ON(sizeof(struct rte_flow_desc) <
sizeof(struct rte_flow_conv_rule));
if (dst_size &&
(&dst->pattern != &desc->items ||
&dst->actions != &desc->actions ||
(uintptr_t)(dst + 1) != (uintptr_t)(desc + 1))) {
rte_errno = EINVAL;
return 0;
}
ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, dst, dst_size, &src, NULL);
if (ret < 0)
return 0;
ret += sizeof(*desc) - sizeof(*dst);
rte_memcpy(desc,
(&(struct rte_flow_desc){
.size = ret,
.attr = *attr,
.items = dst_size ? dst->pattern : NULL,
.actions = dst_size ? dst->actions : NULL,
}),
len > sizeof(*desc) ? sizeof(*desc) : len);
return ret;
}
/**
* Expand RSS flows into several possible flows according to the RSS hash
* fields requested and the driver capabilities.
*/
int
rte_flow_expand_rss(struct rte_flow_expand_rss *buf, size_t size,
const struct rte_flow_item *pattern, uint64_t types,
const struct rte_flow_expand_node graph[],
int graph_root_index)
{
const int elt_n = 8;
const struct rte_flow_item *item;
const struct rte_flow_expand_node *node = &graph[graph_root_index];
const int *next_node;
const int *stack[elt_n];
int stack_pos = 0;
struct rte_flow_item flow_items[elt_n];
unsigned int i;
size_t lsize;
size_t user_pattern_size = 0;
void *addr = NULL;
const struct rte_flow_expand_node *next = NULL;
struct rte_flow_item missed_item;
int missed = 0;
int elt = 0;
const struct rte_flow_item *last_item = NULL;
memset(&missed_item, 0, sizeof(missed_item));
lsize = offsetof(struct rte_flow_expand_rss, entry) +
elt_n * sizeof(buf->entry[0]);
if (lsize <= size) {
buf->entry[0].priority = 0;
buf->entry[0].pattern = (void *)&buf->entry[elt_n];
buf->entries = 0;
addr = buf->entry[0].pattern;
}
for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
last_item = item;
for (i = 0; node->next && node->next[i]; ++i) {
next = &graph[node->next[i]];
if (next->type == item->type)
break;
}
if (next)
node = next;
user_pattern_size += sizeof(*item);
}
user_pattern_size += sizeof(*item); /* Handle END item. */
lsize += user_pattern_size;
/* Copy the user pattern in the first entry of the buffer. */
if (lsize <= size) {
rte_memcpy(addr, pattern, user_pattern_size);
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
buf->entries = 1;
}
/* Start expanding. */
memset(flow_items, 0, sizeof(flow_items));
user_pattern_size -= sizeof(*item);
/*
* Check if the last valid item has spec set
* and need complete pattern.
*/
missed_item.type = rte_flow_expand_rss_item_complete(last_item);
if (missed_item.type != RTE_FLOW_ITEM_TYPE_VOID) {
next = NULL;
missed = 1;
for (i = 0; node->next && node->next[i]; ++i) {
next = &graph[node->next[i]];
if (next->type == missed_item.type) {
flow_items[0].type = missed_item.type;
flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
break;
}
next = NULL;
}
}
if (next && missed) {
elt = 2; /* missed item + item end. */
node = next;
lsize += elt * sizeof(*item) + user_pattern_size;
if ((node->rss_types & types) && lsize <= size) {
buf->entry[buf->entries].priority = 1;
buf->entry[buf->entries].pattern = addr;
buf->entries++;
rte_memcpy(addr, buf->entry[0].pattern,
user_pattern_size);
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
rte_memcpy(addr, flow_items, elt * sizeof(*item));
addr = (void *)(((uintptr_t)addr) +
elt * sizeof(*item));
}
}
memset(flow_items, 0, sizeof(flow_items));
next_node = node->next;
stack[stack_pos] = next_node;
node = next_node ? &graph[*next_node] : NULL;
while (node) {
flow_items[stack_pos].type = node->type;
if (node->rss_types & types) {
/*
* compute the number of items to copy from the
* expansion and copy it.
* When the stack_pos is 0, there are 1 element in it,
* plus the addition END item.
*/
elt = stack_pos + 2;
flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
lsize += elt * sizeof(*item) + user_pattern_size;
if (lsize <= size) {
size_t n = elt * sizeof(*item);
buf->entry[buf->entries].priority =
stack_pos + 1 + missed;
buf->entry[buf->entries].pattern = addr;
buf->entries++;
rte_memcpy(addr, buf->entry[0].pattern,
user_pattern_size);
addr = (void *)(((uintptr_t)addr) +
user_pattern_size);
rte_memcpy(addr, &missed_item,
missed * sizeof(*item));
addr = (void *)(((uintptr_t)addr) +
missed * sizeof(*item));
rte_memcpy(addr, flow_items, n);
addr = (void *)(((uintptr_t)addr) + n);
}
}
/* Go deeper. */
if (node->next) {
next_node = node->next;
if (stack_pos++ == elt_n) {
rte_errno = E2BIG;
return -rte_errno;
}
stack[stack_pos] = next_node;
} else if (*(next_node + 1)) {
/* Follow up with the next possibility. */
++next_node;
} else {
/* Move to the next path. */
if (stack_pos)
next_node = stack[--stack_pos];
next_node++;
stack[stack_pos] = next_node;
}
node = *next_node ? &graph[*next_node] : NULL;
};
/* no expanded flows but we have missed item, create one rule for it */
if (buf->entries == 1 && missed != 0) {
elt = 2;
lsize += elt * sizeof(*item) + user_pattern_size;
if (lsize <= size) {
buf->entry[buf->entries].priority = 1;
buf->entry[buf->entries].pattern = addr;
buf->entries++;
flow_items[0].type = missed_item.type;
flow_items[1].type = RTE_FLOW_ITEM_TYPE_END;
rte_memcpy(addr, buf->entry[0].pattern,
user_pattern_size);
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
rte_memcpy(addr, flow_items, elt * sizeof(*item));
addr = (void *)(((uintptr_t)addr) +
elt * sizeof(*item));
}
}
return lsize;
}
int
rte_flow_dev_dump(uint16_t port_id, FILE *file, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->dev_dump))
return flow_err(port_id, ops->dev_dump(dev, file, error),
error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
int
rte_flow_get_aged_flows(uint16_t port_id, void **contexts,
uint32_t nb_contexts, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->get_aged_flows))
return flow_err(port_id, ops->get_aged_flows(dev, contexts,
nb_contexts, error), error);
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOTSUP));
}