numam-dpdk/lib/librte_member/rte_member_ht.c
Yipeng Wang 703be9531a member: add AVX for HT mode
For key search, the signatures of all entries are compared against
the signature of the key that is being looked up. Since all
signatures are contiguously put in a bucket, they can be compared
with vector instructions (AVX2), achieving higher lookup performance.

This patch adds AVX2 implementation in a separate header file.

Signed-off-by: Yipeng Wang <yipeng1.wang@intel.com>
Reviewed-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2017-10-09 00:02:45 +02:00

587 lines
17 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_prefetch.h>
#include <rte_random.h>
#include <rte_log.h>
#include "rte_member.h"
#include "rte_member_ht.h"
#if defined(RTE_ARCH_X86)
#include "rte_member_x86.h"
#endif
/* Search bucket for entry with tmp_sig and update set_id */
static inline int
update_entry_search(uint32_t bucket_id, member_sig_t tmp_sig,
struct member_ht_bucket *buckets,
member_set_t set_id)
{
uint32_t i;
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (buckets[bucket_id].sigs[i] == tmp_sig) {
buckets[bucket_id].sets[i] = set_id;
return 1;
}
}
return 0;
}
static inline int
search_bucket_single(uint32_t bucket_id, member_sig_t tmp_sig,
struct member_ht_bucket *buckets,
member_set_t *set_id)
{
uint32_t iter;
for (iter = 0; iter < RTE_MEMBER_BUCKET_ENTRIES; iter++) {
if (tmp_sig == buckets[bucket_id].sigs[iter] &&
buckets[bucket_id].sets[iter] !=
RTE_MEMBER_NO_MATCH) {
*set_id = buckets[bucket_id].sets[iter];
return 1;
}
}
return 0;
}
static inline void
search_bucket_multi(uint32_t bucket_id, member_sig_t tmp_sig,
struct member_ht_bucket *buckets,
uint32_t *counter,
uint32_t matches_per_key,
member_set_t *set_id)
{
uint32_t iter;
for (iter = 0; iter < RTE_MEMBER_BUCKET_ENTRIES; iter++) {
if (tmp_sig == buckets[bucket_id].sigs[iter] &&
buckets[bucket_id].sets[iter] !=
RTE_MEMBER_NO_MATCH) {
set_id[*counter] = buckets[bucket_id].sets[iter];
(*counter)++;
if (*counter >= matches_per_key)
return;
}
}
}
int
rte_member_create_ht(struct rte_member_setsum *ss,
const struct rte_member_parameters *params)
{
uint32_t i, j;
uint32_t size_bucket_t;
uint32_t num_entries = rte_align32pow2(params->num_keys);
if ((num_entries > RTE_MEMBER_ENTRIES_MAX) ||
!rte_is_power_of_2(RTE_MEMBER_BUCKET_ENTRIES) ||
num_entries < RTE_MEMBER_BUCKET_ENTRIES) {
rte_errno = EINVAL;
RTE_MEMBER_LOG(ERR,
"Membership HT create with invalid parameters\n");
return -EINVAL;
}
uint32_t num_buckets = num_entries / RTE_MEMBER_BUCKET_ENTRIES;
size_bucket_t = sizeof(struct member_ht_bucket);
struct member_ht_bucket *buckets = rte_zmalloc_socket(NULL,
num_buckets * size_bucket_t,
RTE_CACHE_LINE_SIZE, ss->socket_id);
if (buckets == NULL) {
RTE_MEMBER_LOG(ERR, "memory allocation failed for HT "
"setsummary\n");
return -ENOMEM;
}
ss->table = buckets;
ss->bucket_cnt = num_buckets;
ss->bucket_mask = num_buckets - 1;
ss->cache = params->is_cache;
for (i = 0; i < num_buckets; i++) {
for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++)
buckets[i].sets[j] = RTE_MEMBER_NO_MATCH;
}
#if defined(RTE_ARCH_X86)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) &&
RTE_MEMBER_BUCKET_ENTRIES == 16)
ss->sig_cmp_fn = RTE_MEMBER_COMPARE_AVX2;
else
#endif
ss->sig_cmp_fn = RTE_MEMBER_COMPARE_SCALAR;
RTE_MEMBER_LOG(DEBUG, "Hash table based filter created, "
"the table has %u entries, %u buckets\n",
num_entries, num_buckets);
return 0;
}
static inline void
get_buckets_index(const struct rte_member_setsum *ss, const void *key,
uint32_t *prim_bkt, uint32_t *sec_bkt, member_sig_t *sig)
{
uint32_t first_hash = MEMBER_HASH_FUNC(key, ss->key_len,
ss->prim_hash_seed);
uint32_t sec_hash = MEMBER_HASH_FUNC(&first_hash, sizeof(uint32_t),
ss->sec_hash_seed);
/*
* We use the first hash value for the signature, and the second hash
* value to derive the primary and secondary bucket locations.
*
* For non-cache mode, we use the lower bits for the primary bucket
* location. Then we xor primary bucket location and the signature
* to get the secondary bucket location. This is called "partial-key
* cuckoo hashing" proposed by B. Fan, et al's paper
* "Cuckoo Filter: Practically Better Than Bloom". The benefit to use
* xor is that one could derive the alternative bucket location
* by only using the current bucket location and the signature. This is
* generally required by non-cache mode's eviction and deletion
* process without the need to store alternative hash value nor the full
* key.
*
* For cache mode, we use the lower bits for the primary bucket
* location and the higher bits for the secondary bucket location. In
* cache mode, keys are simply overwritten if bucket is full. We do not
* use xor since lower/higher bits are more independent hash values thus
* should provide slightly better table load.
*/
*sig = first_hash;
if (ss->cache) {
*prim_bkt = sec_hash & ss->bucket_mask;
*sec_bkt = (sec_hash >> 16) & ss->bucket_mask;
} else {
*prim_bkt = sec_hash & ss->bucket_mask;
*sec_bkt = (*prim_bkt ^ *sig) & ss->bucket_mask;
}
}
int
rte_member_lookup_ht(const struct rte_member_setsum *ss,
const void *key, member_set_t *set_id)
{
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
*set_id = RTE_MEMBER_NO_MATCH;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
case RTE_MEMBER_COMPARE_AVX2:
if (search_bucket_single_avx(prim_bucket, tmp_sig, buckets,
set_id) ||
search_bucket_single_avx(sec_bucket, tmp_sig,
buckets, set_id))
return 1;
break;
#endif
default:
if (search_bucket_single(prim_bucket, tmp_sig, buckets,
set_id) ||
search_bucket_single(sec_bucket, tmp_sig,
buckets, set_id))
return 1;
}
return 0;
}
uint32_t
rte_member_lookup_bulk_ht(const struct rte_member_setsum *ss,
const void **keys, uint32_t num_keys, member_set_t *set_id)
{
uint32_t i;
uint32_t num_matches = 0;
struct member_ht_bucket *buckets = ss->table;
member_sig_t tmp_sig[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t prim_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t sec_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
for (i = 0; i < num_keys; i++) {
get_buckets_index(ss, keys[i], &prim_buckets[i],
&sec_buckets[i], &tmp_sig[i]);
rte_prefetch0(&buckets[prim_buckets[i]]);
rte_prefetch0(&buckets[sec_buckets[i]]);
}
for (i = 0; i < num_keys; i++) {
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
case RTE_MEMBER_COMPARE_AVX2:
if (search_bucket_single_avx(prim_buckets[i],
tmp_sig[i], buckets, &set_id[i]) ||
search_bucket_single_avx(sec_buckets[i],
tmp_sig[i], buckets, &set_id[i]))
num_matches++;
else
set_id[i] = RTE_MEMBER_NO_MATCH;
break;
#endif
default:
if (search_bucket_single(prim_buckets[i], tmp_sig[i],
buckets, &set_id[i]) ||
search_bucket_single(sec_buckets[i],
tmp_sig[i], buckets, &set_id[i]))
num_matches++;
else
set_id[i] = RTE_MEMBER_NO_MATCH;
}
}
return num_matches;
}
uint32_t
rte_member_lookup_multi_ht(const struct rte_member_setsum *ss,
const void *key, uint32_t match_per_key,
member_set_t *set_id)
{
uint32_t num_matches = 0;
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
case RTE_MEMBER_COMPARE_AVX2:
search_bucket_multi_avx(prim_bucket, tmp_sig, buckets,
&num_matches, match_per_key, set_id);
if (num_matches < match_per_key)
search_bucket_multi_avx(sec_bucket, tmp_sig,
buckets, &num_matches, match_per_key, set_id);
return num_matches;
#endif
default:
search_bucket_multi(prim_bucket, tmp_sig, buckets, &num_matches,
match_per_key, set_id);
if (num_matches < match_per_key)
search_bucket_multi(sec_bucket, tmp_sig,
buckets, &num_matches, match_per_key, set_id);
return num_matches;
}
}
uint32_t
rte_member_lookup_multi_bulk_ht(const struct rte_member_setsum *ss,
const void **keys, uint32_t num_keys, uint32_t match_per_key,
uint32_t *match_count,
member_set_t *set_ids)
{
uint32_t i;
uint32_t num_matches = 0;
struct member_ht_bucket *buckets = ss->table;
uint32_t match_cnt_tmp;
member_sig_t tmp_sig[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t prim_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
uint32_t sec_buckets[RTE_MEMBER_LOOKUP_BULK_MAX];
for (i = 0; i < num_keys; i++) {
get_buckets_index(ss, keys[i], &prim_buckets[i],
&sec_buckets[i], &tmp_sig[i]);
rte_prefetch0(&buckets[prim_buckets[i]]);
rte_prefetch0(&buckets[sec_buckets[i]]);
}
for (i = 0; i < num_keys; i++) {
match_cnt_tmp = 0;
switch (ss->sig_cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
case RTE_MEMBER_COMPARE_AVX2:
search_bucket_multi_avx(prim_buckets[i], tmp_sig[i],
buckets, &match_cnt_tmp, match_per_key,
&set_ids[i*match_per_key]);
if (match_cnt_tmp < match_per_key)
search_bucket_multi_avx(sec_buckets[i],
tmp_sig[i], buckets, &match_cnt_tmp,
match_per_key,
&set_ids[i*match_per_key]);
match_count[i] = match_cnt_tmp;
if (match_cnt_tmp != 0)
num_matches++;
break;
#endif
default:
search_bucket_multi(prim_buckets[i], tmp_sig[i],
buckets, &match_cnt_tmp, match_per_key,
&set_ids[i*match_per_key]);
if (match_cnt_tmp < match_per_key)
search_bucket_multi(sec_buckets[i], tmp_sig[i],
buckets, &match_cnt_tmp, match_per_key,
&set_ids[i*match_per_key]);
match_count[i] = match_cnt_tmp;
if (match_cnt_tmp != 0)
num_matches++;
}
}
return num_matches;
}
static inline int
try_insert(struct member_ht_bucket *buckets, uint32_t prim, uint32_t sec,
member_sig_t sig, member_set_t set_id)
{
int i;
/* If not full then insert into one slot */
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (buckets[prim].sets[i] == RTE_MEMBER_NO_MATCH) {
buckets[prim].sigs[i] = sig;
buckets[prim].sets[i] = set_id;
return 0;
}
}
/* If prim failed, we need to access second bucket */
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (buckets[sec].sets[i] == RTE_MEMBER_NO_MATCH) {
buckets[sec].sigs[i] = sig;
buckets[sec].sets[i] = set_id;
return 0;
}
}
return -1;
}
static inline int
try_update(struct member_ht_bucket *buckets, uint32_t prim, uint32_t sec,
member_sig_t sig, member_set_t set_id,
enum rte_member_sig_compare_function cmp_fn)
{
switch (cmp_fn) {
#if defined(RTE_ARCH_X86) && defined(RTE_MACHINE_CPUFLAG_AVX2)
case RTE_MEMBER_COMPARE_AVX2:
if (update_entry_search_avx(prim, sig, buckets, set_id) ||
update_entry_search_avx(sec, sig, buckets,
set_id))
return 0;
break;
#endif
default:
if (update_entry_search(prim, sig, buckets, set_id) ||
update_entry_search(sec, sig, buckets,
set_id))
return 0;
}
return -1;
}
static inline int
evict_from_bucket(void)
{
/* For now, we randomly pick one entry to evict */
return rte_rand() & (RTE_MEMBER_BUCKET_ENTRIES - 1);
}
/*
* This function is similar to the cuckoo hash make_space function in hash
* library
*/
static inline int
make_space_bucket(const struct rte_member_setsum *ss, uint32_t bkt_idx,
unsigned int *nr_pushes)
{
unsigned int i, j;
int ret;
struct member_ht_bucket *buckets = ss->table;
uint32_t next_bucket_idx;
struct member_ht_bucket *next_bkt[RTE_MEMBER_BUCKET_ENTRIES];
struct member_ht_bucket *bkt = &buckets[bkt_idx];
/* MSB is set to indicate if an entry has been already pushed */
member_set_t flag_mask = 1U << (sizeof(member_set_t) * 8 - 1);
/*
* Push existing item (search for bucket with space in
* alternative locations) to its alternative location
*/
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
/* Search for space in alternative locations */
next_bucket_idx = (bkt->sigs[i] ^ bkt_idx) & ss->bucket_mask;
next_bkt[i] = &buckets[next_bucket_idx];
for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++) {
if (next_bkt[i]->sets[j] == RTE_MEMBER_NO_MATCH)
break;
}
if (j != RTE_MEMBER_BUCKET_ENTRIES)
break;
}
/* Alternative location has spare room (end of recursive function) */
if (i != RTE_MEMBER_BUCKET_ENTRIES) {
next_bkt[i]->sigs[j] = bkt->sigs[i];
next_bkt[i]->sets[j] = bkt->sets[i];
return i;
}
/* Pick entry that has not been pushed yet */
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++)
if ((bkt->sets[i] & flag_mask) == 0)
break;
/* All entries have been pushed, so entry cannot be added */
if (i == RTE_MEMBER_BUCKET_ENTRIES ||
++(*nr_pushes) > RTE_MEMBER_MAX_PUSHES)
return -ENOSPC;
next_bucket_idx = (bkt->sigs[i] ^ bkt_idx) & ss->bucket_mask;
/* Set flag to indicate that this entry is going to be pushed */
bkt->sets[i] |= flag_mask;
/* Need room in alternative bucket to insert the pushed entry */
ret = make_space_bucket(ss, next_bucket_idx, nr_pushes);
/*
* After recursive function.
* Clear flags and insert the pushed entry
* in its alternative location if successful,
* or return error
*/
bkt->sets[i] &= ~flag_mask;
if (ret >= 0) {
next_bkt[i]->sigs[ret] = bkt->sigs[i];
next_bkt[i]->sets[ret] = bkt->sets[i];
return i;
} else
return ret;
}
int
rte_member_add_ht(const struct rte_member_setsum *ss,
const void *key, member_set_t set_id)
{
int ret;
unsigned int nr_pushes = 0;
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
member_set_t flag_mask = 1U << (sizeof(member_set_t) * 8 - 1);
if (set_id == RTE_MEMBER_NO_MATCH || (set_id & flag_mask) != 0)
return -EINVAL;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
/*
* If it is cache based setsummary, we try overwriting (updating)
* existing entry with the same signature first. In cache mode, we allow
* false negatives and only cache the most recent keys.
*
* For non-cache mode, we do not update existing entry with the same
* signature. This is because if two keys with same signature update
* each other, false negative may happen, which is not the expected
* behavior for non-cache setsummary.
*/
if (ss->cache) {
ret = try_update(buckets, prim_bucket, sec_bucket, tmp_sig,
set_id, ss->sig_cmp_fn);
if (ret != -1)
return ret;
}
/* If not full then insert into one slot */
ret = try_insert(buckets, prim_bucket, sec_bucket, tmp_sig, set_id);
if (ret != -1)
return ret;
/* Random pick prim or sec for recursive displacement */
uint32_t select_bucket = (tmp_sig && 1U) ? prim_bucket : sec_bucket;
if (ss->cache) {
ret = evict_from_bucket();
buckets[select_bucket].sigs[ret] = tmp_sig;
buckets[select_bucket].sets[ret] = set_id;
return 1;
}
ret = make_space_bucket(ss, select_bucket, &nr_pushes);
if (ret >= 0) {
buckets[select_bucket].sigs[ret] = tmp_sig;
buckets[select_bucket].sets[ret] = set_id;
ret = 1;
}
return ret;
}
void
rte_member_free_ht(struct rte_member_setsum *ss)
{
rte_free(ss->table);
}
int
rte_member_delete_ht(const struct rte_member_setsum *ss, const void *key,
member_set_t set_id)
{
int i;
uint32_t prim_bucket, sec_bucket;
member_sig_t tmp_sig;
struct member_ht_bucket *buckets = ss->table;
get_buckets_index(ss, key, &prim_bucket, &sec_bucket, &tmp_sig);
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (tmp_sig == buckets[prim_bucket].sigs[i] &&
set_id == buckets[prim_bucket].sets[i]) {
buckets[prim_bucket].sets[i] = RTE_MEMBER_NO_MATCH;
return 0;
}
}
for (i = 0; i < RTE_MEMBER_BUCKET_ENTRIES; i++) {
if (tmp_sig == buckets[sec_bucket].sigs[i] &&
set_id == buckets[sec_bucket].sets[i]) {
buckets[sec_bucket].sets[i] = RTE_MEMBER_NO_MATCH;
return 0;
}
}
return -ENOENT;
}
void
rte_member_reset_ht(const struct rte_member_setsum *ss)
{
uint32_t i, j;
struct member_ht_bucket *buckets = ss->table;
for (i = 0; i < ss->bucket_cnt; i++) {
for (j = 0; j < RTE_MEMBER_BUCKET_ENTRIES; j++)
buckets[i].sets[j] = RTE_MEMBER_NO_MATCH;
}
}