ffc905f3b8
Create a rte_ethdev_driver.h file and move PMD specific APIs here. Drivers updated to include this new header file. There is no update in header content and since ethdev.h included by ethdev_driver.h, nothing changed from driver point of view, only logically grouping of APIs. From applications point of view they can't access to driver specific APIs anymore and they shouldn't. More PMD specific data structures still remain in ethdev.h because of inline functions in header use them. Those will be handled separately. Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Acked-by: Shreyansh Jain <shreyansh.jain@nxp.com> Acked-by: Andrew Rybchenko <arybchenko@solarflare.com> Acked-by: Thomas Monjalon <thomas@monjalon.net>
883 lines
25 KiB
C
883 lines
25 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2013-2015 Intel Corporation
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_common.h>
|
|
#include "fm10k.h"
|
|
#include "base/fm10k_type.h"
|
|
|
|
#include <tmmintrin.h>
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
static void
|
|
fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
|
|
|
|
/* Handling the offload flags (olflags) field takes computation
|
|
* time when receiving packets. Therefore we provide a flag to disable
|
|
* the processing of the olflags field when they are not needed. This
|
|
* gives improved performance, at the cost of losing the offload info
|
|
* in the received packet
|
|
*/
|
|
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
|
|
|
|
/* Vlan present flag shift */
|
|
#define VP_SHIFT (2)
|
|
/* L3 type shift */
|
|
#define L3TYPE_SHIFT (4)
|
|
/* L4 type shift */
|
|
#define L4TYPE_SHIFT (7)
|
|
/* HBO flag shift */
|
|
#define HBOFLAG_SHIFT (10)
|
|
/* RXE flag shift */
|
|
#define RXEFLAG_SHIFT (13)
|
|
/* IPE/L4E flag shift */
|
|
#define L3L4EFLAG_SHIFT (14)
|
|
/* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
|
|
#define CKSUM_SHIFT (1)
|
|
|
|
static inline void
|
|
fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
|
|
{
|
|
__m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
|
|
union {
|
|
uint16_t e[4];
|
|
uint64_t dword;
|
|
} vol;
|
|
|
|
const __m128i pkttype_msk = _mm_set_epi16(
|
|
0x0000, 0x0000, 0x0000, 0x0000,
|
|
PKT_RX_VLAN, PKT_RX_VLAN,
|
|
PKT_RX_VLAN, PKT_RX_VLAN);
|
|
|
|
/* mask everything except rss type */
|
|
const __m128i rsstype_msk = _mm_set_epi16(
|
|
0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x000F, 0x000F, 0x000F, 0x000F);
|
|
|
|
/* mask for HBO and RXE flag flags */
|
|
const __m128i rxe_msk = _mm_set_epi16(
|
|
0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0001, 0x0001, 0x0001, 0x0001);
|
|
|
|
/* mask the lower byte of ol_flags */
|
|
const __m128i ol_flags_msk = _mm_set_epi16(
|
|
0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x00FF, 0x00FF, 0x00FF, 0x00FF);
|
|
|
|
const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
|
|
(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
|
|
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
|
|
|
|
const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, 0);
|
|
|
|
/* map rss type to rss hash flag */
|
|
const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
|
|
0, 0, 0, PKT_RX_RSS_HASH,
|
|
PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
|
|
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
|
|
|
|
/* Calculate RSS_hash and Vlan fields */
|
|
ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
|
|
ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
|
|
vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
|
|
vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
|
|
|
|
ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
|
|
ptype0 = _mm_and_si128(ptype0, rsstype_msk);
|
|
ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
|
|
|
|
vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
|
|
eflag0 = vtag1;
|
|
cksumflag = vtag1;
|
|
vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
|
|
vtag1 = _mm_and_si128(vtag1, pkttype_msk);
|
|
|
|
vtag1 = _mm_or_si128(ptype0, vtag1);
|
|
|
|
/* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
|
|
eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
|
|
eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
|
|
eflag0 = _mm_or_si128(eflag0, eflag1);
|
|
eflag0 = _mm_and_si128(eflag0, rxe_msk);
|
|
eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
|
|
|
|
vtag1 = _mm_or_si128(eflag0, vtag1);
|
|
|
|
/* Process L4/L3 checksum error flags */
|
|
cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
|
|
cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
|
|
|
|
/* clean the higher byte and shift back the flag bits */
|
|
cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
|
|
cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
|
|
vtag1 = _mm_or_si128(cksumflag, vtag1);
|
|
|
|
vol.dword = _mm_cvtsi128_si64(vtag1);
|
|
|
|
rx_pkts[0]->ol_flags = vol.e[0];
|
|
rx_pkts[1]->ol_flags = vol.e[1];
|
|
rx_pkts[2]->ol_flags = vol.e[2];
|
|
rx_pkts[3]->ol_flags = vol.e[3];
|
|
}
|
|
|
|
/* @note: When this function is changed, make corresponding change to
|
|
* fm10k_dev_supported_ptypes_get().
|
|
*/
|
|
static inline void
|
|
fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
|
|
{
|
|
__m128i l3l4type0, l3l4type1, l3type, l4type;
|
|
union {
|
|
uint16_t e[4];
|
|
uint64_t dword;
|
|
} vol;
|
|
|
|
/* L3 pkt type mask Bit4 to Bit6 */
|
|
const __m128i l3type_msk = _mm_set_epi16(
|
|
0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0070, 0x0070, 0x0070, 0x0070);
|
|
|
|
/* L4 pkt type mask Bit7 to Bit9 */
|
|
const __m128i l4type_msk = _mm_set_epi16(
|
|
0x0000, 0x0000, 0x0000, 0x0000,
|
|
0x0380, 0x0380, 0x0380, 0x0380);
|
|
|
|
/* convert RRC l3 type to mbuf format */
|
|
const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
|
|
RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
|
|
RTE_PTYPE_L3_IPV4, 0);
|
|
|
|
/* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
|
|
* to fill into8 bits length.
|
|
*/
|
|
const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
RTE_PTYPE_TUNNEL_GENEVE >> 8,
|
|
RTE_PTYPE_TUNNEL_NVGRE >> 8,
|
|
RTE_PTYPE_TUNNEL_VXLAN >> 8,
|
|
RTE_PTYPE_TUNNEL_GRE >> 8,
|
|
RTE_PTYPE_L4_UDP >> 8,
|
|
RTE_PTYPE_L4_TCP >> 8,
|
|
0);
|
|
|
|
l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
|
|
l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
|
|
l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
|
|
|
|
l3type = _mm_and_si128(l3l4type0, l3type_msk);
|
|
l4type = _mm_and_si128(l3l4type0, l4type_msk);
|
|
|
|
l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
|
|
l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
|
|
|
|
l3type = _mm_shuffle_epi8(l3type_flags, l3type);
|
|
/* l4type_flags shift-left for 8 bits, need shift-right back */
|
|
l4type = _mm_shuffle_epi8(l4type_flags, l4type);
|
|
|
|
l4type = _mm_slli_epi16(l4type, 8);
|
|
l3l4type0 = _mm_or_si128(l3type, l4type);
|
|
vol.dword = _mm_cvtsi128_si64(l3l4type0);
|
|
|
|
rx_pkts[0]->packet_type = vol.e[0];
|
|
rx_pkts[1]->packet_type = vol.e[1];
|
|
rx_pkts[2]->packet_type = vol.e[2];
|
|
rx_pkts[3]->packet_type = vol.e[3];
|
|
}
|
|
#else
|
|
#define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
|
|
#define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
|
|
#endif
|
|
|
|
int __attribute__((cold))
|
|
fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
|
|
{
|
|
#ifndef RTE_LIBRTE_IEEE1588
|
|
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
|
|
struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
|
|
|
|
#ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
|
|
/* whithout rx ol_flags, no VP flag report */
|
|
if (rxmode->hw_vlan_extend != 0)
|
|
return -1;
|
|
#endif
|
|
|
|
/* no fdir support */
|
|
if (fconf->mode != RTE_FDIR_MODE_NONE)
|
|
return -1;
|
|
|
|
/* no header split support */
|
|
if (rxmode->header_split == 1)
|
|
return -1;
|
|
|
|
return 0;
|
|
#else
|
|
RTE_SET_USED(dev);
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
int __attribute__((cold))
|
|
fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
|
|
{
|
|
uintptr_t p;
|
|
struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
|
|
|
|
mb_def.nb_segs = 1;
|
|
/* data_off will be ajusted after new mbuf allocated for 512-byte
|
|
* alignment.
|
|
*/
|
|
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
|
|
mb_def.port = rxq->port_id;
|
|
rte_mbuf_refcnt_set(&mb_def, 1);
|
|
|
|
/* prevent compiler reordering: rearm_data covers previous fields */
|
|
rte_compiler_barrier();
|
|
p = (uintptr_t)&mb_def.rearm_data;
|
|
rxq->mbuf_initializer = *(uint64_t *)p;
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
|
|
{
|
|
int i;
|
|
uint16_t rx_id;
|
|
volatile union fm10k_rx_desc *rxdp;
|
|
struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
|
|
struct rte_mbuf *mb0, *mb1;
|
|
__m128i head_off = _mm_set_epi64x(
|
|
RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
|
|
RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
|
|
__m128i dma_addr0, dma_addr1;
|
|
/* Rx buffer need to be aligned with 512 byte */
|
|
const __m128i hba_msk = _mm_set_epi64x(0,
|
|
UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
|
|
|
|
rxdp = rxq->hw_ring + rxq->rxrearm_start;
|
|
|
|
/* Pull 'n' more MBUFs into the software ring */
|
|
if (rte_mempool_get_bulk(rxq->mp,
|
|
(void *)mb_alloc,
|
|
RTE_FM10K_RXQ_REARM_THRESH) < 0) {
|
|
dma_addr0 = _mm_setzero_si128();
|
|
/* Clean up all the HW/SW ring content */
|
|
for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
|
|
mb_alloc[i] = &rxq->fake_mbuf;
|
|
_mm_store_si128((__m128i *)&rxdp[i].q,
|
|
dma_addr0);
|
|
}
|
|
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
|
RTE_FM10K_RXQ_REARM_THRESH;
|
|
return;
|
|
}
|
|
|
|
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
|
|
for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
|
|
__m128i vaddr0, vaddr1;
|
|
uintptr_t p0, p1;
|
|
|
|
mb0 = mb_alloc[0];
|
|
mb1 = mb_alloc[1];
|
|
|
|
/* Flush mbuf with pkt template.
|
|
* Data to be rearmed is 6 bytes long.
|
|
*/
|
|
p0 = (uintptr_t)&mb0->rearm_data;
|
|
*(uint64_t *)p0 = rxq->mbuf_initializer;
|
|
p1 = (uintptr_t)&mb1->rearm_data;
|
|
*(uint64_t *)p1 = rxq->mbuf_initializer;
|
|
|
|
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
|
|
offsetof(struct rte_mbuf, buf_addr) + 8);
|
|
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
|
|
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
|
|
|
|
/* convert pa to dma_addr hdr/data */
|
|
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
|
|
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
|
|
|
|
/* add headroom to pa values */
|
|
dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
|
|
dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
|
|
|
|
/* Do 512 byte alignment to satisfy HW requirement, in the
|
|
* meanwhile, set Header Buffer Address to zero.
|
|
*/
|
|
dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
|
|
dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
|
|
|
|
/* flush desc with pa dma_addr */
|
|
_mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
|
|
_mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
|
|
|
|
/* enforce 512B alignment on default Rx virtual addresses */
|
|
mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
|
|
+ RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
|
|
- (char *)mb0->buf_addr);
|
|
mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
|
|
+ RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
|
|
- (char *)mb1->buf_addr);
|
|
}
|
|
|
|
rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
|
|
if (rxq->rxrearm_start >= rxq->nb_desc)
|
|
rxq->rxrearm_start = 0;
|
|
|
|
rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
|
|
|
|
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
|
|
(rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
|
|
|
|
/* Update the tail pointer on the NIC */
|
|
FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
|
|
}
|
|
|
|
void __attribute__((cold))
|
|
fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
|
|
{
|
|
const unsigned mask = rxq->nb_desc - 1;
|
|
unsigned i;
|
|
|
|
if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
|
|
return;
|
|
|
|
/* free all mbufs that are valid in the ring */
|
|
for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i]);
|
|
rxq->rxrearm_nb = rxq->nb_desc;
|
|
|
|
/* set all entries to NULL */
|
|
memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
|
|
}
|
|
|
|
static inline uint16_t
|
|
fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts, uint8_t *split_packet)
|
|
{
|
|
volatile union fm10k_rx_desc *rxdp;
|
|
struct rte_mbuf **mbufp;
|
|
uint16_t nb_pkts_recd;
|
|
int pos;
|
|
struct fm10k_rx_queue *rxq = rx_queue;
|
|
uint64_t var;
|
|
__m128i shuf_msk;
|
|
__m128i dd_check, eop_check;
|
|
uint16_t next_dd;
|
|
|
|
next_dd = rxq->next_dd;
|
|
|
|
/* Just the act of getting into the function from the application is
|
|
* going to cost about 7 cycles
|
|
*/
|
|
rxdp = rxq->hw_ring + next_dd;
|
|
|
|
rte_prefetch0(rxdp);
|
|
|
|
/* See if we need to rearm the RX queue - gives the prefetch a bit
|
|
* of time to act
|
|
*/
|
|
if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
|
|
fm10k_rxq_rearm(rxq);
|
|
|
|
/* Before we start moving massive data around, check to see if
|
|
* there is actually a packet available
|
|
*/
|
|
if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
|
|
return 0;
|
|
|
|
/* Vecotr RX will process 4 packets at a time, strip the unaligned
|
|
* tails in case it's not multiple of 4.
|
|
*/
|
|
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
|
|
|
|
/* 4 packets DD mask */
|
|
dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
|
|
|
|
/* 4 packets EOP mask */
|
|
eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
|
|
|
|
/* mask to shuffle from desc. to mbuf */
|
|
shuf_msk = _mm_set_epi8(
|
|
7, 6, 5, 4, /* octet 4~7, 32bits rss */
|
|
15, 14, /* octet 14~15, low 16 bits vlan_macip */
|
|
13, 12, /* octet 12~13, 16 bits data_len */
|
|
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
|
|
13, 12, /* octet 12~13, low 16 bits pkt_len */
|
|
0xFF, 0xFF, /* skip high 16 bits pkt_type */
|
|
0xFF, 0xFF /* Skip pkt_type field in shuffle operation */
|
|
);
|
|
/*
|
|
* Compile-time verify the shuffle mask
|
|
* NOTE: some field positions already verified above, but duplicated
|
|
* here for completeness in case of future modifications.
|
|
*/
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
|
|
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
|
|
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
|
|
|
|
/* Cache is empty -> need to scan the buffer rings, but first move
|
|
* the next 'n' mbufs into the cache
|
|
*/
|
|
mbufp = &rxq->sw_ring[next_dd];
|
|
|
|
/* A. load 4 packet in one loop
|
|
* [A*. mask out 4 unused dirty field in desc]
|
|
* B. copy 4 mbuf point from swring to rx_pkts
|
|
* C. calc the number of DD bits among the 4 packets
|
|
* [C*. extract the end-of-packet bit, if requested]
|
|
* D. fill info. from desc to mbuf
|
|
*/
|
|
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
|
|
pos += RTE_FM10K_DESCS_PER_LOOP,
|
|
rxdp += RTE_FM10K_DESCS_PER_LOOP) {
|
|
__m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
|
|
__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
|
|
__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
|
|
__m128i mbp1;
|
|
/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
|
|
#if defined(RTE_ARCH_X86_64)
|
|
__m128i mbp2;
|
|
#endif
|
|
|
|
/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
|
|
mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
|
|
|
|
/* Read desc statuses backwards to avoid race condition */
|
|
/* A.1 load 4 pkts desc */
|
|
descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
|
|
rte_compiler_barrier();
|
|
|
|
/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
|
|
_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
|
|
|
|
#if defined(RTE_ARCH_X86_64)
|
|
/* B.1 load 2 64 bit mbuf poitns */
|
|
mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
|
|
#endif
|
|
|
|
descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
|
|
rte_compiler_barrier();
|
|
/* B.1 load 2 mbuf point */
|
|
descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
|
|
rte_compiler_barrier();
|
|
descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
|
|
|
|
#if defined(RTE_ARCH_X86_64)
|
|
/* B.2 copy 2 mbuf point into rx_pkts */
|
|
_mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
|
|
#endif
|
|
|
|
/* avoid compiler reorder optimization */
|
|
rte_compiler_barrier();
|
|
|
|
if (split_packet) {
|
|
rte_mbuf_prefetch_part2(rx_pkts[pos]);
|
|
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
|
|
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
|
|
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
|
|
}
|
|
|
|
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
|
|
pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
|
|
pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
|
|
|
|
/* C.1 4=>2 filter staterr info only */
|
|
sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
|
|
/* C.1 4=>2 filter staterr info only */
|
|
sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
|
|
|
|
/* set ol_flags with vlan packet type */
|
|
fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
|
|
|
|
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
|
|
pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
|
|
pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
|
|
|
|
/* C.2 get 4 pkts staterr value */
|
|
zero = _mm_xor_si128(dd_check, dd_check);
|
|
staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
|
|
|
|
/* D.3 copy final 3,4 data to rx_pkts */
|
|
_mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
|
|
pkt_mb4);
|
|
_mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
|
|
pkt_mb3);
|
|
|
|
/* C* extract and record EOP bit */
|
|
if (split_packet) {
|
|
__m128i eop_shuf_mask = _mm_set_epi8(
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF,
|
|
0x04, 0x0C, 0x00, 0x08
|
|
);
|
|
|
|
/* and with mask to extract bits, flipping 1-0 */
|
|
__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
|
|
/* the staterr values are not in order, as the count
|
|
* count of dd bits doesn't care. However, for end of
|
|
* packet tracking, we do care, so shuffle. This also
|
|
* compresses the 32-bit values to 8-bit
|
|
*/
|
|
eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
|
|
/* store the resulting 32-bit value */
|
|
*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
|
|
split_packet += RTE_FM10K_DESCS_PER_LOOP;
|
|
|
|
/* zero-out next pointers */
|
|
rx_pkts[pos]->next = NULL;
|
|
rx_pkts[pos + 1]->next = NULL;
|
|
rx_pkts[pos + 2]->next = NULL;
|
|
rx_pkts[pos + 3]->next = NULL;
|
|
}
|
|
|
|
/* C.3 calc available number of desc */
|
|
staterr = _mm_and_si128(staterr, dd_check);
|
|
staterr = _mm_packs_epi32(staterr, zero);
|
|
|
|
/* D.3 copy final 1,2 data to rx_pkts */
|
|
_mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
|
|
pkt_mb2);
|
|
_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
|
|
pkt_mb1);
|
|
|
|
fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
|
|
|
|
/* C.4 calc avaialbe number of desc */
|
|
var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
|
|
nb_pkts_recd += var;
|
|
if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
|
|
break;
|
|
}
|
|
|
|
/* Update our internal tail pointer */
|
|
rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
|
|
rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
|
|
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
|
|
|
|
return nb_pkts_recd;
|
|
}
|
|
|
|
/* vPMD receive routine
|
|
*
|
|
* Notice:
|
|
* - don't support ol_flags for rss and csum err
|
|
*/
|
|
uint16_t
|
|
fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
|
|
}
|
|
|
|
static inline uint16_t
|
|
fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
|
|
struct rte_mbuf **rx_bufs,
|
|
uint16_t nb_bufs, uint8_t *split_flags)
|
|
{
|
|
struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
|
|
struct rte_mbuf *start = rxq->pkt_first_seg;
|
|
struct rte_mbuf *end = rxq->pkt_last_seg;
|
|
unsigned pkt_idx, buf_idx;
|
|
|
|
for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
|
|
if (end != NULL) {
|
|
/* processing a split packet */
|
|
end->next = rx_bufs[buf_idx];
|
|
start->nb_segs++;
|
|
start->pkt_len += rx_bufs[buf_idx]->data_len;
|
|
end = end->next;
|
|
|
|
if (!split_flags[buf_idx]) {
|
|
/* it's the last packet of the set */
|
|
#ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
|
|
start->hash = end->hash;
|
|
start->ol_flags = end->ol_flags;
|
|
start->packet_type = end->packet_type;
|
|
#endif
|
|
pkts[pkt_idx++] = start;
|
|
start = end = NULL;
|
|
}
|
|
} else {
|
|
/* not processing a split packet */
|
|
if (!split_flags[buf_idx]) {
|
|
/* not a split packet, save and skip */
|
|
pkts[pkt_idx++] = rx_bufs[buf_idx];
|
|
continue;
|
|
}
|
|
end = start = rx_bufs[buf_idx];
|
|
}
|
|
}
|
|
|
|
/* save the partial packet for next time */
|
|
rxq->pkt_first_seg = start;
|
|
rxq->pkt_last_seg = end;
|
|
memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
|
|
return pkt_idx;
|
|
}
|
|
|
|
/*
|
|
* vPMD receive routine that reassembles scattered packets
|
|
*
|
|
* Notice:
|
|
* - don't support ol_flags for rss and csum err
|
|
* - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
|
|
* numbers of DD bit
|
|
*/
|
|
uint16_t
|
|
fm10k_recv_scattered_pkts_vec(void *rx_queue,
|
|
struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct fm10k_rx_queue *rxq = rx_queue;
|
|
uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
|
|
unsigned i = 0;
|
|
|
|
/* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
|
|
nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
|
|
/* get some new buffers */
|
|
uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
|
|
split_flags);
|
|
if (nb_bufs == 0)
|
|
return 0;
|
|
|
|
/* happy day case, full burst + no packets to be joined */
|
|
const uint64_t *split_fl64 = (uint64_t *)split_flags;
|
|
|
|
if (rxq->pkt_first_seg == NULL &&
|
|
split_fl64[0] == 0 && split_fl64[1] == 0 &&
|
|
split_fl64[2] == 0 && split_fl64[3] == 0)
|
|
return nb_bufs;
|
|
|
|
/* reassemble any packets that need reassembly*/
|
|
if (rxq->pkt_first_seg == NULL) {
|
|
/* find the first split flag, and only reassemble then*/
|
|
while (i < nb_bufs && !split_flags[i])
|
|
i++;
|
|
if (i == nb_bufs)
|
|
return nb_bufs;
|
|
}
|
|
return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
|
|
&split_flags[i]);
|
|
}
|
|
|
|
static const struct fm10k_txq_ops vec_txq_ops = {
|
|
.reset = fm10k_reset_tx_queue,
|
|
};
|
|
|
|
void __attribute__((cold))
|
|
fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
|
|
{
|
|
txq->ops = &vec_txq_ops;
|
|
}
|
|
|
|
int __attribute__((cold))
|
|
fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
|
|
{
|
|
/* Vector TX can't offload any features yet */
|
|
if ((txq->txq_flags & FM10K_SIMPLE_TX_FLAG) != FM10K_SIMPLE_TX_FLAG)
|
|
return -1;
|
|
|
|
if (txq->tx_ftag_en)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
vtx1(volatile struct fm10k_tx_desc *txdp,
|
|
struct rte_mbuf *pkt, uint64_t flags)
|
|
{
|
|
__m128i descriptor = _mm_set_epi64x(flags << 56 |
|
|
pkt->vlan_tci << 16 | pkt->data_len,
|
|
MBUF_DMA_ADDR(pkt));
|
|
_mm_store_si128((__m128i *)txdp, descriptor);
|
|
}
|
|
|
|
static inline void
|
|
vtx(volatile struct fm10k_tx_desc *txdp,
|
|
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
|
|
vtx1(txdp, *pkt, flags);
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
|
|
{
|
|
struct rte_mbuf **txep;
|
|
uint8_t flags;
|
|
uint32_t n;
|
|
uint32_t i;
|
|
int nb_free = 0;
|
|
struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
|
|
|
|
/* check DD bit on threshold descriptor */
|
|
flags = txq->hw_ring[txq->next_dd].flags;
|
|
if (!(flags & FM10K_TXD_FLAG_DONE))
|
|
return 0;
|
|
|
|
n = txq->rs_thresh;
|
|
|
|
/* First buffer to free from S/W ring is at index
|
|
* next_dd - (rs_thresh-1)
|
|
*/
|
|
txep = &txq->sw_ring[txq->next_dd - (n - 1)];
|
|
m = rte_pktmbuf_prefree_seg(txep[0]);
|
|
if (likely(m != NULL)) {
|
|
free[0] = m;
|
|
nb_free = 1;
|
|
for (i = 1; i < n; i++) {
|
|
m = rte_pktmbuf_prefree_seg(txep[i]);
|
|
if (likely(m != NULL)) {
|
|
if (likely(m->pool == free[0]->pool))
|
|
free[nb_free++] = m;
|
|
else {
|
|
rte_mempool_put_bulk(free[0]->pool,
|
|
(void *)free, nb_free);
|
|
free[0] = m;
|
|
nb_free = 1;
|
|
}
|
|
}
|
|
}
|
|
rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
|
|
} else {
|
|
for (i = 1; i < n; i++) {
|
|
m = rte_pktmbuf_prefree_seg(txep[i]);
|
|
if (m != NULL)
|
|
rte_mempool_put(m->pool, m);
|
|
}
|
|
}
|
|
|
|
/* buffers were freed, update counters */
|
|
txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
|
|
txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
|
|
if (txq->next_dd >= txq->nb_desc)
|
|
txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
|
|
|
|
return txq->rs_thresh;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
tx_backlog_entry(struct rte_mbuf **txep,
|
|
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < (int)nb_pkts; ++i)
|
|
txep[i] = tx_pkts[i];
|
|
}
|
|
|
|
uint16_t
|
|
fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
|
|
volatile struct fm10k_tx_desc *txdp;
|
|
struct rte_mbuf **txep;
|
|
uint16_t n, nb_commit, tx_id;
|
|
uint64_t flags = FM10K_TXD_FLAG_LAST;
|
|
uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
|
|
int i;
|
|
|
|
/* cross rx_thresh boundary is not allowed */
|
|
nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
|
|
|
|
if (txq->nb_free < txq->free_thresh)
|
|
fm10k_tx_free_bufs(txq);
|
|
|
|
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
|
|
if (unlikely(nb_pkts == 0))
|
|
return 0;
|
|
|
|
tx_id = txq->next_free;
|
|
txdp = &txq->hw_ring[tx_id];
|
|
txep = &txq->sw_ring[tx_id];
|
|
|
|
txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
|
|
|
|
n = (uint16_t)(txq->nb_desc - tx_id);
|
|
if (nb_commit >= n) {
|
|
tx_backlog_entry(txep, tx_pkts, n);
|
|
|
|
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
|
|
vtx1(txdp, *tx_pkts, flags);
|
|
|
|
vtx1(txdp, *tx_pkts++, rs);
|
|
|
|
nb_commit = (uint16_t)(nb_commit - n);
|
|
|
|
tx_id = 0;
|
|
txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
|
|
|
|
/* avoid reach the end of ring */
|
|
txdp = &(txq->hw_ring[tx_id]);
|
|
txep = &txq->sw_ring[tx_id];
|
|
}
|
|
|
|
tx_backlog_entry(txep, tx_pkts, nb_commit);
|
|
|
|
vtx(txdp, tx_pkts, nb_commit, flags);
|
|
|
|
tx_id = (uint16_t)(tx_id + nb_commit);
|
|
if (tx_id > txq->next_rs) {
|
|
txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
|
|
txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
|
|
}
|
|
|
|
txq->next_free = tx_id;
|
|
|
|
FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static void __attribute__((cold))
|
|
fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
|
|
{
|
|
static const struct fm10k_tx_desc zeroed_desc = {0};
|
|
struct rte_mbuf **txe = txq->sw_ring;
|
|
uint16_t i;
|
|
|
|
/* Zero out HW ring memory */
|
|
for (i = 0; i < txq->nb_desc; i++)
|
|
txq->hw_ring[i] = zeroed_desc;
|
|
|
|
/* Initialize SW ring entries */
|
|
for (i = 0; i < txq->nb_desc; i++)
|
|
txe[i] = NULL;
|
|
|
|
txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
|
|
txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
|
|
|
|
txq->next_free = 0;
|
|
txq->nb_used = 0;
|
|
/* Always allow 1 descriptor to be un-allocated to avoid
|
|
* a H/W race condition
|
|
*/
|
|
txq->nb_free = (uint16_t)(txq->nb_desc - 1);
|
|
FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
|
|
}
|