numam-dpdk/drivers/net/ena/ena_ethdev.c
Chengwen Feng 0d5c38bac7 ethdev: add error handling mode to device info
Currently, the defined error handling modes include:

1) NONE: it means no error handling modes are supported by this port.

2) PASSIVE: passive error handling, after the PMD detect that a reset
   is required, the PMD reports RTE_ETH_EVENT_INTR_RESET event, and
   application invoke rte_eth_dev_reset() to recover the port.

Signed-off-by: Chengwen Feng <fengchengwen@huawei.com>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2022-10-17 08:26:36 +02:00

3912 lines
109 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
* All rights reserved.
*/
#include <rte_string_fns.h>
#include <rte_errno.h>
#include <rte_version.h>
#include <rte_net.h>
#include <rte_kvargs.h>
#include "ena_ethdev.h"
#include "ena_logs.h"
#include "ena_platform.h"
#include "ena_com.h"
#include "ena_eth_com.h"
#include <ena_common_defs.h>
#include <ena_regs_defs.h>
#include <ena_admin_defs.h>
#include <ena_eth_io_defs.h>
#define DRV_MODULE_VER_MAJOR 2
#define DRV_MODULE_VER_MINOR 7
#define DRV_MODULE_VER_SUBMINOR 0
#define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
#define GET_L4_HDR_LEN(mbuf) \
((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *, \
mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
#define ETH_GSTRING_LEN 32
#define ARRAY_SIZE(x) RTE_DIM(x)
#define ENA_MIN_RING_DESC 128
/*
* We should try to keep ENA_CLEANUP_BUF_SIZE lower than
* RTE_MEMPOOL_CACHE_MAX_SIZE, so we can fit this in mempool local cache.
*/
#define ENA_CLEANUP_BUF_SIZE 256
#define ENA_PTYPE_HAS_HASH (RTE_PTYPE_L4_TCP | RTE_PTYPE_L4_UDP)
struct ena_stats {
char name[ETH_GSTRING_LEN];
int stat_offset;
};
#define ENA_STAT_ENTRY(stat, stat_type) { \
.name = #stat, \
.stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
}
#define ENA_STAT_RX_ENTRY(stat) \
ENA_STAT_ENTRY(stat, rx)
#define ENA_STAT_TX_ENTRY(stat) \
ENA_STAT_ENTRY(stat, tx)
#define ENA_STAT_ENI_ENTRY(stat) \
ENA_STAT_ENTRY(stat, eni)
#define ENA_STAT_GLOBAL_ENTRY(stat) \
ENA_STAT_ENTRY(stat, dev)
/* Device arguments */
#define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
/* Timeout in seconds after which a single uncompleted Tx packet should be
* considered as a missing.
*/
#define ENA_DEVARG_MISS_TXC_TO "miss_txc_to"
/*
* Controls whether LLQ should be used (if available). Enabled by default.
* NOTE: It's highly not recommended to disable the LLQ, as it may lead to a
* huge performance degradation on 6th generation AWS instances.
*/
#define ENA_DEVARG_ENABLE_LLQ "enable_llq"
/*
* Each rte_memzone should have unique name.
* To satisfy it, count number of allocation and add it to name.
*/
rte_atomic64_t ena_alloc_cnt;
static const struct ena_stats ena_stats_global_strings[] = {
ENA_STAT_GLOBAL_ENTRY(wd_expired),
ENA_STAT_GLOBAL_ENTRY(dev_start),
ENA_STAT_GLOBAL_ENTRY(dev_stop),
ENA_STAT_GLOBAL_ENTRY(tx_drops),
};
static const struct ena_stats ena_stats_eni_strings[] = {
ENA_STAT_ENI_ENTRY(bw_in_allowance_exceeded),
ENA_STAT_ENI_ENTRY(bw_out_allowance_exceeded),
ENA_STAT_ENI_ENTRY(pps_allowance_exceeded),
ENA_STAT_ENI_ENTRY(conntrack_allowance_exceeded),
ENA_STAT_ENI_ENTRY(linklocal_allowance_exceeded),
};
static const struct ena_stats ena_stats_tx_strings[] = {
ENA_STAT_TX_ENTRY(cnt),
ENA_STAT_TX_ENTRY(bytes),
ENA_STAT_TX_ENTRY(prepare_ctx_err),
ENA_STAT_TX_ENTRY(tx_poll),
ENA_STAT_TX_ENTRY(doorbells),
ENA_STAT_TX_ENTRY(bad_req_id),
ENA_STAT_TX_ENTRY(available_desc),
ENA_STAT_TX_ENTRY(missed_tx),
};
static const struct ena_stats ena_stats_rx_strings[] = {
ENA_STAT_RX_ENTRY(cnt),
ENA_STAT_RX_ENTRY(bytes),
ENA_STAT_RX_ENTRY(refill_partial),
ENA_STAT_RX_ENTRY(l3_csum_bad),
ENA_STAT_RX_ENTRY(l4_csum_bad),
ENA_STAT_RX_ENTRY(l4_csum_good),
ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
ENA_STAT_RX_ENTRY(bad_desc_num),
ENA_STAT_RX_ENTRY(bad_req_id),
};
#define ENA_STATS_ARRAY_GLOBAL ARRAY_SIZE(ena_stats_global_strings)
#define ENA_STATS_ARRAY_ENI ARRAY_SIZE(ena_stats_eni_strings)
#define ENA_STATS_ARRAY_TX ARRAY_SIZE(ena_stats_tx_strings)
#define ENA_STATS_ARRAY_RX ARRAY_SIZE(ena_stats_rx_strings)
#define QUEUE_OFFLOADS (RTE_ETH_TX_OFFLOAD_TCP_CKSUM |\
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |\
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |\
RTE_ETH_TX_OFFLOAD_TCP_TSO)
#define MBUF_OFFLOADS (RTE_MBUF_F_TX_L4_MASK |\
RTE_MBUF_F_TX_IP_CKSUM |\
RTE_MBUF_F_TX_TCP_SEG)
/** Vendor ID used by Amazon devices */
#define PCI_VENDOR_ID_AMAZON 0x1D0F
/** Amazon devices */
#define PCI_DEVICE_ID_ENA_VF 0xEC20
#define PCI_DEVICE_ID_ENA_VF_RSERV0 0xEC21
#define ENA_TX_OFFLOAD_MASK (RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_IPV6 | \
RTE_MBUF_F_TX_IPV4 | \
RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_TCP_SEG)
#define ENA_TX_OFFLOAD_NOTSUP_MASK \
(RTE_MBUF_F_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
/** HW specific offloads capabilities. */
/* IPv4 checksum offload. */
#define ENA_L3_IPV4_CSUM 0x0001
/* TCP/UDP checksum offload for IPv4 packets. */
#define ENA_L4_IPV4_CSUM 0x0002
/* TCP/UDP checksum offload for IPv4 packets with pseudo header checksum. */
#define ENA_L4_IPV4_CSUM_PARTIAL 0x0004
/* TCP/UDP checksum offload for IPv6 packets. */
#define ENA_L4_IPV6_CSUM 0x0008
/* TCP/UDP checksum offload for IPv6 packets with pseudo header checksum. */
#define ENA_L4_IPV6_CSUM_PARTIAL 0x0010
/* TSO support for IPv4 packets. */
#define ENA_IPV4_TSO 0x0020
/* Device supports setting RSS hash. */
#define ENA_RX_RSS_HASH 0x0040
static const struct rte_pci_id pci_id_ena_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF_RSERV0) },
{ .device_id = 0 },
};
static struct ena_aenq_handlers aenq_handlers;
static int ena_device_init(struct ena_adapter *adapter,
struct rte_pci_device *pdev,
struct ena_com_dev_get_features_ctx *get_feat_ctx);
static int ena_dev_configure(struct rte_eth_dev *dev);
static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
struct ena_tx_buffer *tx_info,
struct rte_mbuf *mbuf,
void **push_header,
uint16_t *header_len);
static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt);
static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp);
static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
struct ena_com_rx_buf_info *ena_bufs,
uint32_t descs,
uint16_t *next_to_clean,
uint8_t offset);
static uint16_t eth_ena_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
struct rte_mbuf *mbuf, uint16_t id);
static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
static void ena_init_rings(struct ena_adapter *adapter,
bool disable_meta_caching);
static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int ena_start(struct rte_eth_dev *dev);
static int ena_stop(struct rte_eth_dev *dev);
static int ena_close(struct rte_eth_dev *dev);
static int ena_dev_reset(struct rte_eth_dev *dev);
static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid);
static void ena_rx_queue_release_bufs(struct ena_ring *ring);
static void ena_tx_queue_release_bufs(struct ena_ring *ring);
static int ena_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring);
static void ena_queue_stop(struct ena_ring *ring);
static void ena_queue_stop_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type);
static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring);
static int ena_queue_start_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type);
static void ena_stats_restart(struct rte_eth_dev *dev);
static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter);
static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter);
static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter);
static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter);
static int ena_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static void ena_interrupt_handler_rte(void *cb_arg);
static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
static void ena_destroy_device(struct rte_eth_dev *eth_dev);
static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
static int ena_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int n);
static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
struct rte_eth_xstat_name *xstats_names,
unsigned int size);
static int ena_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *stats,
unsigned int n);
static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
uint64_t *values,
unsigned int n);
static int ena_process_bool_devarg(const char *key,
const char *value,
void *opaque);
static int ena_parse_devargs(struct ena_adapter *adapter,
struct rte_devargs *devargs);
static int ena_copy_eni_stats(struct ena_adapter *adapter,
struct ena_stats_eni *stats);
static int ena_setup_rx_intr(struct rte_eth_dev *dev);
static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int ena_configure_aenq(struct ena_adapter *adapter);
static int ena_mp_primary_handle(const struct rte_mp_msg *mp_msg,
const void *peer);
static const struct eth_dev_ops ena_dev_ops = {
.dev_configure = ena_dev_configure,
.dev_infos_get = ena_infos_get,
.rx_queue_setup = ena_rx_queue_setup,
.tx_queue_setup = ena_tx_queue_setup,
.dev_start = ena_start,
.dev_stop = ena_stop,
.link_update = ena_link_update,
.stats_get = ena_stats_get,
.xstats_get_names = ena_xstats_get_names,
.xstats_get_names_by_id = ena_xstats_get_names_by_id,
.xstats_get = ena_xstats_get,
.xstats_get_by_id = ena_xstats_get_by_id,
.mtu_set = ena_mtu_set,
.rx_queue_release = ena_rx_queue_release,
.tx_queue_release = ena_tx_queue_release,
.dev_close = ena_close,
.dev_reset = ena_dev_reset,
.reta_update = ena_rss_reta_update,
.reta_query = ena_rss_reta_query,
.rx_queue_intr_enable = ena_rx_queue_intr_enable,
.rx_queue_intr_disable = ena_rx_queue_intr_disable,
.rss_hash_update = ena_rss_hash_update,
.rss_hash_conf_get = ena_rss_hash_conf_get,
.tx_done_cleanup = ena_tx_cleanup,
};
/*********************************************************************
* Multi-Process communication bits
*********************************************************************/
/* rte_mp IPC message name */
#define ENA_MP_NAME "net_ena_mp"
/* Request timeout in seconds */
#define ENA_MP_REQ_TMO 5
/** Proxy request type */
enum ena_mp_req {
ENA_MP_DEV_STATS_GET,
ENA_MP_ENI_STATS_GET,
ENA_MP_MTU_SET,
ENA_MP_IND_TBL_GET,
ENA_MP_IND_TBL_SET
};
/** Proxy message body. Shared between requests and responses. */
struct ena_mp_body {
/* Message type */
enum ena_mp_req type;
int port_id;
/* Processing result. Set in replies. 0 if message succeeded, negative
* error code otherwise.
*/
int result;
union {
int mtu; /* For ENA_MP_MTU_SET */
} args;
};
/**
* Initialize IPC message.
*
* @param[out] msg
* Pointer to the message to initialize.
* @param[in] type
* Message type.
* @param[in] port_id
* Port ID of target device.
*
*/
static void
mp_msg_init(struct rte_mp_msg *msg, enum ena_mp_req type, int port_id)
{
struct ena_mp_body *body = (struct ena_mp_body *)&msg->param;
memset(msg, 0, sizeof(*msg));
strlcpy(msg->name, ENA_MP_NAME, sizeof(msg->name));
msg->len_param = sizeof(*body);
body->type = type;
body->port_id = port_id;
}
/*********************************************************************
* Multi-Process communication PMD API
*********************************************************************/
/**
* Define proxy request descriptor
*
* Used to define all structures and functions required for proxying a given
* function to the primary process including the code to perform to prepare the
* request and process the response.
*
* @param[in] f
* Name of the function to proxy
* @param[in] t
* Message type to use
* @param[in] prep
* Body of a function to prepare the request in form of a statement
* expression. It is passed all the original function arguments along with two
* extra ones:
* - struct ena_adapter *adapter - PMD data of the device calling the proxy.
* - struct ena_mp_body *req - body of a request to prepare.
* @param[in] proc
* Body of a function to process the response in form of a statement
* expression. It is passed all the original function arguments along with two
* extra ones:
* - struct ena_adapter *adapter - PMD data of the device calling the proxy.
* - struct ena_mp_body *rsp - body of a response to process.
* @param ...
* Proxied function's arguments
*
* @note Inside prep and proc any parameters which aren't used should be marked
* as such (with ENA_TOUCH or __rte_unused).
*/
#define ENA_PROXY_DESC(f, t, prep, proc, ...) \
static const enum ena_mp_req mp_type_ ## f = t; \
static const char *mp_name_ ## f = #t; \
static void mp_prep_ ## f(struct ena_adapter *adapter, \
struct ena_mp_body *req, \
__VA_ARGS__) \
{ \
prep; \
} \
static void mp_proc_ ## f(struct ena_adapter *adapter, \
struct ena_mp_body *rsp, \
__VA_ARGS__) \
{ \
proc; \
}
/**
* Proxy wrapper for calling primary functions in a secondary process.
*
* Depending on whether called in primary or secondary process, calls the
* @p func directly or proxies the call to the primary process via rte_mp IPC.
* This macro requires a proxy request descriptor to be defined for @p func
* using ENA_PROXY_DESC() macro.
*
* @param[in/out] a
* Device PMD data. Used for sending the message and sharing message results
* between primary and secondary.
* @param[in] f
* Function to proxy.
* @param ...
* Arguments of @p func.
*
* @return
* - 0: Processing succeeded and response handler was called.
* - -EPERM: IPC is unavailable on this platform. This means only primary
* process may call the proxied function.
* - -EIO: IPC returned error on request send. Inspect rte_errno detailed
* error code.
* - Negative error code from the proxied function.
*
* @note This mechanism is geared towards control-path tasks. Avoid calling it
* in fast-path unless unbound delays are allowed. This is due to the IPC
* mechanism itself (socket based).
* @note Due to IPC parameter size limitations the proxy logic shares call
* results through the struct ena_adapter shared memory. This makes the
* proxy mechanism strictly single-threaded. Therefore be sure to make all
* calls to the same proxied function under the same lock.
*/
#define ENA_PROXY(a, f, ...) \
({ \
struct ena_adapter *_a = (a); \
struct timespec ts = { .tv_sec = ENA_MP_REQ_TMO }; \
struct ena_mp_body *req, *rsp; \
struct rte_mp_reply mp_rep; \
struct rte_mp_msg mp_req; \
int ret; \
\
if (rte_eal_process_type() == RTE_PROC_PRIMARY) { \
ret = f(__VA_ARGS__); \
} else { \
/* Prepare and send request */ \
req = (struct ena_mp_body *)&mp_req.param; \
mp_msg_init(&mp_req, mp_type_ ## f, _a->edev_data->port_id); \
mp_prep_ ## f(_a, req, ## __VA_ARGS__); \
\
ret = rte_mp_request_sync(&mp_req, &mp_rep, &ts); \
if (likely(!ret)) { \
RTE_ASSERT(mp_rep.nb_received == 1); \
rsp = (struct ena_mp_body *)&mp_rep.msgs[0].param; \
ret = rsp->result; \
if (ret == 0) { \
mp_proc_##f(_a, rsp, ## __VA_ARGS__); \
} else { \
PMD_DRV_LOG(ERR, \
"%s returned error: %d\n", \
mp_name_ ## f, rsp->result);\
} \
free(mp_rep.msgs); \
} else if (rte_errno == ENOTSUP) { \
PMD_DRV_LOG(ERR, \
"No IPC, can't proxy to primary\n");\
ret = -rte_errno; \
} else { \
PMD_DRV_LOG(ERR, "Request %s failed: %s\n", \
mp_name_ ## f, \
rte_strerror(rte_errno)); \
ret = -EIO; \
} \
} \
ret; \
})
/*********************************************************************
* Multi-Process communication request descriptors
*********************************************************************/
ENA_PROXY_DESC(ena_com_get_dev_basic_stats, ENA_MP_DEV_STATS_GET,
({
ENA_TOUCH(adapter);
ENA_TOUCH(req);
ENA_TOUCH(ena_dev);
ENA_TOUCH(stats);
}),
({
ENA_TOUCH(rsp);
ENA_TOUCH(ena_dev);
if (stats != &adapter->basic_stats)
rte_memcpy(stats, &adapter->basic_stats, sizeof(*stats));
}),
struct ena_com_dev *ena_dev, struct ena_admin_basic_stats *stats);
ENA_PROXY_DESC(ena_com_get_eni_stats, ENA_MP_ENI_STATS_GET,
({
ENA_TOUCH(adapter);
ENA_TOUCH(req);
ENA_TOUCH(ena_dev);
ENA_TOUCH(stats);
}),
({
ENA_TOUCH(rsp);
ENA_TOUCH(ena_dev);
if (stats != (struct ena_admin_eni_stats *)&adapter->eni_stats)
rte_memcpy(stats, &adapter->eni_stats, sizeof(*stats));
}),
struct ena_com_dev *ena_dev, struct ena_admin_eni_stats *stats);
ENA_PROXY_DESC(ena_com_set_dev_mtu, ENA_MP_MTU_SET,
({
ENA_TOUCH(adapter);
ENA_TOUCH(ena_dev);
req->args.mtu = mtu;
}),
({
ENA_TOUCH(adapter);
ENA_TOUCH(rsp);
ENA_TOUCH(ena_dev);
ENA_TOUCH(mtu);
}),
struct ena_com_dev *ena_dev, int mtu);
ENA_PROXY_DESC(ena_com_indirect_table_set, ENA_MP_IND_TBL_SET,
({
ENA_TOUCH(adapter);
ENA_TOUCH(req);
ENA_TOUCH(ena_dev);
}),
({
ENA_TOUCH(adapter);
ENA_TOUCH(rsp);
ENA_TOUCH(ena_dev);
}),
struct ena_com_dev *ena_dev);
ENA_PROXY_DESC(ena_com_indirect_table_get, ENA_MP_IND_TBL_GET,
({
ENA_TOUCH(adapter);
ENA_TOUCH(req);
ENA_TOUCH(ena_dev);
ENA_TOUCH(ind_tbl);
}),
({
ENA_TOUCH(rsp);
ENA_TOUCH(ena_dev);
if (ind_tbl != adapter->indirect_table)
rte_memcpy(ind_tbl, adapter->indirect_table,
sizeof(adapter->indirect_table));
}),
struct ena_com_dev *ena_dev, u32 *ind_tbl);
static inline void ena_trigger_reset(struct ena_adapter *adapter,
enum ena_regs_reset_reason_types reason)
{
if (likely(!adapter->trigger_reset)) {
adapter->reset_reason = reason;
adapter->trigger_reset = true;
}
}
static inline void ena_rx_mbuf_prepare(struct ena_ring *rx_ring,
struct rte_mbuf *mbuf,
struct ena_com_rx_ctx *ena_rx_ctx,
bool fill_hash)
{
struct ena_stats_rx *rx_stats = &rx_ring->rx_stats;
uint64_t ol_flags = 0;
uint32_t packet_type = 0;
if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
packet_type |= RTE_PTYPE_L4_TCP;
else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
packet_type |= RTE_PTYPE_L4_UDP;
if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) {
packet_type |= RTE_PTYPE_L3_IPV4;
if (unlikely(ena_rx_ctx->l3_csum_err)) {
++rx_stats->l3_csum_bad;
ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
} else {
ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
}
} else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) {
packet_type |= RTE_PTYPE_L3_IPV6;
}
if (!ena_rx_ctx->l4_csum_checked || ena_rx_ctx->frag) {
ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
} else {
if (unlikely(ena_rx_ctx->l4_csum_err)) {
++rx_stats->l4_csum_bad;
/*
* For the L4 Rx checksum offload the HW may indicate
* bad checksum although it's valid. Because of that,
* we're setting the UNKNOWN flag to let the app
* re-verify the checksum.
*/
ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_UNKNOWN;
} else {
++rx_stats->l4_csum_good;
ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
}
}
if (fill_hash &&
likely((packet_type & ENA_PTYPE_HAS_HASH) && !ena_rx_ctx->frag)) {
ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mbuf->hash.rss = ena_rx_ctx->hash;
}
mbuf->ol_flags = ol_flags;
mbuf->packet_type = packet_type;
}
static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
struct ena_com_tx_ctx *ena_tx_ctx,
uint64_t queue_offloads,
bool disable_meta_caching)
{
struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
(queue_offloads & QUEUE_OFFLOADS)) {
/* check if TSO is required */
if ((mbuf->ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
(queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_TSO)) {
ena_tx_ctx->tso_enable = true;
ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
}
/* check if L3 checksum is needed */
if ((mbuf->ol_flags & RTE_MBUF_F_TX_IP_CKSUM) &&
(queue_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM))
ena_tx_ctx->l3_csum_enable = true;
if (mbuf->ol_flags & RTE_MBUF_F_TX_IPV6) {
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
/* For the IPv6 packets, DF always needs to be true. */
ena_tx_ctx->df = 1;
} else {
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
/* set don't fragment (DF) flag */
if (mbuf->packet_type &
(RTE_PTYPE_L4_NONFRAG
| RTE_PTYPE_INNER_L4_NONFRAG))
ena_tx_ctx->df = 1;
}
/* check if L4 checksum is needed */
if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM) &&
(queue_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) {
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
ena_tx_ctx->l4_csum_enable = true;
} else if (((mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) ==
RTE_MBUF_F_TX_UDP_CKSUM) &&
(queue_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM)) {
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
ena_tx_ctx->l4_csum_enable = true;
} else {
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
ena_tx_ctx->l4_csum_enable = false;
}
ena_meta->mss = mbuf->tso_segsz;
ena_meta->l3_hdr_len = mbuf->l3_len;
ena_meta->l3_hdr_offset = mbuf->l2_len;
ena_tx_ctx->meta_valid = true;
} else if (disable_meta_caching) {
memset(ena_meta, 0, sizeof(*ena_meta));
ena_tx_ctx->meta_valid = true;
} else {
ena_tx_ctx->meta_valid = false;
}
}
static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
{
struct ena_tx_buffer *tx_info = NULL;
if (likely(req_id < tx_ring->ring_size)) {
tx_info = &tx_ring->tx_buffer_info[req_id];
if (likely(tx_info->mbuf))
return 0;
}
if (tx_info)
PMD_TX_LOG(ERR, "tx_info doesn't have valid mbuf. queue %d:%d req_id %u\n",
tx_ring->port_id, tx_ring->id, req_id);
else
PMD_TX_LOG(ERR, "Invalid req_id: %hu in queue %d:%d\n",
req_id, tx_ring->port_id, tx_ring->id);
/* Trigger device reset */
++tx_ring->tx_stats.bad_req_id;
ena_trigger_reset(tx_ring->adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
return -EFAULT;
}
static void ena_config_host_info(struct ena_com_dev *ena_dev)
{
struct ena_admin_host_info *host_info;
int rc;
/* Allocate only the host info */
rc = ena_com_allocate_host_info(ena_dev);
if (rc) {
PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
return;
}
host_info = ena_dev->host_attr.host_info;
host_info->os_type = ENA_ADMIN_OS_DPDK;
host_info->kernel_ver = RTE_VERSION;
strlcpy((char *)host_info->kernel_ver_str, rte_version(),
sizeof(host_info->kernel_ver_str));
host_info->os_dist = RTE_VERSION;
strlcpy((char *)host_info->os_dist_str, rte_version(),
sizeof(host_info->os_dist_str));
host_info->driver_version =
(DRV_MODULE_VER_MAJOR) |
(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
(DRV_MODULE_VER_SUBMINOR <<
ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
host_info->num_cpus = rte_lcore_count();
host_info->driver_supported_features =
ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
rc = ena_com_set_host_attributes(ena_dev);
if (rc) {
if (rc == -ENA_COM_UNSUPPORTED)
PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
else
PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_host_info(ena_dev);
}
/* This function calculates the number of xstats based on the current config */
static unsigned int ena_xstats_calc_num(struct rte_eth_dev_data *data)
{
return ENA_STATS_ARRAY_GLOBAL + ENA_STATS_ARRAY_ENI +
(data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
(data->nb_rx_queues * ENA_STATS_ARRAY_RX);
}
static void ena_config_debug_area(struct ena_adapter *adapter)
{
u32 debug_area_size;
int rc, ss_count;
ss_count = ena_xstats_calc_num(adapter->edev_data);
/* allocate 32 bytes for each string and 64bit for the value */
debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
if (rc) {
PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
return;
}
rc = ena_com_set_host_attributes(&adapter->ena_dev);
if (rc) {
if (rc == -ENA_COM_UNSUPPORTED)
PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
else
PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_debug_area(&adapter->ena_dev);
}
static int ena_close(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
struct ena_adapter *adapter = dev->data->dev_private;
int ret = 0;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
ret = ena_stop(dev);
adapter->state = ENA_ADAPTER_STATE_CLOSED;
ena_rx_queue_release_all(dev);
ena_tx_queue_release_all(dev);
rte_free(adapter->drv_stats);
adapter->drv_stats = NULL;
rte_intr_disable(intr_handle);
rte_intr_callback_unregister(intr_handle,
ena_interrupt_handler_rte,
dev);
/*
* MAC is not allocated dynamically. Setting NULL should prevent from
* release of the resource in the rte_eth_dev_release_port().
*/
dev->data->mac_addrs = NULL;
return ret;
}
static int
ena_dev_reset(struct rte_eth_dev *dev)
{
int rc = 0;
/* Cannot release memory in secondary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
PMD_DRV_LOG(WARNING, "dev_reset not supported in secondary.\n");
return -EPERM;
}
ena_destroy_device(dev);
rc = eth_ena_dev_init(dev);
if (rc)
PMD_INIT_LOG(CRIT, "Cannot initialize device\n");
return rc;
}
static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
{
int nb_queues = dev->data->nb_rx_queues;
int i;
for (i = 0; i < nb_queues; i++)
ena_rx_queue_release(dev, i);
}
static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
{
int nb_queues = dev->data->nb_tx_queues;
int i;
for (i = 0; i < nb_queues; i++)
ena_tx_queue_release(dev, i);
}
static void ena_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct ena_ring *ring = dev->data->rx_queues[qid];
/* Free ring resources */
rte_free(ring->rx_buffer_info);
ring->rx_buffer_info = NULL;
rte_free(ring->rx_refill_buffer);
ring->rx_refill_buffer = NULL;
rte_free(ring->empty_rx_reqs);
ring->empty_rx_reqs = NULL;
ring->configured = 0;
PMD_DRV_LOG(NOTICE, "Rx queue %d:%d released\n",
ring->port_id, ring->id);
}
static void ena_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
struct ena_ring *ring = dev->data->tx_queues[qid];
/* Free ring resources */
rte_free(ring->push_buf_intermediate_buf);
rte_free(ring->tx_buffer_info);
rte_free(ring->empty_tx_reqs);
ring->empty_tx_reqs = NULL;
ring->tx_buffer_info = NULL;
ring->push_buf_intermediate_buf = NULL;
ring->configured = 0;
PMD_DRV_LOG(NOTICE, "Tx queue %d:%d released\n",
ring->port_id, ring->id);
}
static void ena_rx_queue_release_bufs(struct ena_ring *ring)
{
unsigned int i;
for (i = 0; i < ring->ring_size; ++i) {
struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
if (rx_info->mbuf) {
rte_mbuf_raw_free(rx_info->mbuf);
rx_info->mbuf = NULL;
}
}
}
static void ena_tx_queue_release_bufs(struct ena_ring *ring)
{
unsigned int i;
for (i = 0; i < ring->ring_size; ++i) {
struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
if (tx_buf->mbuf) {
rte_pktmbuf_free(tx_buf->mbuf);
tx_buf->mbuf = NULL;
}
}
}
static int ena_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link *link = &dev->data->dev_link;
struct ena_adapter *adapter = dev->data->dev_private;
link->link_status = adapter->link_status ? RTE_ETH_LINK_UP : RTE_ETH_LINK_DOWN;
link->link_speed = RTE_ETH_SPEED_NUM_NONE;
link->link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
return 0;
}
static int ena_queue_start_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type)
{
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_ring *queues = NULL;
int nb_queues;
int i = 0;
int rc = 0;
if (ring_type == ENA_RING_TYPE_RX) {
queues = adapter->rx_ring;
nb_queues = dev->data->nb_rx_queues;
} else {
queues = adapter->tx_ring;
nb_queues = dev->data->nb_tx_queues;
}
for (i = 0; i < nb_queues; i++) {
if (queues[i].configured) {
if (ring_type == ENA_RING_TYPE_RX) {
ena_assert_msg(
dev->data->rx_queues[i] == &queues[i],
"Inconsistent state of Rx queues\n");
} else {
ena_assert_msg(
dev->data->tx_queues[i] == &queues[i],
"Inconsistent state of Tx queues\n");
}
rc = ena_queue_start(dev, &queues[i]);
if (rc) {
PMD_INIT_LOG(ERR,
"Failed to start queue[%d] of type(%d)\n",
i, ring_type);
goto err;
}
}
}
return 0;
err:
while (i--)
if (queues[i].configured)
ena_queue_stop(&queues[i]);
return rc;
}
static int
ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
bool use_large_llq_hdr)
{
struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
struct ena_com_dev *ena_dev = ctx->ena_dev;
uint32_t max_tx_queue_size;
uint32_t max_rx_queue_size;
if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
struct ena_admin_queue_ext_feature_fields *max_queue_ext =
&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
max_queue_ext->max_rx_sq_depth);
max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
if (ena_dev->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV) {
max_tx_queue_size = RTE_MIN(max_tx_queue_size,
llq->max_llq_depth);
} else {
max_tx_queue_size = RTE_MIN(max_tx_queue_size,
max_queue_ext->max_tx_sq_depth);
}
ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queue_ext->max_per_packet_rx_descs);
ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queue_ext->max_per_packet_tx_descs);
} else {
struct ena_admin_queue_feature_desc *max_queues =
&ctx->get_feat_ctx->max_queues;
max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
max_queues->max_sq_depth);
max_tx_queue_size = max_queues->max_cq_depth;
if (ena_dev->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV) {
max_tx_queue_size = RTE_MIN(max_tx_queue_size,
llq->max_llq_depth);
} else {
max_tx_queue_size = RTE_MIN(max_tx_queue_size,
max_queues->max_sq_depth);
}
ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queues->max_packet_rx_descs);
ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
max_queues->max_packet_tx_descs);
}
/* Round down to the nearest power of 2 */
max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
if (use_large_llq_hdr) {
if ((llq->entry_size_ctrl_supported &
ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
(ena_dev->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
max_tx_queue_size /= 2;
PMD_INIT_LOG(INFO,
"Forcing large headers and decreasing maximum Tx queue size to %d\n",
max_tx_queue_size);
} else {
PMD_INIT_LOG(ERR,
"Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
}
}
if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
PMD_INIT_LOG(ERR, "Invalid queue size\n");
return -EFAULT;
}
ctx->max_tx_queue_size = max_tx_queue_size;
ctx->max_rx_queue_size = max_rx_queue_size;
return 0;
}
static void ena_stats_restart(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter = dev->data->dev_private;
rte_atomic64_init(&adapter->drv_stats->ierrors);
rte_atomic64_init(&adapter->drv_stats->oerrors);
rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
adapter->drv_stats->rx_drops = 0;
}
static int ena_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct ena_admin_basic_stats ena_stats;
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int rc;
int i;
int max_rings_stats;
memset(&ena_stats, 0, sizeof(ena_stats));
rte_spinlock_lock(&adapter->admin_lock);
rc = ENA_PROXY(adapter, ena_com_get_dev_basic_stats, ena_dev,
&ena_stats);
rte_spinlock_unlock(&adapter->admin_lock);
if (unlikely(rc)) {
PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
return rc;
}
/* Set of basic statistics from ENA */
stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
ena_stats.rx_pkts_low);
stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
ena_stats.tx_pkts_low);
stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
ena_stats.rx_bytes_low);
stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
ena_stats.tx_bytes_low);
/* Driver related stats */
stats->imissed = adapter->drv_stats->rx_drops;
stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (i = 0; i < max_rings_stats; ++i) {
struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
stats->q_ibytes[i] = rx_stats->bytes;
stats->q_ipackets[i] = rx_stats->cnt;
stats->q_errors[i] = rx_stats->bad_desc_num +
rx_stats->bad_req_id;
}
max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (i = 0; i < max_rings_stats; ++i) {
struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
stats->q_obytes[i] = tx_stats->bytes;
stats->q_opackets[i] = tx_stats->cnt;
}
return 0;
}
static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
int rc = 0;
ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
adapter = dev->data->dev_private;
ena_dev = &adapter->ena_dev;
ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
rc = ENA_PROXY(adapter, ena_com_set_dev_mtu, ena_dev, mtu);
if (rc)
PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
else
PMD_DRV_LOG(NOTICE, "MTU set to: %d\n", mtu);
return rc;
}
static int ena_start(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter = dev->data->dev_private;
uint64_t ticks;
int rc = 0;
/* Cannot allocate memory in secondary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
PMD_DRV_LOG(WARNING, "dev_start not supported in secondary.\n");
return -EPERM;
}
rc = ena_setup_rx_intr(dev);
if (rc)
return rc;
rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
if (rc)
return rc;
rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
if (rc)
goto err_start_tx;
if (adapter->edev_data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG) {
rc = ena_rss_configure(adapter);
if (rc)
goto err_rss_init;
}
ena_stats_restart(dev);
adapter->timestamp_wd = rte_get_timer_cycles();
adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
ticks = rte_get_timer_hz();
rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
ena_timer_wd_callback, dev);
++adapter->dev_stats.dev_start;
adapter->state = ENA_ADAPTER_STATE_RUNNING;
return 0;
err_rss_init:
ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
err_start_tx:
ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
return rc;
}
static int ena_stop(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
int rc;
/* Cannot free memory in secondary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
PMD_DRV_LOG(WARNING, "dev_stop not supported in secondary.\n");
return -EPERM;
}
rte_timer_stop_sync(&adapter->timer_wd);
ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
if (adapter->trigger_reset) {
rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
if (rc)
PMD_DRV_LOG(ERR, "Device reset failed, rc: %d\n", rc);
}
rte_intr_disable(intr_handle);
rte_intr_efd_disable(intr_handle);
/* Cleanup vector list */
rte_intr_vec_list_free(intr_handle);
rte_intr_enable(intr_handle);
++adapter->dev_stats.dev_stop;
adapter->state = ENA_ADAPTER_STATE_STOPPED;
dev->data->dev_started = 0;
return 0;
}
static int ena_create_io_queue(struct rte_eth_dev *dev, struct ena_ring *ring)
{
struct ena_adapter *adapter = ring->adapter;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
struct ena_com_create_io_ctx ctx =
/* policy set to _HOST just to satisfy icc compiler */
{ ENA_ADMIN_PLACEMENT_POLICY_HOST,
0, 0, 0, 0, 0 };
uint16_t ena_qid;
unsigned int i;
int rc;
ctx.msix_vector = -1;
if (ring->type == ENA_RING_TYPE_TX) {
ena_qid = ENA_IO_TXQ_IDX(ring->id);
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
for (i = 0; i < ring->ring_size; i++)
ring->empty_tx_reqs[i] = i;
} else {
ena_qid = ENA_IO_RXQ_IDX(ring->id);
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
if (rte_intr_dp_is_en(intr_handle))
ctx.msix_vector =
rte_intr_vec_list_index_get(intr_handle,
ring->id);
for (i = 0; i < ring->ring_size; i++)
ring->empty_rx_reqs[i] = i;
}
ctx.queue_size = ring->ring_size;
ctx.qid = ena_qid;
ctx.numa_node = ring->numa_socket_id;
rc = ena_com_create_io_queue(ena_dev, &ctx);
if (rc) {
PMD_DRV_LOG(ERR,
"Failed to create IO queue[%d] (qid:%d), rc: %d\n",
ring->id, ena_qid, rc);
return rc;
}
rc = ena_com_get_io_handlers(ena_dev, ena_qid,
&ring->ena_com_io_sq,
&ring->ena_com_io_cq);
if (rc) {
PMD_DRV_LOG(ERR,
"Failed to get IO queue[%d] handlers, rc: %d\n",
ring->id, rc);
ena_com_destroy_io_queue(ena_dev, ena_qid);
return rc;
}
if (ring->type == ENA_RING_TYPE_TX)
ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
/* Start with Rx interrupts being masked. */
if (ring->type == ENA_RING_TYPE_RX && rte_intr_dp_is_en(intr_handle))
ena_rx_queue_intr_disable(dev, ring->id);
return 0;
}
static void ena_queue_stop(struct ena_ring *ring)
{
struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
if (ring->type == ENA_RING_TYPE_RX) {
ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
ena_rx_queue_release_bufs(ring);
} else {
ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
ena_tx_queue_release_bufs(ring);
}
}
static void ena_queue_stop_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type)
{
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_ring *queues = NULL;
uint16_t nb_queues, i;
if (ring_type == ENA_RING_TYPE_RX) {
queues = adapter->rx_ring;
nb_queues = dev->data->nb_rx_queues;
} else {
queues = adapter->tx_ring;
nb_queues = dev->data->nb_tx_queues;
}
for (i = 0; i < nb_queues; ++i)
if (queues[i].configured)
ena_queue_stop(&queues[i]);
}
static int ena_queue_start(struct rte_eth_dev *dev, struct ena_ring *ring)
{
int rc, bufs_num;
ena_assert_msg(ring->configured == 1,
"Trying to start unconfigured queue\n");
rc = ena_create_io_queue(dev, ring);
if (rc) {
PMD_INIT_LOG(ERR, "Failed to create IO queue\n");
return rc;
}
ring->next_to_clean = 0;
ring->next_to_use = 0;
if (ring->type == ENA_RING_TYPE_TX) {
ring->tx_stats.available_desc =
ena_com_free_q_entries(ring->ena_com_io_sq);
return 0;
}
bufs_num = ring->ring_size - 1;
rc = ena_populate_rx_queue(ring, bufs_num);
if (rc != bufs_num) {
ena_com_destroy_io_queue(&ring->adapter->ena_dev,
ENA_IO_RXQ_IDX(ring->id));
PMD_INIT_LOG(ERR, "Failed to populate Rx ring\n");
return ENA_COM_FAULT;
}
/* Flush per-core RX buffers pools cache as they can be used on other
* cores as well.
*/
rte_mempool_cache_flush(NULL, ring->mb_pool);
return 0;
}
static int ena_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct ena_ring *txq = NULL;
struct ena_adapter *adapter = dev->data->dev_private;
unsigned int i;
uint16_t dyn_thresh;
txq = &adapter->tx_ring[queue_idx];
if (txq->configured) {
PMD_DRV_LOG(CRIT,
"API violation. Queue[%d] is already configured\n",
queue_idx);
return ENA_COM_FAULT;
}
if (!rte_is_power_of_2(nb_desc)) {
PMD_DRV_LOG(ERR,
"Unsupported size of Tx queue: %d is not a power of 2.\n",
nb_desc);
return -EINVAL;
}
if (nb_desc > adapter->max_tx_ring_size) {
PMD_DRV_LOG(ERR,
"Unsupported size of Tx queue (max size: %d)\n",
adapter->max_tx_ring_size);
return -EINVAL;
}
txq->port_id = dev->data->port_id;
txq->next_to_clean = 0;
txq->next_to_use = 0;
txq->ring_size = nb_desc;
txq->size_mask = nb_desc - 1;
txq->numa_socket_id = socket_id;
txq->pkts_without_db = false;
txq->last_cleanup_ticks = 0;
txq->tx_buffer_info = rte_zmalloc_socket("txq->tx_buffer_info",
sizeof(struct ena_tx_buffer) * txq->ring_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->tx_buffer_info) {
PMD_DRV_LOG(ERR,
"Failed to allocate memory for Tx buffer info\n");
return -ENOMEM;
}
txq->empty_tx_reqs = rte_zmalloc_socket("txq->empty_tx_reqs",
sizeof(uint16_t) * txq->ring_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->empty_tx_reqs) {
PMD_DRV_LOG(ERR,
"Failed to allocate memory for empty Tx requests\n");
rte_free(txq->tx_buffer_info);
return -ENOMEM;
}
txq->push_buf_intermediate_buf =
rte_zmalloc_socket("txq->push_buf_intermediate_buf",
txq->tx_max_header_size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->push_buf_intermediate_buf) {
PMD_DRV_LOG(ERR, "Failed to alloc push buffer for LLQ\n");
rte_free(txq->tx_buffer_info);
rte_free(txq->empty_tx_reqs);
return -ENOMEM;
}
for (i = 0; i < txq->ring_size; i++)
txq->empty_tx_reqs[i] = i;
txq->offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
/* Check if caller provided the Tx cleanup threshold value. */
if (tx_conf->tx_free_thresh != 0) {
txq->tx_free_thresh = tx_conf->tx_free_thresh;
} else {
dyn_thresh = txq->ring_size -
txq->ring_size / ENA_REFILL_THRESH_DIVIDER;
txq->tx_free_thresh = RTE_MAX(dyn_thresh,
txq->ring_size - ENA_REFILL_THRESH_PACKET);
}
txq->missing_tx_completion_threshold =
RTE_MIN(txq->ring_size / 2, ENA_DEFAULT_MISSING_COMP);
/* Store pointer to this queue in upper layer */
txq->configured = 1;
dev->data->tx_queues[queue_idx] = txq;
return 0;
}
static int ena_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_ring *rxq = NULL;
size_t buffer_size;
int i;
uint16_t dyn_thresh;
rxq = &adapter->rx_ring[queue_idx];
if (rxq->configured) {
PMD_DRV_LOG(CRIT,
"API violation. Queue[%d] is already configured\n",
queue_idx);
return ENA_COM_FAULT;
}
if (!rte_is_power_of_2(nb_desc)) {
PMD_DRV_LOG(ERR,
"Unsupported size of Rx queue: %d is not a power of 2.\n",
nb_desc);
return -EINVAL;
}
if (nb_desc > adapter->max_rx_ring_size) {
PMD_DRV_LOG(ERR,
"Unsupported size of Rx queue (max size: %d)\n",
adapter->max_rx_ring_size);
return -EINVAL;
}
/* ENA isn't supporting buffers smaller than 1400 bytes */
buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
PMD_DRV_LOG(ERR,
"Unsupported size of Rx buffer: %zu (min size: %d)\n",
buffer_size, ENA_RX_BUF_MIN_SIZE);
return -EINVAL;
}
rxq->port_id = dev->data->port_id;
rxq->next_to_clean = 0;
rxq->next_to_use = 0;
rxq->ring_size = nb_desc;
rxq->size_mask = nb_desc - 1;
rxq->numa_socket_id = socket_id;
rxq->mb_pool = mp;
rxq->rx_buffer_info = rte_zmalloc_socket("rxq->buffer_info",
sizeof(struct ena_rx_buffer) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->rx_buffer_info) {
PMD_DRV_LOG(ERR,
"Failed to allocate memory for Rx buffer info\n");
return -ENOMEM;
}
rxq->rx_refill_buffer = rte_zmalloc_socket("rxq->rx_refill_buffer",
sizeof(struct rte_mbuf *) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->rx_refill_buffer) {
PMD_DRV_LOG(ERR,
"Failed to allocate memory for Rx refill buffer\n");
rte_free(rxq->rx_buffer_info);
rxq->rx_buffer_info = NULL;
return -ENOMEM;
}
rxq->empty_rx_reqs = rte_zmalloc_socket("rxq->empty_rx_reqs",
sizeof(uint16_t) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->empty_rx_reqs) {
PMD_DRV_LOG(ERR,
"Failed to allocate memory for empty Rx requests\n");
rte_free(rxq->rx_buffer_info);
rxq->rx_buffer_info = NULL;
rte_free(rxq->rx_refill_buffer);
rxq->rx_refill_buffer = NULL;
return -ENOMEM;
}
for (i = 0; i < nb_desc; i++)
rxq->empty_rx_reqs[i] = i;
rxq->offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
if (rx_conf->rx_free_thresh != 0) {
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
} else {
dyn_thresh = rxq->ring_size / ENA_REFILL_THRESH_DIVIDER;
rxq->rx_free_thresh = RTE_MIN(dyn_thresh,
(uint16_t)(ENA_REFILL_THRESH_PACKET));
}
/* Store pointer to this queue in upper layer */
rxq->configured = 1;
dev->data->rx_queues[queue_idx] = rxq;
return 0;
}
static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
struct rte_mbuf *mbuf, uint16_t id)
{
struct ena_com_buf ebuf;
int rc;
/* prepare physical address for DMA transaction */
ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
/* pass resource to device */
rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
if (unlikely(rc != 0))
PMD_RX_LOG(WARNING, "Failed adding Rx desc\n");
return rc;
}
static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
{
unsigned int i;
int rc;
uint16_t next_to_use = rxq->next_to_use;
uint16_t req_id;
#ifdef RTE_ETHDEV_DEBUG_RX
uint16_t in_use;
#endif
struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
if (unlikely(!count))
return 0;
#ifdef RTE_ETHDEV_DEBUG_RX
in_use = rxq->ring_size - 1 -
ena_com_free_q_entries(rxq->ena_com_io_sq);
if (unlikely((in_use + count) >= rxq->ring_size))
PMD_RX_LOG(ERR, "Bad Rx ring state\n");
#endif
/* get resources for incoming packets */
rc = rte_pktmbuf_alloc_bulk(rxq->mb_pool, mbufs, count);
if (unlikely(rc < 0)) {
rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
++rxq->rx_stats.mbuf_alloc_fail;
PMD_RX_LOG(DEBUG, "There are not enough free buffers\n");
return 0;
}
for (i = 0; i < count; i++) {
struct rte_mbuf *mbuf = mbufs[i];
struct ena_rx_buffer *rx_info;
if (likely((i + 4) < count))
rte_prefetch0(mbufs[i + 4]);
req_id = rxq->empty_rx_reqs[next_to_use];
rx_info = &rxq->rx_buffer_info[req_id];
rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
if (unlikely(rc != 0))
break;
rx_info->mbuf = mbuf;
next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
}
if (unlikely(i < count)) {
PMD_RX_LOG(WARNING,
"Refilled Rx queue[%d] with only %d/%d buffers\n",
rxq->id, i, count);
rte_pktmbuf_free_bulk(&mbufs[i], count - i);
++rxq->rx_stats.refill_partial;
}
/* When we submitted free resources to device... */
if (likely(i > 0)) {
/* ...let HW know that it can fill buffers with data. */
ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
rxq->next_to_use = next_to_use;
}
return i;
}
static int ena_device_init(struct ena_adapter *adapter,
struct rte_pci_device *pdev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
struct ena_com_dev *ena_dev = &adapter->ena_dev;
uint32_t aenq_groups;
int rc;
bool readless_supported;
/* Initialize mmio registers */
rc = ena_com_mmio_reg_read_request_init(ena_dev);
if (rc) {
PMD_DRV_LOG(ERR, "Failed to init MMIO read less\n");
return rc;
}
/* The PCIe configuration space revision id indicate if mmio reg
* read is disabled.
*/
readless_supported = !(pdev->id.class_id & ENA_MMIO_DISABLE_REG_READ);
ena_com_set_mmio_read_mode(ena_dev, readless_supported);
/* reset device */
rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
if (rc) {
PMD_DRV_LOG(ERR, "Cannot reset device\n");
goto err_mmio_read_less;
}
/* check FW version */
rc = ena_com_validate_version(ena_dev);
if (rc) {
PMD_DRV_LOG(ERR, "Device version is too low\n");
goto err_mmio_read_less;
}
ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
/* ENA device administration layer init */
rc = ena_com_admin_init(ena_dev, &aenq_handlers);
if (rc) {
PMD_DRV_LOG(ERR,
"Cannot initialize ENA admin queue\n");
goto err_mmio_read_less;
}
/* To enable the msix interrupts the driver needs to know the number
* of queues. So the driver uses polling mode to retrieve this
* information.
*/
ena_com_set_admin_polling_mode(ena_dev, true);
ena_config_host_info(ena_dev);
/* Get Device Attributes and features */
rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
if (rc) {
PMD_DRV_LOG(ERR,
"Cannot get attribute for ENA device, rc: %d\n", rc);
goto err_admin_init;
}
aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
BIT(ENA_ADMIN_NOTIFICATION) |
BIT(ENA_ADMIN_KEEP_ALIVE) |
BIT(ENA_ADMIN_FATAL_ERROR) |
BIT(ENA_ADMIN_WARNING);
aenq_groups &= get_feat_ctx->aenq.supported_groups;
adapter->all_aenq_groups = aenq_groups;
return 0;
err_admin_init:
ena_com_admin_destroy(ena_dev);
err_mmio_read_less:
ena_com_mmio_reg_read_request_destroy(ena_dev);
return rc;
}
static void ena_interrupt_handler_rte(void *cb_arg)
{
struct rte_eth_dev *dev = cb_arg;
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
ena_com_admin_q_comp_intr_handler(ena_dev);
if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
ena_com_aenq_intr_handler(ena_dev, dev);
}
static void check_for_missing_keep_alive(struct ena_adapter *adapter)
{
if (!(adapter->active_aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)))
return;
if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
return;
if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
adapter->keep_alive_timeout)) {
PMD_DRV_LOG(ERR, "Keep alive timeout\n");
ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
++adapter->dev_stats.wd_expired;
}
}
/* Check if admin queue is enabled */
static void check_for_admin_com_state(struct ena_adapter *adapter)
{
if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
PMD_DRV_LOG(ERR, "ENA admin queue is not in running state\n");
ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
}
}
static int check_for_tx_completion_in_queue(struct ena_adapter *adapter,
struct ena_ring *tx_ring)
{
struct ena_tx_buffer *tx_buf;
uint64_t timestamp;
uint64_t completion_delay;
uint32_t missed_tx = 0;
unsigned int i;
int rc = 0;
for (i = 0; i < tx_ring->ring_size; ++i) {
tx_buf = &tx_ring->tx_buffer_info[i];
timestamp = tx_buf->timestamp;
if (timestamp == 0)
continue;
completion_delay = rte_get_timer_cycles() - timestamp;
if (completion_delay > adapter->missing_tx_completion_to) {
if (unlikely(!tx_buf->print_once)) {
PMD_TX_LOG(WARNING,
"Found a Tx that wasn't completed on time, qid %d, index %d. "
"Missing Tx outstanding for %" PRIu64 " msecs.\n",
tx_ring->id, i, completion_delay /
rte_get_timer_hz() * 1000);
tx_buf->print_once = true;
}
++missed_tx;
}
}
if (unlikely(missed_tx > tx_ring->missing_tx_completion_threshold)) {
PMD_DRV_LOG(ERR,
"The number of lost Tx completions is above the threshold (%d > %d). "
"Trigger the device reset.\n",
missed_tx,
tx_ring->missing_tx_completion_threshold);
adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL;
adapter->trigger_reset = true;
rc = -EIO;
}
tx_ring->tx_stats.missed_tx += missed_tx;
return rc;
}
static void check_for_tx_completions(struct ena_adapter *adapter)
{
struct ena_ring *tx_ring;
uint64_t tx_cleanup_delay;
size_t qid;
int budget;
uint16_t nb_tx_queues = adapter->edev_data->nb_tx_queues;
if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
return;
nb_tx_queues = adapter->edev_data->nb_tx_queues;
budget = adapter->missing_tx_completion_budget;
qid = adapter->last_tx_comp_qid;
while (budget-- > 0) {
tx_ring = &adapter->tx_ring[qid];
/* Tx cleanup is called only by the burst function and can be
* called dynamically by the application. Also cleanup is
* limited by the threshold. To avoid false detection of the
* missing HW Tx completion, get the delay since last cleanup
* function was called.
*/
tx_cleanup_delay = rte_get_timer_cycles() -
tx_ring->last_cleanup_ticks;
if (tx_cleanup_delay < adapter->tx_cleanup_stall_delay)
check_for_tx_completion_in_queue(adapter, tx_ring);
qid = (qid + 1) % nb_tx_queues;
}
adapter->last_tx_comp_qid = qid;
}
static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
void *arg)
{
struct rte_eth_dev *dev = arg;
struct ena_adapter *adapter = dev->data->dev_private;
if (unlikely(adapter->trigger_reset))
return;
check_for_missing_keep_alive(adapter);
check_for_admin_com_state(adapter);
check_for_tx_completions(adapter);
if (unlikely(adapter->trigger_reset)) {
PMD_DRV_LOG(ERR, "Trigger reset is on\n");
rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
NULL);
}
}
static inline void
set_default_llq_configurations(struct ena_llq_configurations *llq_config,
struct ena_admin_feature_llq_desc *llq,
bool use_large_llq_hdr)
{
llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
llq_config->llq_num_decs_before_header =
ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
if (use_large_llq_hdr &&
(llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
llq_config->llq_ring_entry_size =
ENA_ADMIN_LIST_ENTRY_SIZE_256B;
llq_config->llq_ring_entry_size_value = 256;
} else {
llq_config->llq_ring_entry_size =
ENA_ADMIN_LIST_ENTRY_SIZE_128B;
llq_config->llq_ring_entry_size_value = 128;
}
}
static int
ena_set_queues_placement_policy(struct ena_adapter *adapter,
struct ena_com_dev *ena_dev,
struct ena_admin_feature_llq_desc *llq,
struct ena_llq_configurations *llq_default_configurations)
{
int rc;
u32 llq_feature_mask;
if (!adapter->enable_llq) {
PMD_DRV_LOG(WARNING,
"NOTE: LLQ has been disabled as per user's request. "
"This may lead to a huge performance degradation!\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
llq_feature_mask = 1 << ENA_ADMIN_LLQ;
if (!(ena_dev->supported_features & llq_feature_mask)) {
PMD_DRV_LOG(INFO,
"LLQ is not supported. Fallback to host mode policy.\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
if (adapter->dev_mem_base == NULL) {
PMD_DRV_LOG(ERR,
"LLQ is advertised as supported, but device doesn't expose mem bar\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
if (unlikely(rc)) {
PMD_INIT_LOG(WARNING,
"Failed to config dev mode. Fallback to host mode policy.\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
/* Nothing to config, exit */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
return 0;
ena_dev->mem_bar = adapter->dev_mem_base;
return 0;
}
static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
/* Regular queues capabilities */
if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
struct ena_admin_queue_ext_feature_fields *max_queue_ext =
&get_feat_ctx->max_queue_ext.max_queue_ext;
io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
max_queue_ext->max_rx_cq_num);
io_tx_sq_num = max_queue_ext->max_tx_sq_num;
io_tx_cq_num = max_queue_ext->max_tx_cq_num;
} else {
struct ena_admin_queue_feature_desc *max_queues =
&get_feat_ctx->max_queues;
io_tx_sq_num = max_queues->max_sq_num;
io_tx_cq_num = max_queues->max_cq_num;
io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
}
/* In case of LLQ use the llq number in the get feature cmd */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
if (unlikely(max_num_io_queues == 0)) {
PMD_DRV_LOG(ERR, "Number of IO queues cannot not be 0\n");
return -EFAULT;
}
return max_num_io_queues;
}
static void
ena_set_offloads(struct ena_offloads *offloads,
struct ena_admin_feature_offload_desc *offload_desc)
{
if (offload_desc->tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
offloads->tx_offloads |= ENA_IPV4_TSO;
/* Tx IPv4 checksum offloads */
if (offload_desc->tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)
offloads->tx_offloads |= ENA_L3_IPV4_CSUM;
if (offload_desc->tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK)
offloads->tx_offloads |= ENA_L4_IPV4_CSUM;
if (offload_desc->tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
offloads->tx_offloads |= ENA_L4_IPV4_CSUM_PARTIAL;
/* Tx IPv6 checksum offloads */
if (offload_desc->tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK)
offloads->tx_offloads |= ENA_L4_IPV6_CSUM;
if (offload_desc->tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
offloads->tx_offloads |= ENA_L4_IPV6_CSUM_PARTIAL;
/* Rx IPv4 checksum offloads */
if (offload_desc->rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)
offloads->rx_offloads |= ENA_L3_IPV4_CSUM;
if (offload_desc->rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
offloads->rx_offloads |= ENA_L4_IPV4_CSUM;
/* Rx IPv6 checksum offloads */
if (offload_desc->rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
offloads->rx_offloads |= ENA_L4_IPV6_CSUM;
if (offload_desc->rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_HASH_MASK)
offloads->rx_offloads |= ENA_RX_RSS_HASH;
}
static int ena_init_once(void)
{
static bool init_done;
if (init_done)
return 0;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* Init timer subsystem for the ENA timer service. */
rte_timer_subsystem_init();
/* Register handler for requests from secondary processes. */
rte_mp_action_register(ENA_MP_NAME, ena_mp_primary_handle);
}
init_done = true;
return 0;
}
static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
{
struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
struct rte_pci_device *pci_dev;
struct rte_intr_handle *intr_handle;
struct ena_adapter *adapter = eth_dev->data->dev_private;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
struct ena_com_dev_get_features_ctx get_feat_ctx;
struct ena_llq_configurations llq_config;
const char *queue_type_str;
uint32_t max_num_io_queues;
int rc;
static int adapters_found;
bool disable_meta_caching;
eth_dev->dev_ops = &ena_dev_ops;
eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
rc = ena_init_once();
if (rc != 0)
return rc;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
memset(adapter, 0, sizeof(struct ena_adapter));
ena_dev = &adapter->ena_dev;
adapter->edev_data = eth_dev->data;
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
pci_dev->addr.domain,
pci_dev->addr.bus,
pci_dev->addr.devid,
pci_dev->addr.function);
intr_handle = pci_dev->intr_handle;
adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
if (!adapter->regs) {
PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
ENA_REGS_BAR);
return -ENXIO;
}
ena_dev->reg_bar = adapter->regs;
/* Pass device data as a pointer which can be passed to the IO functions
* by the ena_com (for example - the memory allocation).
*/
ena_dev->dmadev = eth_dev->data;
adapter->id_number = adapters_found;
snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
adapter->id_number);
/* Assign default devargs values */
adapter->missing_tx_completion_to = ENA_TX_TIMEOUT;
adapter->enable_llq = true;
adapter->use_large_llq_hdr = false;
rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
if (rc != 0) {
PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
goto err;
}
/* device specific initialization routine */
rc = ena_device_init(adapter, pci_dev, &get_feat_ctx);
if (rc) {
PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
goto err;
}
/* Check if device supports LSC */
if (!(adapter->all_aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE)))
adapter->edev_data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
adapter->use_large_llq_hdr);
rc = ena_set_queues_placement_policy(adapter, ena_dev,
&get_feat_ctx.llq, &llq_config);
if (unlikely(rc)) {
PMD_INIT_LOG(CRIT, "Failed to set placement policy\n");
return rc;
}
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
queue_type_str = "Regular";
else
queue_type_str = "Low latency";
PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
calc_queue_ctx.ena_dev = ena_dev;
calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
rc = ena_calc_io_queue_size(&calc_queue_ctx,
adapter->use_large_llq_hdr);
if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
rc = -EFAULT;
goto err_device_destroy;
}
adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
adapter->max_num_io_queues = max_num_io_queues;
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
disable_meta_caching =
!!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
BIT(ENA_ADMIN_DISABLE_META_CACHING));
} else {
disable_meta_caching = false;
}
/* prepare ring structures */
ena_init_rings(adapter, disable_meta_caching);
ena_config_debug_area(adapter);
/* Set max MTU for this device */
adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
ena_set_offloads(&adapter->offloads, &get_feat_ctx.offload);
/* Copy MAC address and point DPDK to it */
eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
rte_ether_addr_copy((struct rte_ether_addr *)
get_feat_ctx.dev_attr.mac_addr,
(struct rte_ether_addr *)adapter->mac_addr);
rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
if (unlikely(rc != 0)) {
PMD_DRV_LOG(ERR, "Failed to initialize RSS in ENA device\n");
goto err_delete_debug_area;
}
adapter->drv_stats = rte_zmalloc("adapter stats",
sizeof(*adapter->drv_stats),
RTE_CACHE_LINE_SIZE);
if (!adapter->drv_stats) {
PMD_DRV_LOG(ERR,
"Failed to allocate memory for adapter statistics\n");
rc = -ENOMEM;
goto err_rss_destroy;
}
rte_spinlock_init(&adapter->admin_lock);
rte_intr_callback_register(intr_handle,
ena_interrupt_handler_rte,
eth_dev);
rte_intr_enable(intr_handle);
ena_com_set_admin_polling_mode(ena_dev, false);
ena_com_admin_aenq_enable(ena_dev);
rte_timer_init(&adapter->timer_wd);
adapters_found++;
adapter->state = ENA_ADAPTER_STATE_INIT;
return 0;
err_rss_destroy:
ena_com_rss_destroy(ena_dev);
err_delete_debug_area:
ena_com_delete_debug_area(ena_dev);
err_device_destroy:
ena_com_delete_host_info(ena_dev);
ena_com_admin_destroy(ena_dev);
err:
return rc;
}
static void ena_destroy_device(struct rte_eth_dev *eth_dev)
{
struct ena_adapter *adapter = eth_dev->data->dev_private;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
if (adapter->state == ENA_ADAPTER_STATE_FREE)
return;
ena_com_set_admin_running_state(ena_dev, false);
if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
ena_close(eth_dev);
ena_com_rss_destroy(ena_dev);
ena_com_delete_debug_area(ena_dev);
ena_com_delete_host_info(ena_dev);
ena_com_abort_admin_commands(ena_dev);
ena_com_wait_for_abort_completion(ena_dev);
ena_com_admin_destroy(ena_dev);
ena_com_mmio_reg_read_request_destroy(ena_dev);
adapter->state = ENA_ADAPTER_STATE_FREE;
}
static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
{
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
ena_destroy_device(eth_dev);
return 0;
}
static int ena_dev_configure(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter = dev->data->dev_private;
int rc;
adapter->state = ENA_ADAPTER_STATE_CONFIG;
if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
dev->data->dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
/* Scattered Rx cannot be turned off in the HW, so this capability must
* be forced.
*/
dev->data->scattered_rx = 1;
adapter->last_tx_comp_qid = 0;
adapter->missing_tx_completion_budget =
RTE_MIN(ENA_MONITORED_TX_QUEUES, dev->data->nb_tx_queues);
/* To avoid detection of the spurious Tx completion timeout due to
* application not calling the Tx cleanup function, set timeout for the
* Tx queue which should be half of the missing completion timeout for a
* safety. If there will be a lot of missing Tx completions in the
* queue, they will be detected sooner or later.
*/
adapter->tx_cleanup_stall_delay = adapter->missing_tx_completion_to / 2;
rc = ena_configure_aenq(adapter);
return rc;
}
static void ena_init_rings(struct ena_adapter *adapter,
bool disable_meta_caching)
{
size_t i;
for (i = 0; i < adapter->max_num_io_queues; i++) {
struct ena_ring *ring = &adapter->tx_ring[i];
ring->configured = 0;
ring->type = ENA_RING_TYPE_TX;
ring->adapter = adapter;
ring->id = i;
ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
ring->sgl_size = adapter->max_tx_sgl_size;
ring->disable_meta_caching = disable_meta_caching;
}
for (i = 0; i < adapter->max_num_io_queues; i++) {
struct ena_ring *ring = &adapter->rx_ring[i];
ring->configured = 0;
ring->type = ENA_RING_TYPE_RX;
ring->adapter = adapter;
ring->id = i;
ring->sgl_size = adapter->max_rx_sgl_size;
}
}
static uint64_t ena_get_rx_port_offloads(struct ena_adapter *adapter)
{
uint64_t port_offloads = 0;
if (adapter->offloads.rx_offloads & ENA_L3_IPV4_CSUM)
port_offloads |= RTE_ETH_RX_OFFLOAD_IPV4_CKSUM;
if (adapter->offloads.rx_offloads &
(ENA_L4_IPV4_CSUM | ENA_L4_IPV6_CSUM))
port_offloads |=
RTE_ETH_RX_OFFLOAD_UDP_CKSUM | RTE_ETH_RX_OFFLOAD_TCP_CKSUM;
if (adapter->offloads.rx_offloads & ENA_RX_RSS_HASH)
port_offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
port_offloads |= RTE_ETH_RX_OFFLOAD_SCATTER;
return port_offloads;
}
static uint64_t ena_get_tx_port_offloads(struct ena_adapter *adapter)
{
uint64_t port_offloads = 0;
if (adapter->offloads.tx_offloads & ENA_IPV4_TSO)
port_offloads |= RTE_ETH_TX_OFFLOAD_TCP_TSO;
if (adapter->offloads.tx_offloads & ENA_L3_IPV4_CSUM)
port_offloads |= RTE_ETH_TX_OFFLOAD_IPV4_CKSUM;
if (adapter->offloads.tx_offloads &
(ENA_L4_IPV4_CSUM_PARTIAL | ENA_L4_IPV4_CSUM |
ENA_L4_IPV6_CSUM | ENA_L4_IPV6_CSUM_PARTIAL))
port_offloads |=
RTE_ETH_TX_OFFLOAD_UDP_CKSUM | RTE_ETH_TX_OFFLOAD_TCP_CKSUM;
port_offloads |= RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
port_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
return port_offloads;
}
static uint64_t ena_get_rx_queue_offloads(struct ena_adapter *adapter)
{
RTE_SET_USED(adapter);
return 0;
}
static uint64_t ena_get_tx_queue_offloads(struct ena_adapter *adapter)
{
uint64_t queue_offloads = 0;
RTE_SET_USED(adapter);
queue_offloads |= RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
return queue_offloads;
}
static int ena_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
adapter = dev->data->dev_private;
ena_dev = &adapter->ena_dev;
ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
dev_info->speed_capa =
RTE_ETH_LINK_SPEED_1G |
RTE_ETH_LINK_SPEED_2_5G |
RTE_ETH_LINK_SPEED_5G |
RTE_ETH_LINK_SPEED_10G |
RTE_ETH_LINK_SPEED_25G |
RTE_ETH_LINK_SPEED_40G |
RTE_ETH_LINK_SPEED_50G |
RTE_ETH_LINK_SPEED_100G;
/* Inform framework about available features */
dev_info->rx_offload_capa = ena_get_rx_port_offloads(adapter);
dev_info->tx_offload_capa = ena_get_tx_port_offloads(adapter);
dev_info->rx_queue_offload_capa = ena_get_rx_queue_offloads(adapter);
dev_info->tx_queue_offload_capa = ena_get_tx_queue_offloads(adapter);
dev_info->flow_type_rss_offloads = ENA_ALL_RSS_HF;
dev_info->hash_key_size = ENA_HASH_KEY_SIZE;
dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
dev_info->max_rx_pktlen = adapter->max_mtu + RTE_ETHER_HDR_LEN +
RTE_ETHER_CRC_LEN;
dev_info->min_mtu = ENA_MIN_MTU;
dev_info->max_mtu = adapter->max_mtu;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_queues = adapter->max_num_io_queues;
dev_info->max_tx_queues = adapter->max_num_io_queues;
dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_rx_sgl_size);
dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_rx_sgl_size);
dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_tx_sgl_size);
dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
adapter->max_tx_sgl_size);
dev_info->default_rxportconf.ring_size = ENA_DEFAULT_RING_SIZE;
dev_info->default_txportconf.ring_size = ENA_DEFAULT_RING_SIZE;
dev_info->err_handle_mode = RTE_ETH_ERROR_HANDLE_MODE_PASSIVE;
return 0;
}
static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
{
mbuf->data_len = len;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->refcnt = 1;
mbuf->next = NULL;
}
static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
struct ena_com_rx_buf_info *ena_bufs,
uint32_t descs,
uint16_t *next_to_clean,
uint8_t offset)
{
struct rte_mbuf *mbuf;
struct rte_mbuf *mbuf_head;
struct ena_rx_buffer *rx_info;
int rc;
uint16_t ntc, len, req_id, buf = 0;
if (unlikely(descs == 0))
return NULL;
ntc = *next_to_clean;
len = ena_bufs[buf].len;
req_id = ena_bufs[buf].req_id;
rx_info = &rx_ring->rx_buffer_info[req_id];
mbuf = rx_info->mbuf;
RTE_ASSERT(mbuf != NULL);
ena_init_rx_mbuf(mbuf, len);
/* Fill the mbuf head with the data specific for 1st segment. */
mbuf_head = mbuf;
mbuf_head->nb_segs = descs;
mbuf_head->port = rx_ring->port_id;
mbuf_head->pkt_len = len;
mbuf_head->data_off += offset;
rx_info->mbuf = NULL;
rx_ring->empty_rx_reqs[ntc] = req_id;
ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
while (--descs) {
++buf;
len = ena_bufs[buf].len;
req_id = ena_bufs[buf].req_id;
rx_info = &rx_ring->rx_buffer_info[req_id];
RTE_ASSERT(rx_info->mbuf != NULL);
if (unlikely(len == 0)) {
/*
* Some devices can pass descriptor with the length 0.
* To avoid confusion, the PMD is simply putting the
* descriptor back, as it was never used. We'll avoid
* mbuf allocation that way.
*/
rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
rx_info->mbuf, req_id);
if (unlikely(rc != 0)) {
/* Free the mbuf in case of an error. */
rte_mbuf_raw_free(rx_info->mbuf);
} else {
/*
* If there was no error, just exit the loop as
* 0 length descriptor is always the last one.
*/
break;
}
} else {
/* Create an mbuf chain. */
mbuf->next = rx_info->mbuf;
mbuf = mbuf->next;
ena_init_rx_mbuf(mbuf, len);
mbuf_head->pkt_len += len;
}
/*
* Mark the descriptor as depleted and perform necessary
* cleanup.
* This code will execute in two cases:
* 1. Descriptor len was greater than 0 - normal situation.
* 2. Descriptor len was 0 and we failed to add the descriptor
* to the device. In that situation, we should try to add
* the mbuf again in the populate routine and mark the
* descriptor as used up by the device.
*/
rx_info->mbuf = NULL;
rx_ring->empty_rx_reqs[ntc] = req_id;
ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
}
*next_to_clean = ntc;
return mbuf_head;
}
static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
unsigned int free_queue_entries;
uint16_t next_to_clean = rx_ring->next_to_clean;
uint16_t descs_in_use;
struct rte_mbuf *mbuf;
uint16_t completed;
struct ena_com_rx_ctx ena_rx_ctx;
int i, rc = 0;
bool fill_hash;
#ifdef RTE_ETHDEV_DEBUG_RX
/* Check adapter state */
if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
PMD_RX_LOG(ALERT,
"Trying to receive pkts while device is NOT running\n");
return 0;
}
#endif
fill_hash = rx_ring->offloads & RTE_ETH_RX_OFFLOAD_RSS_HASH;
descs_in_use = rx_ring->ring_size -
ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
for (completed = 0; completed < nb_pkts; completed++) {
ena_rx_ctx.max_bufs = rx_ring->sgl_size;
ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
ena_rx_ctx.descs = 0;
ena_rx_ctx.pkt_offset = 0;
/* receive packet context */
rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
rx_ring->ena_com_io_sq,
&ena_rx_ctx);
if (unlikely(rc)) {
PMD_RX_LOG(ERR,
"Failed to get the packet from the device, rc: %d\n",
rc);
if (rc == ENA_COM_NO_SPACE) {
++rx_ring->rx_stats.bad_desc_num;
ena_trigger_reset(rx_ring->adapter,
ENA_REGS_RESET_TOO_MANY_RX_DESCS);
} else {
++rx_ring->rx_stats.bad_req_id;
ena_trigger_reset(rx_ring->adapter,
ENA_REGS_RESET_INV_RX_REQ_ID);
}
return 0;
}
mbuf = ena_rx_mbuf(rx_ring,
ena_rx_ctx.ena_bufs,
ena_rx_ctx.descs,
&next_to_clean,
ena_rx_ctx.pkt_offset);
if (unlikely(mbuf == NULL)) {
for (i = 0; i < ena_rx_ctx.descs; ++i) {
rx_ring->empty_rx_reqs[next_to_clean] =
rx_ring->ena_bufs[i].req_id;
next_to_clean = ENA_IDX_NEXT_MASKED(
next_to_clean, rx_ring->size_mask);
}
break;
}
/* fill mbuf attributes if any */
ena_rx_mbuf_prepare(rx_ring, mbuf, &ena_rx_ctx, fill_hash);
if (unlikely(mbuf->ol_flags &
(RTE_MBUF_F_RX_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD)))
rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
rx_pkts[completed] = mbuf;
rx_ring->rx_stats.bytes += mbuf->pkt_len;
}
rx_ring->rx_stats.cnt += completed;
rx_ring->next_to_clean = next_to_clean;
free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
/* Burst refill to save doorbells, memory barriers, const interval */
if (free_queue_entries >= rx_ring->rx_free_thresh) {
ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
ena_populate_rx_queue(rx_ring, free_queue_entries);
}
return completed;
}
static uint16_t
eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int32_t ret;
uint32_t i;
struct rte_mbuf *m;
struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
struct ena_adapter *adapter = tx_ring->adapter;
struct rte_ipv4_hdr *ip_hdr;
uint64_t ol_flags;
uint64_t l4_csum_flag;
uint64_t dev_offload_capa;
uint16_t frag_field;
bool need_pseudo_csum;
dev_offload_capa = adapter->offloads.tx_offloads;
for (i = 0; i != nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
/* Check if any offload flag was set */
if (ol_flags == 0)
continue;
l4_csum_flag = ol_flags & RTE_MBUF_F_TX_L4_MASK;
/* SCTP checksum offload is not supported by the ENA. */
if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) ||
l4_csum_flag == RTE_MBUF_F_TX_SCTP_CKSUM) {
PMD_TX_LOG(DEBUG,
"mbuf[%" PRIu32 "] has unsupported offloads flags set: 0x%" PRIu64 "\n",
i, ol_flags);
rte_errno = ENOTSUP;
return i;
}
if (unlikely(m->nb_segs >= tx_ring->sgl_size &&
!(tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
m->nb_segs == tx_ring->sgl_size &&
m->data_len < tx_ring->tx_max_header_size))) {
PMD_TX_LOG(DEBUG,
"mbuf[%" PRIu32 "] has too many segments: %" PRIu16 "\n",
i, m->nb_segs);
rte_errno = EINVAL;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
/* Check if requested offload is also enabled for the queue */
if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
!(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM)) ||
(l4_csum_flag == RTE_MBUF_F_TX_TCP_CKSUM &&
!(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM)) ||
(l4_csum_flag == RTE_MBUF_F_TX_UDP_CKSUM &&
!(tx_ring->offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM))) {
PMD_TX_LOG(DEBUG,
"mbuf[%" PRIu32 "]: requested offloads: %" PRIu16 " are not enabled for the queue[%u]\n",
i, m->nb_segs, tx_ring->id);
rte_errno = EINVAL;
return i;
}
/* The caller is obligated to set l2 and l3 len if any cksum
* offload is enabled.
*/
if (unlikely(ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_L4_MASK) &&
(m->l2_len == 0 || m->l3_len == 0))) {
PMD_TX_LOG(DEBUG,
"mbuf[%" PRIu32 "]: l2_len or l3_len values are 0 while the offload was requested\n",
i);
rte_errno = EINVAL;
return i;
}
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
/* Verify HW support for requested offloads and determine if
* pseudo header checksum is needed.
*/
need_pseudo_csum = false;
if (ol_flags & RTE_MBUF_F_TX_IPV4) {
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM &&
!(dev_offload_capa & ENA_L3_IPV4_CSUM)) {
rte_errno = ENOTSUP;
return i;
}
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
!(dev_offload_capa & ENA_IPV4_TSO)) {
rte_errno = ENOTSUP;
return i;
}
/* Check HW capabilities and if pseudo csum is needed
* for L4 offloads.
*/
if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
!(dev_offload_capa & ENA_L4_IPV4_CSUM)) {
if (dev_offload_capa &
ENA_L4_IPV4_CSUM_PARTIAL) {
need_pseudo_csum = true;
} else {
rte_errno = ENOTSUP;
return i;
}
}
/* Parse the DF flag */
ip_hdr = rte_pktmbuf_mtod_offset(m,
struct rte_ipv4_hdr *, m->l2_len);
frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
if (frag_field & RTE_IPV4_HDR_DF_FLAG) {
m->packet_type |= RTE_PTYPE_L4_NONFRAG;
} else if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
/* In case we are supposed to TSO and have DF
* not set (DF=0) hardware must be provided with
* partial checksum.
*/
need_pseudo_csum = true;
}
} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
/* There is no support for IPv6 TSO as for now. */
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
rte_errno = ENOTSUP;
return i;
}
/* Check HW capabilities and if pseudo csum is needed */
if (l4_csum_flag != RTE_MBUF_F_TX_L4_NO_CKSUM &&
!(dev_offload_capa & ENA_L4_IPV6_CSUM)) {
if (dev_offload_capa &
ENA_L4_IPV6_CSUM_PARTIAL) {
need_pseudo_csum = true;
} else {
rte_errno = ENOTSUP;
return i;
}
}
}
if (need_pseudo_csum) {
ret = rte_net_intel_cksum_flags_prepare(m, ol_flags);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
}
return i;
}
static void ena_update_hints(struct ena_adapter *adapter,
struct ena_admin_ena_hw_hints *hints)
{
if (hints->admin_completion_tx_timeout)
adapter->ena_dev.admin_queue.completion_timeout =
hints->admin_completion_tx_timeout * 1000;
if (hints->mmio_read_timeout)
/* convert to usec */
adapter->ena_dev.mmio_read.reg_read_to =
hints->mmio_read_timeout * 1000;
if (hints->driver_watchdog_timeout) {
if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
else
// Convert msecs to ticks
adapter->keep_alive_timeout =
(hints->driver_watchdog_timeout *
rte_get_timer_hz()) / 1000;
}
}
static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
struct ena_tx_buffer *tx_info,
struct rte_mbuf *mbuf,
void **push_header,
uint16_t *header_len)
{
struct ena_com_buf *ena_buf;
uint16_t delta, seg_len, push_len;
delta = 0;
seg_len = mbuf->data_len;
tx_info->mbuf = mbuf;
ena_buf = tx_info->bufs;
if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
/*
* Tx header might be (and will be in most cases) smaller than
* tx_max_header_size. But it's not an issue to send more data
* to the device, than actually needed if the mbuf size is
* greater than tx_max_header_size.
*/
push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
*header_len = push_len;
if (likely(push_len <= seg_len)) {
/* If the push header is in the single segment, then
* just point it to the 1st mbuf data.
*/
*push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
} else {
/* If the push header lays in the several segments, copy
* it to the intermediate buffer.
*/
rte_pktmbuf_read(mbuf, 0, push_len,
tx_ring->push_buf_intermediate_buf);
*push_header = tx_ring->push_buf_intermediate_buf;
delta = push_len - seg_len;
}
} else {
*push_header = NULL;
*header_len = 0;
push_len = 0;
}
/* Process first segment taking into consideration pushed header */
if (seg_len > push_len) {
ena_buf->paddr = mbuf->buf_iova +
mbuf->data_off +
push_len;
ena_buf->len = seg_len - push_len;
ena_buf++;
tx_info->num_of_bufs++;
}
while ((mbuf = mbuf->next) != NULL) {
seg_len = mbuf->data_len;
/* Skip mbufs if whole data is pushed as a header */
if (unlikely(delta > seg_len)) {
delta -= seg_len;
continue;
}
ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
ena_buf->len = seg_len - delta;
ena_buf++;
tx_info->num_of_bufs++;
delta = 0;
}
}
static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
{
struct ena_tx_buffer *tx_info;
struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
uint16_t next_to_use;
uint16_t header_len;
uint16_t req_id;
void *push_header;
int nb_hw_desc;
int rc;
/* Checking for space for 2 additional metadata descriptors due to
* possible header split and metadata descriptor
*/
if (!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
mbuf->nb_segs + 2)) {
PMD_DRV_LOG(DEBUG, "Not enough space in the tx queue\n");
return ENA_COM_NO_MEM;
}
next_to_use = tx_ring->next_to_use;
req_id = tx_ring->empty_tx_reqs[next_to_use];
tx_info = &tx_ring->tx_buffer_info[req_id];
tx_info->num_of_bufs = 0;
RTE_ASSERT(tx_info->mbuf == NULL);
ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
ena_tx_ctx.ena_bufs = tx_info->bufs;
ena_tx_ctx.push_header = push_header;
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
ena_tx_ctx.req_id = req_id;
ena_tx_ctx.header_len = header_len;
/* Set Tx offloads flags, if applicable */
ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
tx_ring->disable_meta_caching);
if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
&ena_tx_ctx))) {
PMD_TX_LOG(DEBUG,
"LLQ Tx max burst size of queue %d achieved, writing doorbell to send burst\n",
tx_ring->id);
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
tx_ring->tx_stats.doorbells++;
tx_ring->pkts_without_db = false;
}
/* prepare the packet's descriptors to dma engine */
rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
&nb_hw_desc);
if (unlikely(rc)) {
PMD_DRV_LOG(ERR, "Failed to prepare Tx buffers, rc: %d\n", rc);
++tx_ring->tx_stats.prepare_ctx_err;
ena_trigger_reset(tx_ring->adapter,
ENA_REGS_RESET_DRIVER_INVALID_STATE);
return rc;
}
tx_info->tx_descs = nb_hw_desc;
tx_info->timestamp = rte_get_timer_cycles();
tx_ring->tx_stats.cnt++;
tx_ring->tx_stats.bytes += mbuf->pkt_len;
tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
tx_ring->size_mask);
return 0;
}
static __rte_always_inline size_t
ena_tx_cleanup_mbuf_fast(struct rte_mbuf **mbufs_to_clean,
struct rte_mbuf *mbuf,
size_t mbuf_cnt,
size_t buf_size)
{
struct rte_mbuf *m_next;
while (mbuf != NULL) {
m_next = mbuf->next;
mbufs_to_clean[mbuf_cnt++] = mbuf;
if (mbuf_cnt == buf_size) {
rte_mempool_put_bulk(mbufs_to_clean[0]->pool, (void **)mbufs_to_clean,
(unsigned int)mbuf_cnt);
mbuf_cnt = 0;
}
mbuf = m_next;
}
return mbuf_cnt;
}
static int ena_tx_cleanup(void *txp, uint32_t free_pkt_cnt)
{
struct rte_mbuf *mbufs_to_clean[ENA_CLEANUP_BUF_SIZE];
struct ena_ring *tx_ring = (struct ena_ring *)txp;
size_t mbuf_cnt = 0;
unsigned int total_tx_descs = 0;
unsigned int total_tx_pkts = 0;
uint16_t cleanup_budget;
uint16_t next_to_clean = tx_ring->next_to_clean;
bool fast_free = tx_ring->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
/*
* If free_pkt_cnt is equal to 0, it means that the user requested
* full cleanup, so attempt to release all Tx descriptors
* (ring_size - 1 -> size_mask)
*/
cleanup_budget = (free_pkt_cnt == 0) ? tx_ring->size_mask : free_pkt_cnt;
while (likely(total_tx_pkts < cleanup_budget)) {
struct rte_mbuf *mbuf;
struct ena_tx_buffer *tx_info;
uint16_t req_id;
if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
break;
if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
break;
/* Get Tx info & store how many descs were processed */
tx_info = &tx_ring->tx_buffer_info[req_id];
tx_info->timestamp = 0;
mbuf = tx_info->mbuf;
if (fast_free) {
mbuf_cnt = ena_tx_cleanup_mbuf_fast(mbufs_to_clean, mbuf, mbuf_cnt,
ENA_CLEANUP_BUF_SIZE);
} else {
rte_pktmbuf_free(mbuf);
}
tx_info->mbuf = NULL;
tx_ring->empty_tx_reqs[next_to_clean] = req_id;
total_tx_descs += tx_info->tx_descs;
total_tx_pkts++;
/* Put back descriptor to the ring for reuse */
next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
tx_ring->size_mask);
}
if (likely(total_tx_descs > 0)) {
/* acknowledge completion of sent packets */
tx_ring->next_to_clean = next_to_clean;
ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
}
if (mbuf_cnt != 0)
rte_mempool_put_bulk(mbufs_to_clean[0]->pool,
(void **)mbufs_to_clean, mbuf_cnt);
/* Notify completion handler that full cleanup was performed */
if (free_pkt_cnt == 0 || total_tx_pkts < cleanup_budget)
tx_ring->last_cleanup_ticks = rte_get_timer_cycles();
return total_tx_pkts;
}
static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
int available_desc;
uint16_t sent_idx = 0;
#ifdef RTE_ETHDEV_DEBUG_TX
/* Check adapter state */
if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
PMD_TX_LOG(ALERT,
"Trying to xmit pkts while device is NOT running\n");
return 0;
}
#endif
available_desc = ena_com_free_q_entries(tx_ring->ena_com_io_sq);
if (available_desc < tx_ring->tx_free_thresh)
ena_tx_cleanup((void *)tx_ring, 0);
for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
break;
tx_ring->pkts_without_db = true;
rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
tx_ring->size_mask)]);
}
/* If there are ready packets to be xmitted... */
if (likely(tx_ring->pkts_without_db)) {
/* ...let HW do its best :-) */
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
tx_ring->tx_stats.doorbells++;
tx_ring->pkts_without_db = false;
}
tx_ring->tx_stats.available_desc =
ena_com_free_q_entries(tx_ring->ena_com_io_sq);
tx_ring->tx_stats.tx_poll++;
return sent_idx;
}
int ena_copy_eni_stats(struct ena_adapter *adapter, struct ena_stats_eni *stats)
{
int rc;
rte_spinlock_lock(&adapter->admin_lock);
/* Retrieve and store the latest statistics from the AQ. This ensures
* that previous value is returned in case of a com error.
*/
rc = ENA_PROXY(adapter, ena_com_get_eni_stats, &adapter->ena_dev,
(struct ena_admin_eni_stats *)stats);
rte_spinlock_unlock(&adapter->admin_lock);
if (rc != 0) {
if (rc == ENA_COM_UNSUPPORTED) {
PMD_DRV_LOG(DEBUG,
"Retrieving ENI metrics is not supported\n");
} else {
PMD_DRV_LOG(WARNING,
"Failed to get ENI metrics, rc: %d\n", rc);
}
return rc;
}
return 0;
}
/**
* DPDK callback to retrieve names of extended device statistics
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] xstats_names
* Buffer to insert names into.
* @param n
* Number of names.
*
* @return
* Number of xstats names.
*/
static int ena_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned int n)
{
unsigned int xstats_count = ena_xstats_calc_num(dev->data);
unsigned int stat, i, count = 0;
if (n < xstats_count || !xstats_names)
return xstats_count;
for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
strcpy(xstats_names[count].name,
ena_stats_global_strings[stat].name);
for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++)
strcpy(xstats_names[count].name,
ena_stats_eni_strings[stat].name);
for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"rx_q%d_%s", i,
ena_stats_rx_strings[stat].name);
for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"tx_q%d_%s", i,
ena_stats_tx_strings[stat].name);
return xstats_count;
}
/**
* DPDK callback to retrieve names of extended device statistics for the given
* ids.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] xstats_names
* Buffer to insert names into.
* @param ids
* IDs array for which the names should be retrieved.
* @param size
* Number of ids.
*
* @return
* Positive value: number of xstats names. Negative value: error code.
*/
static int ena_xstats_get_names_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
struct rte_eth_xstat_name *xstats_names,
unsigned int size)
{
uint64_t xstats_count = ena_xstats_calc_num(dev->data);
uint64_t id, qid;
unsigned int i;
if (xstats_names == NULL)
return xstats_count;
for (i = 0; i < size; ++i) {
id = ids[i];
if (id > xstats_count) {
PMD_DRV_LOG(ERR,
"ID value out of range: id=%" PRIu64 ", xstats_num=%" PRIu64 "\n",
id, xstats_count);
return -EINVAL;
}
if (id < ENA_STATS_ARRAY_GLOBAL) {
strcpy(xstats_names[i].name,
ena_stats_global_strings[id].name);
continue;
}
id -= ENA_STATS_ARRAY_GLOBAL;
if (id < ENA_STATS_ARRAY_ENI) {
strcpy(xstats_names[i].name,
ena_stats_eni_strings[id].name);
continue;
}
id -= ENA_STATS_ARRAY_ENI;
if (id < ENA_STATS_ARRAY_RX) {
qid = id / dev->data->nb_rx_queues;
id %= dev->data->nb_rx_queues;
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"rx_q%" PRIu64 "d_%s",
qid, ena_stats_rx_strings[id].name);
continue;
}
id -= ENA_STATS_ARRAY_RX;
/* Although this condition is not needed, it was added for
* compatibility if new xstat structure would be ever added.
*/
if (id < ENA_STATS_ARRAY_TX) {
qid = id / dev->data->nb_tx_queues;
id %= dev->data->nb_tx_queues;
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"tx_q%" PRIu64 "_%s",
qid, ena_stats_tx_strings[id].name);
continue;
}
}
return i;
}
/**
* DPDK callback to get extended device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] stats
* Stats table output buffer.
* @param n
* The size of the stats table.
*
* @return
* Number of xstats on success, negative on failure.
*/
static int ena_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats,
unsigned int n)
{
struct ena_adapter *adapter = dev->data->dev_private;
unsigned int xstats_count = ena_xstats_calc_num(dev->data);
struct ena_stats_eni eni_stats;
unsigned int stat, i, count = 0;
int stat_offset;
void *stats_begin;
if (n < xstats_count)
return xstats_count;
if (!xstats)
return 0;
for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
stat_offset = ena_stats_global_strings[stat].stat_offset;
stats_begin = &adapter->dev_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
/* Even if the function below fails, we should copy previous (or initial
* values) to keep structure of rte_eth_xstat consistent.
*/
ena_copy_eni_stats(adapter, &eni_stats);
for (stat = 0; stat < ENA_STATS_ARRAY_ENI; stat++, count++) {
stat_offset = ena_stats_eni_strings[stat].stat_offset;
stats_begin = &eni_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
stat_offset = ena_stats_rx_strings[stat].stat_offset;
stats_begin = &adapter->rx_ring[i].rx_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
}
for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
stat_offset = ena_stats_tx_strings[stat].stat_offset;
stats_begin = &adapter->tx_ring[i].rx_stats;
xstats[count].id = count;
xstats[count].value = *((uint64_t *)
((char *)stats_begin + stat_offset));
}
}
return count;
}
static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
const uint64_t *ids,
uint64_t *values,
unsigned int n)
{
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_stats_eni eni_stats;
uint64_t id;
uint64_t rx_entries, tx_entries;
unsigned int i;
int qid;
int valid = 0;
bool was_eni_copied = false;
for (i = 0; i < n; ++i) {
id = ids[i];
/* Check if id belongs to global statistics */
if (id < ENA_STATS_ARRAY_GLOBAL) {
values[i] = *((uint64_t *)&adapter->dev_stats + id);
++valid;
continue;
}
/* Check if id belongs to ENI statistics */
id -= ENA_STATS_ARRAY_GLOBAL;
if (id < ENA_STATS_ARRAY_ENI) {
/* Avoid reading ENI stats multiple times in a single
* function call, as it requires communication with the
* admin queue.
*/
if (!was_eni_copied) {
was_eni_copied = true;
ena_copy_eni_stats(adapter, &eni_stats);
}
values[i] = *((uint64_t *)&eni_stats + id);
++valid;
continue;
}
/* Check if id belongs to rx queue statistics */
id -= ENA_STATS_ARRAY_ENI;
rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
if (id < rx_entries) {
qid = id % dev->data->nb_rx_queues;
id /= dev->data->nb_rx_queues;
values[i] = *((uint64_t *)
&adapter->rx_ring[qid].rx_stats + id);
++valid;
continue;
}
/* Check if id belongs to rx queue statistics */
id -= rx_entries;
tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
if (id < tx_entries) {
qid = id % dev->data->nb_tx_queues;
id /= dev->data->nb_tx_queues;
values[i] = *((uint64_t *)
&adapter->tx_ring[qid].tx_stats + id);
++valid;
continue;
}
}
return valid;
}
static int ena_process_uint_devarg(const char *key,
const char *value,
void *opaque)
{
struct ena_adapter *adapter = opaque;
char *str_end;
uint64_t uint_value;
uint_value = strtoull(value, &str_end, 10);
if (value == str_end) {
PMD_INIT_LOG(ERR,
"Invalid value for key '%s'. Only uint values are accepted.\n",
key);
return -EINVAL;
}
if (strcmp(key, ENA_DEVARG_MISS_TXC_TO) == 0) {
if (uint_value > ENA_MAX_TX_TIMEOUT_SECONDS) {
PMD_INIT_LOG(ERR,
"Tx timeout too high: %" PRIu64 " sec. Maximum allowed: %d sec.\n",
uint_value, ENA_MAX_TX_TIMEOUT_SECONDS);
return -EINVAL;
} else if (uint_value == 0) {
PMD_INIT_LOG(INFO,
"Check for missing Tx completions has been disabled.\n");
adapter->missing_tx_completion_to =
ENA_HW_HINTS_NO_TIMEOUT;
} else {
PMD_INIT_LOG(INFO,
"Tx packet completion timeout set to %" PRIu64 " seconds.\n",
uint_value);
adapter->missing_tx_completion_to =
uint_value * rte_get_timer_hz();
}
}
return 0;
}
static int ena_process_bool_devarg(const char *key,
const char *value,
void *opaque)
{
struct ena_adapter *adapter = opaque;
bool bool_value;
/* Parse the value. */
if (strcmp(value, "1") == 0) {
bool_value = true;
} else if (strcmp(value, "0") == 0) {
bool_value = false;
} else {
PMD_INIT_LOG(ERR,
"Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
value, key);
return -EINVAL;
}
/* Now, assign it to the proper adapter field. */
if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR) == 0)
adapter->use_large_llq_hdr = bool_value;
else if (strcmp(key, ENA_DEVARG_ENABLE_LLQ) == 0)
adapter->enable_llq = bool_value;
return 0;
}
static int ena_parse_devargs(struct ena_adapter *adapter,
struct rte_devargs *devargs)
{
static const char * const allowed_args[] = {
ENA_DEVARG_LARGE_LLQ_HDR,
ENA_DEVARG_MISS_TXC_TO,
ENA_DEVARG_ENABLE_LLQ,
NULL,
};
struct rte_kvargs *kvlist;
int rc;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, allowed_args);
if (kvlist == NULL) {
PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
devargs->args);
return -EINVAL;
}
rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
ena_process_bool_devarg, adapter);
if (rc != 0)
goto exit;
rc = rte_kvargs_process(kvlist, ENA_DEVARG_MISS_TXC_TO,
ena_process_uint_devarg, adapter);
if (rc != 0)
goto exit;
rc = rte_kvargs_process(kvlist, ENA_DEVARG_ENABLE_LLQ,
ena_process_bool_devarg, adapter);
exit:
rte_kvargs_free(kvlist);
return rc;
}
static int ena_setup_rx_intr(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
int rc;
uint16_t vectors_nb, i;
bool rx_intr_requested = dev->data->dev_conf.intr_conf.rxq;
if (!rx_intr_requested)
return 0;
if (!rte_intr_cap_multiple(intr_handle)) {
PMD_DRV_LOG(ERR,
"Rx interrupt requested, but it isn't supported by the PCI driver\n");
return -ENOTSUP;
}
/* Disable interrupt mapping before the configuration starts. */
rte_intr_disable(intr_handle);
/* Verify if there are enough vectors available. */
vectors_nb = dev->data->nb_rx_queues;
if (vectors_nb > RTE_MAX_RXTX_INTR_VEC_ID) {
PMD_DRV_LOG(ERR,
"Too many Rx interrupts requested, maximum number: %d\n",
RTE_MAX_RXTX_INTR_VEC_ID);
rc = -ENOTSUP;
goto enable_intr;
}
/* Allocate the vector list */
if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
dev->data->nb_rx_queues)) {
PMD_DRV_LOG(ERR,
"Failed to allocate interrupt vector for %d queues\n",
dev->data->nb_rx_queues);
rc = -ENOMEM;
goto enable_intr;
}
rc = rte_intr_efd_enable(intr_handle, vectors_nb);
if (rc != 0)
goto free_intr_vec;
if (!rte_intr_allow_others(intr_handle)) {
PMD_DRV_LOG(ERR,
"Not enough interrupts available to use both ENA Admin and Rx interrupts\n");
goto disable_intr_efd;
}
for (i = 0; i < vectors_nb; ++i)
if (rte_intr_vec_list_index_set(intr_handle, i,
RTE_INTR_VEC_RXTX_OFFSET + i))
goto disable_intr_efd;
rte_intr_enable(intr_handle);
return 0;
disable_intr_efd:
rte_intr_efd_disable(intr_handle);
free_intr_vec:
rte_intr_vec_list_free(intr_handle);
enable_intr:
rte_intr_enable(intr_handle);
return rc;
}
static void ena_rx_queue_intr_set(struct rte_eth_dev *dev,
uint16_t queue_id,
bool unmask)
{
struct ena_adapter *adapter = dev->data->dev_private;
struct ena_ring *rxq = &adapter->rx_ring[queue_id];
struct ena_eth_io_intr_reg intr_reg;
ena_com_update_intr_reg(&intr_reg, 0, 0, unmask);
ena_com_unmask_intr(rxq->ena_com_io_cq, &intr_reg);
}
static int ena_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id)
{
ena_rx_queue_intr_set(dev, queue_id, true);
return 0;
}
static int ena_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id)
{
ena_rx_queue_intr_set(dev, queue_id, false);
return 0;
}
static int ena_configure_aenq(struct ena_adapter *adapter)
{
uint32_t aenq_groups = adapter->all_aenq_groups;
int rc;
/* All_aenq_groups holds all AENQ functions supported by the device and
* the HW, so at first we need to be sure the LSC request is valid.
*/
if (adapter->edev_data->dev_conf.intr_conf.lsc != 0) {
if (!(aenq_groups & BIT(ENA_ADMIN_LINK_CHANGE))) {
PMD_DRV_LOG(ERR,
"LSC requested, but it's not supported by the AENQ\n");
return -EINVAL;
}
} else {
/* If LSC wasn't enabled by the app, let's enable all supported
* AENQ procedures except the LSC.
*/
aenq_groups &= ~BIT(ENA_ADMIN_LINK_CHANGE);
}
rc = ena_com_set_aenq_config(&adapter->ena_dev, aenq_groups);
if (rc != 0) {
PMD_DRV_LOG(ERR, "Cannot configure AENQ groups, rc=%d\n", rc);
return rc;
}
adapter->active_aenq_groups = aenq_groups;
return 0;
}
int ena_mp_indirect_table_set(struct ena_adapter *adapter)
{
return ENA_PROXY(adapter, ena_com_indirect_table_set, &adapter->ena_dev);
}
int ena_mp_indirect_table_get(struct ena_adapter *adapter,
uint32_t *indirect_table)
{
return ENA_PROXY(adapter, ena_com_indirect_table_get, &adapter->ena_dev,
indirect_table);
}
/*********************************************************************
* ena_plat_dpdk.h functions implementations
*********************************************************************/
const struct rte_memzone *
ena_mem_alloc_coherent(struct rte_eth_dev_data *data, size_t size,
int socket_id, unsigned int alignment, void **virt_addr,
dma_addr_t *phys_addr)
{
char z_name[RTE_MEMZONE_NAMESIZE];
struct ena_adapter *adapter = data->dev_private;
const struct rte_memzone *memzone;
int rc;
rc = snprintf(z_name, RTE_MEMZONE_NAMESIZE, "ena_p%d_mz%" PRIu64 "",
data->port_id, adapter->memzone_cnt);
if (rc >= RTE_MEMZONE_NAMESIZE) {
PMD_DRV_LOG(ERR,
"Name for the ena_com memzone is too long. Port: %d, mz_num: %" PRIu64 "\n",
data->port_id, adapter->memzone_cnt);
goto error;
}
adapter->memzone_cnt++;
memzone = rte_memzone_reserve_aligned(z_name, size, socket_id,
RTE_MEMZONE_IOVA_CONTIG, alignment);
if (memzone == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate ena_com memzone: %s\n",
z_name);
goto error;
}
memset(memzone->addr, 0, size);
*virt_addr = memzone->addr;
*phys_addr = memzone->iova;
return memzone;
error:
*virt_addr = NULL;
*phys_addr = 0;
return NULL;
}
/*********************************************************************
* PMD configuration
*********************************************************************/
static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct ena_adapter), eth_ena_dev_init);
}
static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
}
static struct rte_pci_driver rte_ena_pmd = {
.id_table = pci_id_ena_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_WC_ACTIVATE,
.probe = eth_ena_pci_probe,
.remove = eth_ena_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_ena,
ENA_DEVARG_LARGE_LLQ_HDR "=<0|1> "
ENA_DEVARG_ENABLE_LLQ "=<0|1> "
ENA_DEVARG_MISS_TXC_TO "=<uint>");
RTE_LOG_REGISTER_SUFFIX(ena_logtype_init, init, NOTICE);
RTE_LOG_REGISTER_SUFFIX(ena_logtype_driver, driver, NOTICE);
#ifdef RTE_ETHDEV_DEBUG_RX
RTE_LOG_REGISTER_SUFFIX(ena_logtype_rx, rx, DEBUG);
#endif
#ifdef RTE_ETHDEV_DEBUG_TX
RTE_LOG_REGISTER_SUFFIX(ena_logtype_tx, tx, DEBUG);
#endif
RTE_LOG_REGISTER_SUFFIX(ena_logtype_com, com, WARNING);
/******************************************************************************
******************************** AENQ Handlers *******************************
*****************************************************************************/
static void ena_update_on_link_change(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct rte_eth_dev *eth_dev = adapter_data;
struct ena_adapter *adapter = eth_dev->data->dev_private;
struct ena_admin_aenq_link_change_desc *aenq_link_desc;
uint32_t status;
aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
adapter->link_status = status;
ena_link_update(eth_dev, 0);
rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
static void ena_notification(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct rte_eth_dev *eth_dev = adapter_data;
struct ena_adapter *adapter = eth_dev->data->dev_private;
struct ena_admin_ena_hw_hints *hints;
if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
PMD_DRV_LOG(WARNING, "Invalid AENQ group: %x. Expected: %x\n",
aenq_e->aenq_common_desc.group,
ENA_ADMIN_NOTIFICATION);
switch (aenq_e->aenq_common_desc.syndrome) {
case ENA_ADMIN_UPDATE_HINTS:
hints = (struct ena_admin_ena_hw_hints *)
(&aenq_e->inline_data_w4);
ena_update_hints(adapter, hints);
break;
default:
PMD_DRV_LOG(ERR, "Invalid AENQ notification link state: %d\n",
aenq_e->aenq_common_desc.syndrome);
}
}
static void ena_keep_alive(void *adapter_data,
__rte_unused struct ena_admin_aenq_entry *aenq_e)
{
struct rte_eth_dev *eth_dev = adapter_data;
struct ena_adapter *adapter = eth_dev->data->dev_private;
struct ena_admin_aenq_keep_alive_desc *desc;
uint64_t rx_drops;
uint64_t tx_drops;
adapter->timestamp_wd = rte_get_timer_cycles();
desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
adapter->drv_stats->rx_drops = rx_drops;
adapter->dev_stats.tx_drops = tx_drops;
}
/**
* This handler will called for unknown event group or unimplemented handlers
**/
static void unimplemented_aenq_handler(__rte_unused void *data,
__rte_unused struct ena_admin_aenq_entry *aenq_e)
{
PMD_DRV_LOG(ERR,
"Unknown event was received or event with unimplemented handler\n");
}
static struct ena_aenq_handlers aenq_handlers = {
.handlers = {
[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
[ENA_ADMIN_NOTIFICATION] = ena_notification,
[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
},
.unimplemented_handler = unimplemented_aenq_handler
};
/*********************************************************************
* Multi-Process communication request handling (in primary)
*********************************************************************/
static int
ena_mp_primary_handle(const struct rte_mp_msg *mp_msg, const void *peer)
{
const struct ena_mp_body *req =
(const struct ena_mp_body *)mp_msg->param;
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
struct ena_mp_body *rsp;
struct rte_mp_msg mp_rsp;
struct rte_eth_dev *dev;
int res = 0;
rsp = (struct ena_mp_body *)&mp_rsp.param;
mp_msg_init(&mp_rsp, req->type, req->port_id);
if (!rte_eth_dev_is_valid_port(req->port_id)) {
rte_errno = ENODEV;
res = -rte_errno;
PMD_DRV_LOG(ERR, "Unknown port %d in request %d\n",
req->port_id, req->type);
goto end;
}
dev = &rte_eth_devices[req->port_id];
adapter = dev->data->dev_private;
ena_dev = &adapter->ena_dev;
switch (req->type) {
case ENA_MP_DEV_STATS_GET:
res = ena_com_get_dev_basic_stats(ena_dev,
&adapter->basic_stats);
break;
case ENA_MP_ENI_STATS_GET:
res = ena_com_get_eni_stats(ena_dev,
(struct ena_admin_eni_stats *)&adapter->eni_stats);
break;
case ENA_MP_MTU_SET:
res = ena_com_set_dev_mtu(ena_dev, req->args.mtu);
break;
case ENA_MP_IND_TBL_GET:
res = ena_com_indirect_table_get(ena_dev,
adapter->indirect_table);
break;
case ENA_MP_IND_TBL_SET:
res = ena_com_indirect_table_set(ena_dev);
break;
default:
PMD_DRV_LOG(ERR, "Unknown request type %d\n", req->type);
res = -EINVAL;
break;
}
end:
/* Save processing result in the reply */
rsp->result = res;
/* Return just IPC processing status */
return rte_mp_reply(&mp_rsp, peer);
}