Jasvinder Singh 4726fb245e sched: add post-init pipe profile API
Add new API function to add more pipe configuration profiles
post initialization to the set of exisitng profiles specified during
the creation of scheduler port.

This API removes the current limitation that forces the user
to define the full set of pipe profiles as the part of port parameters
while port is being created.

Signed-off-by: Jasvinder Singh <jasvinder.singh@intel.com>
2018-05-04 16:25:48 +02:00

448 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef __INCLUDE_RTE_SCHED_H__
#define __INCLUDE_RTE_SCHED_H__
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file
* RTE Hierarchical Scheduler
*
* The hierarchical scheduler prioritizes the transmission of packets
* from different users and traffic classes according to the Service
* Level Agreements (SLAs) defined for the current network node.
*
* The scheduler supports thousands of packet queues grouped under a
* 5-level hierarchy:
* 1. Port:
* - Typical usage: output Ethernet port;
* - Multiple ports are scheduled in round robin order with
* equal priority;
* 2. Subport:
* - Typical usage: group of users;
* - Traffic shaping using the token bucket algorithm
* (one bucket per subport);
* - Upper limit enforced per traffic class at subport level;
* - Lower priority traffic classes able to reuse subport
* bandwidth currently unused by higher priority traffic
* classes of the same subport;
* - When any subport traffic class is oversubscribed
* (configuration time event), the usage of subport member
* pipes with high demand for thattraffic class pipes is
* truncated to a dynamically adjusted value with no
* impact to low demand pipes;
* 3. Pipe:
* - Typical usage: individual user/subscriber;
* - Traffic shaping using the token bucket algorithm
* (one bucket per pipe);
* 4. Traffic class:
* - Traffic classes of the same pipe handled in strict
* priority order;
* - Upper limit enforced per traffic class at the pipe level;
* - Lower priority traffic classes able to reuse pipe
* bandwidth currently unused by higher priority traffic
* classes of the same pipe;
* 5. Queue:
* - Typical usage: queue hosting packets from one or
* multiple connections of same traffic class belonging to
* the same user;
* - Weighted Round Robin (WRR) is used to service the
* queues within same pipe traffic class.
*
*/
#include <sys/types.h>
#include <rte_compat.h>
#include <rte_mbuf.h>
#include <rte_meter.h>
/** Random Early Detection (RED) */
#ifdef RTE_SCHED_RED
#include "rte_red.h"
#endif
/** Number of traffic classes per pipe (as well as subport).
* Cannot be changed.
*/
#define RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE 4
/** Number of queues per pipe traffic class. Cannot be changed. */
#define RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS 4
/** Number of queues per pipe. */
#define RTE_SCHED_QUEUES_PER_PIPE \
(RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE * \
RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS)
/** Maximum number of pipe profiles that can be defined per port.
* Compile-time configurable.
*/
#ifndef RTE_SCHED_PIPE_PROFILES_PER_PORT
#define RTE_SCHED_PIPE_PROFILES_PER_PORT 256
#endif
/*
* Ethernet framing overhead. Overhead fields per Ethernet frame:
* 1. Preamble: 7 bytes;
* 2. Start of Frame Delimiter (SFD): 1 byte;
* 3. Frame Check Sequence (FCS): 4 bytes;
* 4. Inter Frame Gap (IFG): 12 bytes.
*
* The FCS is considered overhead only if not included in the packet
* length (field pkt_len of struct rte_mbuf).
*/
#ifndef RTE_SCHED_FRAME_OVERHEAD_DEFAULT
#define RTE_SCHED_FRAME_OVERHEAD_DEFAULT 24
#endif
/*
* Subport configuration parameters. The period and credits_per_period
* parameters are measured in bytes, with one byte meaning the time
* duration associated with the transmission of one byte on the
* physical medium of the output port, with pipe or pipe traffic class
* rate (measured as percentage of output port rate) determined as
* credits_per_period divided by period. One credit represents one
* byte.
*/
struct rte_sched_subport_params {
/* Subport token bucket */
uint32_t tb_rate; /**< Rate (measured in bytes per second) */
uint32_t tb_size; /**< Size (measured in credits) */
/* Subport traffic classes */
uint32_t tc_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Traffic class rates (measured in bytes per second) */
uint32_t tc_period;
/**< Enforcement period for rates (measured in milliseconds) */
};
/** Subport statistics */
struct rte_sched_subport_stats {
/* Packets */
uint32_t n_pkts_tc[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Number of packets successfully written */
uint32_t n_pkts_tc_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Number of packets dropped */
/* Bytes */
uint32_t n_bytes_tc[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Number of bytes successfully written for each traffic class */
uint32_t n_bytes_tc_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Number of bytes dropped for each traffic class */
#ifdef RTE_SCHED_RED
uint32_t n_pkts_red_dropped[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Number of packets dropped by red */
#endif
};
/*
* Pipe configuration parameters. The period and credits_per_period
* parameters are measured in bytes, with one byte meaning the time
* duration associated with the transmission of one byte on the
* physical medium of the output port, with pipe or pipe traffic class
* rate (measured as percentage of output port rate) determined as
* credits_per_period divided by period. One credit represents one
* byte.
*/
struct rte_sched_pipe_params {
/* Pipe token bucket */
uint32_t tb_rate; /**< Rate (measured in bytes per second) */
uint32_t tb_size; /**< Size (measured in credits) */
/* Pipe traffic classes */
uint32_t tc_rate[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Traffic class rates (measured in bytes per second) */
uint32_t tc_period;
/**< Enforcement period (measured in milliseconds) */
#ifdef RTE_SCHED_SUBPORT_TC_OV
uint8_t tc_ov_weight; /**< Weight Traffic class 3 oversubscription */
#endif
/* Pipe queues */
uint8_t wrr_weights[RTE_SCHED_QUEUES_PER_PIPE]; /**< WRR weights */
};
/** Queue statistics */
struct rte_sched_queue_stats {
/* Packets */
uint32_t n_pkts; /**< Packets successfully written */
uint32_t n_pkts_dropped; /**< Packets dropped */
#ifdef RTE_SCHED_RED
uint32_t n_pkts_red_dropped; /**< Packets dropped by RED */
#endif
/* Bytes */
uint32_t n_bytes; /**< Bytes successfully written */
uint32_t n_bytes_dropped; /**< Bytes dropped */
};
/** Port configuration parameters. */
struct rte_sched_port_params {
const char *name; /**< String to be associated */
int socket; /**< CPU socket ID */
uint32_t rate; /**< Output port rate
* (measured in bytes per second) */
uint32_t mtu; /**< Maximum Ethernet frame size
* (measured in bytes).
* Should not include the framing overhead. */
uint32_t frame_overhead; /**< Framing overhead per packet
* (measured in bytes) */
uint32_t n_subports_per_port; /**< Number of subports */
uint32_t n_pipes_per_subport; /**< Number of pipes per subport */
uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/**< Packet queue size for each traffic class.
* All queues within the same pipe traffic class have the same
* size. Queues from different pipes serving the same traffic
* class have the same size. */
struct rte_sched_pipe_params *pipe_profiles;
/**< Pipe profile table.
* Every pipe is configured using one of the profiles from this table. */
uint32_t n_pipe_profiles; /**< Profiles in the pipe profile table */
#ifdef RTE_SCHED_RED
struct rte_red_params red_params[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][e_RTE_METER_COLORS]; /**< RED parameters */
#endif
};
/*
* Configuration
*
***/
/**
* Hierarchical scheduler port configuration
*
* @param params
* Port scheduler configuration parameter structure
* @return
* Handle to port scheduler instance upon success or NULL otherwise.
*/
struct rte_sched_port *
rte_sched_port_config(struct rte_sched_port_params *params);
/**
* Hierarchical scheduler port free
*
* @param port
* Handle to port scheduler instance
*/
void
rte_sched_port_free(struct rte_sched_port *port);
/**
* @warning
* @b EXPERIMENTAL: this API may change without prior notice.
*
* Hierarchical scheduler pipe profile add
*
* @param port
* Handle to port scheduler instance
* @param params
* Pipe profile parameters
* @param pipe_profile_id
* Set to valid profile id when profile is added successfully.
* @return
* 0 upon success, error code otherwise
*/
int __rte_experimental
rte_sched_port_pipe_profile_add(struct rte_sched_port *port,
struct rte_sched_pipe_params *params,
uint32_t *pipe_profile_id);
/**
* Hierarchical scheduler subport configuration
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param params
* Subport configuration parameters
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_subport_config(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_subport_params *params);
/**
* Hierarchical scheduler pipe configuration
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param pipe_id
* Pipe ID within subport
* @param pipe_profile
* ID of port-level pre-configured pipe profile
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_pipe_config(struct rte_sched_port *port,
uint32_t subport_id,
uint32_t pipe_id,
int32_t pipe_profile);
/**
* Hierarchical scheduler memory footprint size per port
*
* @param params
* Port scheduler configuration parameter structure
* @return
* Memory footprint size in bytes upon success, 0 otherwise
*/
uint32_t
rte_sched_port_get_memory_footprint(struct rte_sched_port_params *params);
/*
* Statistics
*
***/
/**
* Hierarchical scheduler subport statistics read
*
* @param port
* Handle to port scheduler instance
* @param subport_id
* Subport ID
* @param stats
* Pointer to pre-allocated subport statistics structure where the statistics
* counters should be stored
* @param tc_ov
* Pointer to pre-allocated 4-entry array where the oversubscription status for
* each of the 4 subport traffic classes should be stored.
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_subport_read_stats(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_subport_stats *stats,
uint32_t *tc_ov);
/**
* Hierarchical scheduler queue statistics read
*
* @param port
* Handle to port scheduler instance
* @param queue_id
* Queue ID within port scheduler
* @param stats
* Pointer to pre-allocated subport statistics structure where the statistics
* counters should be stored
* @param qlen
* Pointer to pre-allocated variable where the current queue length
* should be stored.
* @return
* 0 upon success, error code otherwise
*/
int
rte_sched_queue_read_stats(struct rte_sched_port *port,
uint32_t queue_id,
struct rte_sched_queue_stats *stats,
uint16_t *qlen);
/**
* Scheduler hierarchy path write to packet descriptor. Typically
* called by the packet classification stage.
*
* @param pkt
* Packet descriptor handle
* @param subport
* Subport ID
* @param pipe
* Pipe ID within subport
* @param traffic_class
* Traffic class ID within pipe (0 .. 3)
* @param queue
* Queue ID within pipe traffic class (0 .. 3)
* @param color
* Packet color set
*/
void
rte_sched_port_pkt_write(struct rte_mbuf *pkt,
uint32_t subport, uint32_t pipe, uint32_t traffic_class,
uint32_t queue, enum rte_meter_color color);
/**
* Scheduler hierarchy path read from packet descriptor (struct
* rte_mbuf). Typically called as part of the hierarchical scheduler
* enqueue operation. The subport, pipe, traffic class and queue
* parameters need to be pre-allocated by the caller.
*
* @param pkt
* Packet descriptor handle
* @param subport
* Subport ID
* @param pipe
* Pipe ID within subport
* @param traffic_class
* Traffic class ID within pipe (0 .. 3)
* @param queue
* Queue ID within pipe traffic class (0 .. 3)
*
*/
void
rte_sched_port_pkt_read_tree_path(const struct rte_mbuf *pkt,
uint32_t *subport, uint32_t *pipe,
uint32_t *traffic_class, uint32_t *queue);
enum rte_meter_color
rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt);
/**
* Hierarchical scheduler port enqueue. Writes up to n_pkts to port
* scheduler and returns the number of packets actually written. For
* each packet, the port scheduler queue to write the packet to is
* identified by reading the hierarchy path from the packet
* descriptor; if the queue is full or congested and the packet is not
* written to the queue, then the packet is automatically dropped
* without any action required from the caller.
*
* @param port
* Handle to port scheduler instance
* @param pkts
* Array storing the packet descriptor handles
* @param n_pkts
* Number of packets to enqueue from the pkts array into the port scheduler
* @return
* Number of packets successfully enqueued
*/
int
rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);
/**
* Hierarchical scheduler port dequeue. Reads up to n_pkts from the
* port scheduler and stores them in the pkts array and returns the
* number of packets actually read. The pkts array needs to be
* pre-allocated by the caller with at least n_pkts entries.
*
* @param port
* Handle to port scheduler instance
* @param pkts
* Pre-allocated packet descriptor array where the packets dequeued
* from the port
* scheduler should be stored
* @param n_pkts
* Number of packets to dequeue from the port scheduler
* @return
* Number of packets successfully dequeued and placed in the pkts array
*/
int
rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);
#ifdef __cplusplus
}
#endif
#endif /* __INCLUDE_RTE_SCHED_H__ */