numam-dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c
Ciara Power c6ddab873d app/crypto-perf: fix CSV output format
The csv output for each ptest type used ";" instead of ",".
This has now been fixed to use the comma format that is used in the csv
headers.

Fixes: f6cefe253cc8 ("app/crypto-perf: add range/list of sizes")
Fixes: 96dfeb609be1 ("app/crypto-perf: add new PMD benchmarking mode")
Fixes: da40ebd6d383 ("app/crypto-perf: display results in test runner")
Cc: stable@dpdk.org

Signed-off-by: Ciara Power <ciara.power@intel.com>
Acked-by: Declan Doherty <declan.doherty@intel.com>
Acked-by: Adam Dybkowski <adamx.dybkowski@intel.com>
2021-01-27 19:03:52 +01:00

509 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdbool.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include "cperf_ops.h"
#include "cperf_test_pmd_cyclecount.h"
#include "cperf_test_common.h"
#define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
#define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
#define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
#define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n"
struct cperf_pmd_cyclecount_ctx {
uint8_t dev_id;
uint16_t qp_id;
uint8_t lcore_id;
struct rte_mempool *pool;
struct rte_crypto_op **ops;
struct rte_crypto_op **ops_processed;
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
uint32_t src_buf_offset;
uint32_t dst_buf_offset;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
};
struct pmd_cyclecount_state {
struct cperf_pmd_cyclecount_ctx *ctx;
const struct cperf_options *opts;
uint32_t lcore;
uint64_t delay;
int linearize;
uint32_t ops_enqd;
uint32_t ops_deqd;
uint32_t ops_enq_retries;
uint32_t ops_deq_retries;
double cycles_per_build;
double cycles_per_enq;
double cycles_per_deq;
};
static const uint16_t iv_offset =
sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
static void
cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
{
if (!ctx)
return;
if (ctx->sess) {
#ifdef RTE_LIB_SECURITY
if (ctx->options->op_type == CPERF_PDCP ||
ctx->options->op_type == CPERF_DOCSIS) {
struct rte_security_ctx *sec_ctx =
(struct rte_security_ctx *)
rte_cryptodev_get_sec_ctx(ctx->dev_id);
rte_security_session_destroy(sec_ctx,
(struct rte_security_session *)ctx->sess);
} else
#endif
{
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
rte_cryptodev_sym_session_free(ctx->sess);
}
}
if (ctx->pool)
rte_mempool_free(ctx->pool);
if (ctx->ops)
rte_free(ctx->ops);
if (ctx->ops_processed)
rte_free(ctx->ops_processed);
rte_free(ctx);
}
void *
cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
struct rte_mempool *sess_priv_mp,
uint8_t dev_id, uint16_t qp_id,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
const struct cperf_op_fns *op_fns)
{
struct cperf_pmd_cyclecount_ctx *ctx = NULL;
/* preallocate buffers for crypto ops as they can get quite big */
size_t alloc_sz = sizeof(struct rte_crypto_op *) *
options->nb_descriptors;
ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
if (ctx == NULL)
goto err;
ctx->dev_id = dev_id;
ctx->qp_id = qp_id;
ctx->populate_ops = op_fns->populate_ops;
ctx->options = options;
ctx->test_vector = test_vector;
/* IV goes at the end of the crypto operation */
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
test_vector, iv_offset);
if (ctx->sess == NULL)
goto err;
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
&ctx->src_buf_offset, &ctx->dst_buf_offset,
&ctx->pool) < 0)
goto err;
ctx->ops = rte_malloc("ops", alloc_sz, 0);
if (!ctx->ops)
goto err;
ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
if (!ctx->ops_processed)
goto err;
return ctx;
err:
cperf_pmd_cyclecount_test_free(ctx);
return NULL;
}
/* benchmark alloc-build-free of ops */
static inline int
pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
uint16_t test_burst_size)
{
uint32_t iter_ops_left = state->opts->total_ops - cur_op;
uint32_t iter_ops_needed =
RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
uint32_t cur_iter_op;
uint32_t imix_idx = 0;
for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
cur_iter_op += test_burst_size) {
uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
test_burst_size);
struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
/* Allocate objects containing crypto operations and mbufs */
if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
burst_size) != 0) {
RTE_LOG(ERR, USER1,
"Failed to allocate more crypto operations "
"from the crypto operation pool.\n"
"Consider increasing the pool size "
"with --pool-sz\n");
return -1;
}
/* Setup crypto op, attach mbuf etc */
(state->ctx->populate_ops)(ops,
state->ctx->src_buf_offset,
state->ctx->dst_buf_offset,
burst_size,
state->ctx->sess, state->opts,
state->ctx->test_vector, iv_offset,
&imix_idx);
#ifdef CPERF_LINEARIZATION_ENABLE
/* Check if source mbufs require coalescing */
if (state->linearize) {
uint8_t i;
for (i = 0; i < burst_size; i++) {
struct rte_mbuf *src = ops[i]->sym->m_src;
rte_pktmbuf_linearize(src);
}
}
#endif /* CPERF_LINEARIZATION_ENABLE */
rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
burst_size);
}
return 0;
}
/* allocate and build ops (no free) */
static int
pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
uint32_t iter_ops_needed, uint16_t test_burst_size)
{
uint32_t cur_iter_op;
uint32_t imix_idx = 0;
for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
cur_iter_op += test_burst_size) {
uint32_t burst_size = RTE_MIN(
iter_ops_needed - cur_iter_op, test_burst_size);
struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
/* Allocate objects containing crypto operations and mbufs */
if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
burst_size) != 0) {
RTE_LOG(ERR, USER1,
"Failed to allocate more crypto operations "
"from the crypto operation pool.\n"
"Consider increasing the pool size "
"with --pool-sz\n");
return -1;
}
/* Setup crypto op, attach mbuf etc */
(state->ctx->populate_ops)(ops,
state->ctx->src_buf_offset,
state->ctx->dst_buf_offset,
burst_size,
state->ctx->sess, state->opts,
state->ctx->test_vector, iv_offset,
&imix_idx);
}
return 0;
}
/* benchmark enqueue, returns number of ops enqueued */
static uint32_t
pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
uint32_t iter_ops_needed, uint16_t test_burst_size)
{
/* Enqueue full descriptor ring of ops on crypto device */
uint32_t cur_iter_op = 0;
while (cur_iter_op < iter_ops_needed) {
uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
test_burst_size);
struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
uint32_t burst_enqd;
burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
state->ctx->qp_id, ops, burst_size);
/* if we couldn't enqueue anything, the queue is full */
if (!burst_enqd) {
/* don't try to dequeue anything we didn't enqueue */
return cur_iter_op;
}
if (burst_enqd < burst_size)
state->ops_enq_retries++;
state->ops_enqd += burst_enqd;
cur_iter_op += burst_enqd;
}
return iter_ops_needed;
}
/* benchmark dequeue */
static void
pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
uint32_t iter_ops_needed, uint16_t test_burst_size)
{
/* Dequeue full descriptor ring of ops on crypto device */
uint32_t cur_iter_op = 0;
while (cur_iter_op < iter_ops_needed) {
uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
test_burst_size);
struct rte_crypto_op **ops_processed =
&state->ctx->ops[cur_iter_op];
uint32_t burst_deqd;
burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
state->ctx->qp_id, ops_processed, burst_size);
if (burst_deqd < burst_size)
state->ops_deq_retries++;
state->ops_deqd += burst_deqd;
cur_iter_op += burst_deqd;
}
}
/* run benchmark per burst size */
static inline int
pmd_cyclecount_bench_burst_sz(
struct pmd_cyclecount_state *state, uint16_t test_burst_size)
{
uint64_t tsc_start;
uint64_t tsc_end;
uint64_t tsc_op;
uint64_t tsc_enq;
uint64_t tsc_deq;
uint32_t cur_op;
/* reset all counters */
tsc_enq = 0;
tsc_deq = 0;
state->ops_enqd = 0;
state->ops_enq_retries = 0;
state->ops_deqd = 0;
state->ops_deq_retries = 0;
/*
* Benchmark crypto op alloc-build-free separately.
*/
tsc_start = rte_rdtsc_precise();
for (cur_op = 0; cur_op < state->opts->total_ops;
cur_op += state->opts->nb_descriptors) {
if (unlikely(pmd_cyclecount_bench_ops(
state, cur_op, test_burst_size)))
return -1;
}
tsc_end = rte_rdtsc_precise();
tsc_op = tsc_end - tsc_start;
/*
* Hardware acceleration cyclecount benchmarking loop.
*
* We're benchmarking raw enq/deq performance by filling up the device
* queue, so we never get any failed enqs unless the driver won't accept
* the exact number of descriptors we requested, or the driver won't
* wrap around the end of the TX ring. However, since we're only
* dequeueing once we've filled up the queue, we have to benchmark it
* piecemeal and then average out the results.
*/
cur_op = 0;
while (cur_op < state->opts->total_ops) {
uint32_t iter_ops_left = state->opts->total_ops - cur_op;
uint32_t iter_ops_needed = RTE_MIN(
state->opts->nb_descriptors, iter_ops_left);
uint32_t iter_ops_allocd = iter_ops_needed;
/* allocate and build ops */
if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
test_burst_size)))
return -1;
tsc_start = rte_rdtsc_precise();
/* fill up TX ring */
iter_ops_needed = pmd_cyclecount_bench_enq(state,
iter_ops_needed, test_burst_size);
tsc_end = rte_rdtsc_precise();
tsc_enq += tsc_end - tsc_start;
/* allow for HW to catch up */
if (state->delay)
rte_delay_us_block(state->delay);
tsc_start = rte_rdtsc_precise();
/* drain RX ring */
pmd_cyclecount_bench_deq(state, iter_ops_needed,
test_burst_size);
tsc_end = rte_rdtsc_precise();
tsc_deq += tsc_end - tsc_start;
cur_op += iter_ops_needed;
/*
* we may not have processed all ops that we allocated, so
* free everything we've allocated.
*/
rte_mempool_put_bulk(state->ctx->pool,
(void **)state->ctx->ops, iter_ops_allocd);
}
state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
return 0;
}
int
cperf_pmd_cyclecount_test_runner(void *test_ctx)
{
struct pmd_cyclecount_state state = {0};
const struct cperf_options *opts;
uint16_t test_burst_size;
uint8_t burst_size_idx = 0;
state.ctx = test_ctx;
opts = state.ctx->options;
state.opts = opts;
state.lcore = rte_lcore_id();
state.linearize = 0;
static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
static bool warmup = true;
/*
* We need a small delay to allow for hardware to process all the crypto
* operations. We can't automatically figure out what the delay should
* be, so we leave it up to the user (by default it's 0).
*/
state.delay = 1000 * opts->pmdcc_delay;
#ifdef CPERF_LINEARIZATION_ENABLE
struct rte_cryptodev_info dev_info;
/* Check if source mbufs require coalescing */
if (opts->segments_sz < ctx->options->max_buffer_size) {
rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
if ((dev_info.feature_flags &
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
0) {
state.linearize = 1;
}
}
#endif /* CPERF_LINEARIZATION_ENABLE */
state.ctx->lcore_id = state.lcore;
/* Get first size from range or list */
if (opts->inc_burst_size != 0)
test_burst_size = opts->min_burst_size;
else
test_burst_size = opts->burst_size_list[0];
while (test_burst_size <= opts->max_burst_size) {
/* do a benchmark run */
if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
return -1;
/*
* First run is always a warm up run.
*/
if (warmup) {
warmup = false;
continue;
}
if (!opts->csv) {
if (rte_atomic16_test_and_set(&display_once))
printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
"Burst Size", "Enqueued",
"Dequeued", "Enq Retries",
"Deq Retries", "Cycles/Op",
"Cycles/Enq", "Cycles/Deq");
printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
opts->test_buffer_size, test_burst_size,
state.ops_enqd, state.ops_deqd,
state.ops_enq_retries,
state.ops_deq_retries,
state.cycles_per_build,
state.cycles_per_enq,
state.cycles_per_deq);
} else {
if (rte_atomic16_test_and_set(&display_once))
printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
"Burst Size", "Enqueued",
"Dequeued", "Enq Retries",
"Deq Retries", "Cycles/Op",
"Cycles/Enq", "Cycles/Deq");
printf(CSV_LINE_FMT, state.ctx->lcore_id,
opts->test_buffer_size, test_burst_size,
state.ops_enqd, state.ops_deqd,
state.ops_enq_retries,
state.ops_deq_retries,
state.cycles_per_build,
state.cycles_per_enq,
state.cycles_per_deq);
}
/* Get next size from range or list */
if (opts->inc_burst_size != 0)
test_burst_size += opts->inc_burst_size;
else {
if (++burst_size_idx == opts->burst_size_count)
break;
test_burst_size = opts->burst_size_list[burst_size_idx];
}
}
return 0;
}
void
cperf_pmd_cyclecount_test_destructor(void *arg)
{
struct cperf_pmd_cyclecount_ctx *ctx = arg;
if (ctx == NULL)
return;
cperf_pmd_cyclecount_test_free(ctx);
}