numam-dpdk/drivers/net/ice/ice_dcf_ethdev.c
Dmitry Kozlyuk 2fe6f1b762 drivers/net: advertise no support for keeping flow rules
When RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP capability bit is zero,
the specified behavior is the same as it had been before
this bit was introduced. Explicitly reset it in all PMDs
supporting rte_flow API in order to attract the attention
of maintainers, who should eventually choose to advertise
the new capability or not. It is already known that
mlx4 and mlx5 will not support this capability.

For RTE_ETH_DEV_CAPA_FLOW_SHARED_OBJECT_KEEP
similar action is not performed,
because no PMD except mlx5 supports indirect actions.
Any PMD that starts doing so will anyway have to consider
all relevant API, including this capability.

Suggested-by: Ferruh Yigit <ferruh.yigit@intel.com>
Signed-off-by: Dmitry Kozlyuk <dkozlyuk@nvidia.com>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
Acked-by: Hyong Youb Kim <hyonkim@cisco.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2021-11-02 18:59:17 +01:00

1306 lines
32 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <errno.h>
#include <stdbool.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <unistd.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <ethdev_pci.h>
#include <rte_kvargs.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_dev.h>
#include <iavf_devids.h>
#include "ice_generic_flow.h"
#include "ice_dcf_ethdev.h"
#include "ice_rxtx.h"
static int
ice_dcf_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int
ice_dcf_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int
ice_dcf_dev_init(struct rte_eth_dev *eth_dev);
static int
ice_dcf_dev_uninit(struct rte_eth_dev *eth_dev);
static uint16_t
ice_dcf_recv_pkts(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **bufs,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
static uint16_t
ice_dcf_xmit_pkts(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **bufs,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
static int
ice_dcf_init_rxq(struct rte_eth_dev *dev, struct ice_rx_queue *rxq)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_eth_dev_data *dev_data = dev->data;
struct iavf_hw *hw = &dcf_ad->real_hw.avf;
uint16_t buf_size, max_pkt_len;
buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
max_pkt_len = RTE_MIN(ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
dev->data->mtu + ICE_ETH_OVERHEAD);
/* Check maximum packet length is set correctly. */
if (max_pkt_len <= RTE_ETHER_MIN_LEN ||
max_pkt_len > ICE_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u",
(uint32_t)RTE_ETHER_MIN_LEN,
(uint32_t)ICE_FRAME_SIZE_MAX);
return -EINVAL;
}
rxq->max_pkt_len = max_pkt_len;
if ((dev_data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_SCATTER) ||
(rxq->max_pkt_len + 2 * ICE_VLAN_TAG_SIZE) > buf_size) {
dev_data->scattered_rx = 1;
}
rxq->qrx_tail = hw->hw_addr + IAVF_QRX_TAIL1(rxq->queue_id);
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
return 0;
}
static int
ice_dcf_init_rx_queues(struct rte_eth_dev *dev)
{
struct ice_rx_queue **rxq =
(struct ice_rx_queue **)dev->data->rx_queues;
int i, ret;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = ice_dcf_init_rxq(dev, rxq[i]);
if (ret)
return ret;
}
ice_set_rx_function(dev);
ice_set_tx_function(dev);
return 0;
}
#define IAVF_MISC_VEC_ID RTE_INTR_VEC_ZERO_OFFSET
#define IAVF_RX_VEC_START RTE_INTR_VEC_RXTX_OFFSET
#define IAVF_ITR_INDEX_DEFAULT 0
#define IAVF_QUEUE_ITR_INTERVAL_DEFAULT 32 /* 32 us */
#define IAVF_QUEUE_ITR_INTERVAL_MAX 8160 /* 8160 us */
static inline uint16_t
iavf_calc_itr_interval(int16_t interval)
{
if (interval < 0 || interval > IAVF_QUEUE_ITR_INTERVAL_MAX)
interval = IAVF_QUEUE_ITR_INTERVAL_DEFAULT;
/* Convert to hardware count, as writing each 1 represents 2 us */
return interval / 2;
}
static int
ice_dcf_config_rx_queues_irqs(struct rte_eth_dev *dev,
struct rte_intr_handle *intr_handle)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
uint16_t interval, i;
int vec;
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
return -1;
}
if (rte_intr_dp_is_en(intr_handle)) {
if (rte_intr_vec_list_alloc(intr_handle, "intr_vec",
dev->data->nb_rx_queues)) {
PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
dev->data->nb_rx_queues);
return -1;
}
}
if (!dev->data->dev_conf.intr_conf.rxq ||
!rte_intr_dp_is_en(intr_handle)) {
/* Rx interrupt disabled, Map interrupt only for writeback */
hw->nb_msix = 1;
if (hw->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
/* If WB_ON_ITR supports, enable it */
hw->msix_base = IAVF_RX_VEC_START;
/* Set the ITR for index zero, to 2us to make sure that
* we leave time for aggregation to occur, but don't
* increase latency dramatically.
*/
IAVF_WRITE_REG(&hw->avf,
IAVF_VFINT_DYN_CTLN1(hw->msix_base - 1),
(0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
(2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
} else {
/* If no WB_ON_ITR offload flags, need to set
* interrupt for descriptor write back.
*/
hw->msix_base = IAVF_MISC_VEC_ID;
/* set ITR to max */
interval =
iavf_calc_itr_interval(IAVF_QUEUE_ITR_INTERVAL_MAX);
IAVF_WRITE_REG(&hw->avf, IAVF_VFINT_DYN_CTL01,
IAVF_VFINT_DYN_CTL01_INTENA_MASK |
(IAVF_ITR_INDEX_DEFAULT <<
IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
}
IAVF_WRITE_FLUSH(&hw->avf);
/* map all queues to the same interrupt */
for (i = 0; i < dev->data->nb_rx_queues; i++)
hw->rxq_map[hw->msix_base] |= 1 << i;
} else {
if (!rte_intr_allow_others(intr_handle)) {
hw->nb_msix = 1;
hw->msix_base = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
hw->rxq_map[hw->msix_base] |= 1 << i;
rte_intr_vec_list_index_set(intr_handle,
i, IAVF_MISC_VEC_ID);
}
PMD_DRV_LOG(DEBUG,
"vector %u are mapping to all Rx queues",
hw->msix_base);
} else {
/* If Rx interrupt is reuquired, and we can use
* multi interrupts, then the vec is from 1
*/
hw->nb_msix = RTE_MIN(hw->vf_res->max_vectors,
rte_intr_nb_efd_get(intr_handle));
hw->msix_base = IAVF_MISC_VEC_ID;
vec = IAVF_MISC_VEC_ID;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
hw->rxq_map[vec] |= 1 << i;
rte_intr_vec_list_index_set(intr_handle,
i, vec++);
if (vec >= hw->nb_msix)
vec = IAVF_RX_VEC_START;
}
PMD_DRV_LOG(DEBUG,
"%u vectors are mapping to %u Rx queues",
hw->nb_msix, dev->data->nb_rx_queues);
}
}
if (ice_dcf_config_irq_map(hw)) {
PMD_DRV_LOG(ERR, "config interrupt mapping failed");
return -1;
}
return 0;
}
static int
alloc_rxq_mbufs(struct ice_rx_queue *rxq)
{
volatile union ice_rx_flex_desc *rxd;
struct rte_mbuf *mbuf = NULL;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif
rxq->sw_ring[i].mbuf = (void *)mbuf;
}
return 0;
}
static int
ice_dcf_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
struct ice_rx_queue *rxq;
int err = 0;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
rxq = dev->data->rx_queues[rx_queue_id];
err = alloc_rxq_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = ice_dcf_switch_queue(&ad->real_hw, rx_queue_id, true, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
return err;
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static inline void
reset_rx_queue(struct ice_rx_queue *rxq)
{
uint16_t len;
uint32_t i;
if (!rxq)
return;
len = rxq->nb_rx_desc + ICE_RX_MAX_BURST;
for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < ICE_RX_MAX_BURST; i++)
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
/* for rx bulk */
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
static inline void
reset_tx_queue(struct ice_tx_queue *txq)
{
struct ice_tx_entry *txe;
uint32_t i, size;
uint16_t prev;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
txq->tx_ring[i].cmd_type_offset_bsz =
rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_tail = 0;
txq->nb_tx_used = 0;
txq->last_desc_cleaned = txq->nb_tx_desc - 1;
txq->nb_tx_free = txq->nb_tx_desc - 1;
txq->tx_next_dd = txq->tx_rs_thresh - 1;
txq->tx_next_rs = txq->tx_rs_thresh - 1;
}
static int
ice_dcf_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_rx_queue *rxq;
int err;
if (rx_queue_id >= dev->data->nb_rx_queues)
return -EINVAL;
err = ice_dcf_switch_queue(hw, rx_queue_id, true, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxq->rx_rel_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
ice_dcf_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
struct ice_tx_queue *txq;
int err = 0;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
txq = dev->data->tx_queues[tx_queue_id];
/* Init the RX tail register. */
txq->qtx_tail = hw->hw_addr + IAVF_QTX_TAIL1(tx_queue_id);
IAVF_PCI_REG_WRITE(txq->qtx_tail, 0);
IAVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = ice_dcf_switch_queue(&ad->real_hw, tx_queue_id, false, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
return err;
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
ice_dcf_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_tx_queue *txq;
int err;
if (tx_queue_id >= dev->data->nb_tx_queues)
return -EINVAL;
err = ice_dcf_switch_queue(hw, tx_queue_id, false, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
txq = dev->data->tx_queues[tx_queue_id];
txq->tx_rel_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
ice_dcf_start_queues(struct rte_eth_dev *dev)
{
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
int nb_rxq = 0;
int nb_txq, i;
for (nb_txq = 0; nb_txq < dev->data->nb_tx_queues; nb_txq++) {
txq = dev->data->tx_queues[nb_txq];
if (txq->tx_deferred_start)
continue;
if (ice_dcf_tx_queue_start(dev, nb_txq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_txq);
goto tx_err;
}
}
for (nb_rxq = 0; nb_rxq < dev->data->nb_rx_queues; nb_rxq++) {
rxq = dev->data->rx_queues[nb_rxq];
if (rxq->rx_deferred_start)
continue;
if (ice_dcf_rx_queue_start(dev, nb_rxq) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", nb_rxq);
goto rx_err;
}
}
return 0;
/* stop the started queues if failed to start all queues */
rx_err:
for (i = 0; i < nb_rxq; i++)
ice_dcf_rx_queue_stop(dev, i);
tx_err:
for (i = 0; i < nb_txq; i++)
ice_dcf_tx_queue_stop(dev, i);
return -1;
}
static int
ice_dcf_dev_start(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
struct ice_adapter *ad = &dcf_ad->parent;
struct ice_dcf_hw *hw = &dcf_ad->real_hw;
int ret;
if (hw->resetting) {
PMD_DRV_LOG(ERR,
"The DCF has been reset by PF, please reinit first");
return -EIO;
}
if (hw->tm_conf.root && !hw->tm_conf.committed) {
PMD_DRV_LOG(ERR,
"please call hierarchy_commit() before starting the port");
return -EIO;
}
ad->pf.adapter_stopped = 0;
hw->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
ret = ice_dcf_init_rx_queues(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to init queues");
return ret;
}
if (hw->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
ret = ice_dcf_init_rss(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to configure RSS");
return ret;
}
}
ret = ice_dcf_configure_queues(hw);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to config queues");
return ret;
}
ret = ice_dcf_config_rx_queues_irqs(dev, intr_handle);
if (ret) {
PMD_DRV_LOG(ERR, "Fail to config rx queues' irqs");
return ret;
}
if (dev->data->dev_conf.intr_conf.rxq != 0) {
rte_intr_disable(intr_handle);
rte_intr_enable(intr_handle);
}
ret = ice_dcf_start_queues(dev);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to enable queues");
return ret;
}
ret = ice_dcf_add_del_all_mac_addr(hw, true);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to add mac addr");
return ret;
}
dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
return 0;
}
static void
ice_dcf_stop_queues(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct ice_rx_queue *rxq;
struct ice_tx_queue *txq;
int ret, i;
/* Stop All queues */
ret = ice_dcf_disable_queues(hw);
if (ret)
PMD_DRV_LOG(WARNING, "Fail to stop queues");
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (!txq)
continue;
txq->tx_rel_mbufs(txq);
reset_tx_queue(txq);
dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (!rxq)
continue;
rxq->rx_rel_mbufs(rxq);
reset_rx_queue(rxq);
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
}
}
static int
ice_dcf_dev_stop(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct rte_intr_handle *intr_handle = dev->intr_handle;
struct ice_adapter *ad = &dcf_ad->parent;
struct ice_dcf_hw *hw = &dcf_ad->real_hw;
if (ad->pf.adapter_stopped == 1) {
PMD_DRV_LOG(DEBUG, "Port is already stopped");
return 0;
}
/* Stop the VF representors for this device */
ice_dcf_vf_repr_stop_all(dcf_ad);
ice_dcf_stop_queues(dev);
rte_intr_efd_disable(intr_handle);
rte_intr_vec_list_free(intr_handle);
ice_dcf_add_del_all_mac_addr(&dcf_ad->real_hw, false);
dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
ad->pf.adapter_stopped = 1;
hw->tm_conf.committed = false;
return 0;
}
static int
ice_dcf_dev_configure(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *dcf_ad = dev->data->dev_private;
struct ice_adapter *ad = &dcf_ad->parent;
ad->rx_bulk_alloc_allowed = true;
ad->tx_simple_allowed = true;
if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
return 0;
}
static int
ice_dcf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_dcf_hw *hw = &adapter->real_hw;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_queues = hw->vsi_res->num_queue_pairs;
dev_info->max_tx_queues = hw->vsi_res->num_queue_pairs;
dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX;
dev_info->hash_key_size = hw->vf_res->rss_key_size;
dev_info->reta_size = hw->vf_res->rss_lut_size;
dev_info->flow_type_rss_offloads = ICE_RSS_OFFLOAD_ALL;
dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
dev_info->rx_offload_capa =
RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_RX_OFFLOAD_SCATTER |
RTE_ETH_RX_OFFLOAD_VLAN_FILTER |
RTE_ETH_RX_OFFLOAD_RSS_HASH;
dev_info->tx_offload_capa =
RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
RTE_ETH_TX_OFFLOAD_MULTI_SEGS;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = ICE_DEFAULT_RX_PTHRESH,
.hthresh = ICE_DEFAULT_RX_HTHRESH,
.wthresh = ICE_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = ICE_DEFAULT_TX_PTHRESH,
.hthresh = ICE_DEFAULT_TX_HTHRESH,
.wthresh = ICE_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = ICE_MAX_RING_DESC,
.nb_min = ICE_MIN_RING_DESC,
.nb_align = ICE_ALIGN_RING_DESC,
};
return 0;
}
static int
ice_dcf_dev_promiscuous_enable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_promiscuous_disable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_allmulticast_enable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_allmulticast_disable(__rte_unused struct rte_eth_dev *dev)
{
return 0;
}
static int
ice_dcf_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
if (!dev)
return -EINVAL;
*ops = &ice_flow_ops;
return 0;
}
#define ICE_DCF_32_BIT_WIDTH (CHAR_BIT * 4)
#define ICE_DCF_48_BIT_WIDTH (CHAR_BIT * 6)
#define ICE_DCF_48_BIT_MASK RTE_LEN2MASK(ICE_DCF_48_BIT_WIDTH, uint64_t)
static void
ice_dcf_stat_update_48(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = *stat - *offset;
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << ICE_DCF_48_BIT_WIDTH)) - *offset);
*stat &= ICE_DCF_48_BIT_MASK;
}
static void
ice_dcf_stat_update_32(uint64_t *offset, uint64_t *stat)
{
if (*stat >= *offset)
*stat = (uint64_t)(*stat - *offset);
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << ICE_DCF_32_BIT_WIDTH)) - *offset);
}
static void
ice_dcf_update_stats(struct virtchnl_eth_stats *oes,
struct virtchnl_eth_stats *nes)
{
ice_dcf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
ice_dcf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
ice_dcf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
ice_dcf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
ice_dcf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
ice_dcf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
ice_dcf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
ice_dcf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
ice_dcf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
ice_dcf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
ice_dcf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
}
static int
ice_dcf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct virtchnl_eth_stats pstats;
int ret;
if (hw->resetting) {
PMD_DRV_LOG(ERR,
"The DCF has been reset by PF, please reinit first");
return -EIO;
}
ret = ice_dcf_query_stats(hw, &pstats);
if (ret == 0) {
ice_dcf_update_stats(&hw->eth_stats_offset, &pstats);
stats->ipackets = pstats.rx_unicast + pstats.rx_multicast +
pstats.rx_broadcast - pstats.rx_discards;
stats->opackets = pstats.tx_broadcast + pstats.tx_multicast +
pstats.tx_unicast;
stats->imissed = pstats.rx_discards;
stats->oerrors = pstats.tx_errors + pstats.tx_discards;
stats->ibytes = pstats.rx_bytes;
stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
stats->obytes = pstats.tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return ret;
}
static int
ice_dcf_stats_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct virtchnl_eth_stats pstats;
int ret;
if (hw->resetting)
return 0;
/* read stat values to clear hardware registers */
ret = ice_dcf_query_stats(hw, &pstats);
if (ret != 0)
return ret;
/* set stats offset base on current values */
hw->eth_stats_offset = pstats;
return 0;
}
static void
ice_dcf_free_repr_info(struct ice_dcf_adapter *dcf_adapter)
{
if (dcf_adapter->repr_infos) {
rte_free(dcf_adapter->repr_infos);
dcf_adapter->repr_infos = NULL;
}
}
static int
ice_dcf_init_repr_info(struct ice_dcf_adapter *dcf_adapter)
{
dcf_adapter->repr_infos =
rte_calloc("ice_dcf_rep_info",
dcf_adapter->real_hw.num_vfs,
sizeof(dcf_adapter->repr_infos[0]), 0);
if (!dcf_adapter->repr_infos) {
PMD_DRV_LOG(ERR, "Failed to alloc memory for VF representors\n");
return -ENOMEM;
}
return 0;
}
static int
ice_dcf_dev_close(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
(void)ice_dcf_dev_stop(dev);
ice_free_queues(dev);
ice_dcf_free_repr_info(adapter);
ice_dcf_uninit_parent_adapter(dev);
ice_dcf_uninit_hw(dev, &adapter->real_hw);
return 0;
}
int
ice_dcf_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
struct rte_eth_link new_link;
memset(&new_link, 0, sizeof(new_link));
/* Only read status info stored in VF, and the info is updated
* when receive LINK_CHANGE event from PF by virtchnl.
*/
switch (hw->link_speed) {
case 10:
new_link.link_speed = RTE_ETH_SPEED_NUM_10M;
break;
case 100:
new_link.link_speed = RTE_ETH_SPEED_NUM_100M;
break;
case 1000:
new_link.link_speed = RTE_ETH_SPEED_NUM_1G;
break;
case 10000:
new_link.link_speed = RTE_ETH_SPEED_NUM_10G;
break;
case 20000:
new_link.link_speed = RTE_ETH_SPEED_NUM_20G;
break;
case 25000:
new_link.link_speed = RTE_ETH_SPEED_NUM_25G;
break;
case 40000:
new_link.link_speed = RTE_ETH_SPEED_NUM_40G;
break;
case 50000:
new_link.link_speed = RTE_ETH_SPEED_NUM_50G;
break;
case 100000:
new_link.link_speed = RTE_ETH_SPEED_NUM_100G;
break;
default:
new_link.link_speed = RTE_ETH_SPEED_NUM_NONE;
break;
}
new_link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
new_link.link_status = hw->link_up ? RTE_ETH_LINK_UP :
RTE_ETH_LINK_DOWN;
new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
RTE_ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(dev, &new_link);
}
/* Add UDP tunneling port */
static int
ice_dcf_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_adapter *parent_adapter = &adapter->parent;
struct ice_hw *parent_hw = &parent_adapter->hw;
int ret = 0;
if (!udp_tunnel)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
ret = ice_create_tunnel(parent_hw, TNL_VXLAN,
udp_tunnel->udp_port);
break;
case RTE_ETH_TUNNEL_TYPE_ECPRI:
ret = ice_create_tunnel(parent_hw, TNL_ECPRI,
udp_tunnel->udp_port);
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -EINVAL;
break;
}
return ret;
}
/* Delete UDP tunneling port */
static int
ice_dcf_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
struct ice_dcf_adapter *adapter = dev->data->dev_private;
struct ice_adapter *parent_adapter = &adapter->parent;
struct ice_hw *parent_hw = &parent_adapter->hw;
int ret = 0;
if (!udp_tunnel)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_ETH_TUNNEL_TYPE_VXLAN:
case RTE_ETH_TUNNEL_TYPE_ECPRI:
ret = ice_destroy_tunnel(parent_hw, udp_tunnel->udp_port, 0);
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -EINVAL;
break;
}
return ret;
}
static int
ice_dcf_tm_ops_get(struct rte_eth_dev *dev __rte_unused,
void *arg)
{
if (!arg)
return -EINVAL;
*(const void **)arg = &ice_dcf_tm_ops;
return 0;
}
static inline void
ice_dcf_reset_hw(struct rte_eth_dev *eth_dev, struct ice_dcf_hw *hw)
{
ice_dcf_uninit_hw(eth_dev, hw);
ice_dcf_init_hw(eth_dev, hw);
}
/* Check if reset has been triggered by PF */
static inline bool
ice_dcf_is_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct iavf_hw *hw = &ad->real_hw.avf;
return !(IAVF_READ_REG(hw, IAVF_VF_ARQLEN1) &
IAVF_VF_ARQLEN1_ARQENABLE_MASK);
}
static int
ice_dcf_dev_reset(struct rte_eth_dev *dev)
{
struct ice_dcf_adapter *ad = dev->data->dev_private;
struct ice_dcf_hw *hw = &ad->real_hw;
int ret;
if (ice_dcf_is_reset(dev)) {
if (!ad->real_hw.resetting)
ad->real_hw.resetting = true;
PMD_DRV_LOG(ERR, "The DCF has been reset by PF");
/*
* Simply reset hw to trigger an additional DCF enable/disable
* cycle which help to workaround the issue that kernel driver
* may not clean up resource during previous reset.
*/
ice_dcf_reset_hw(dev, hw);
}
ret = ice_dcf_dev_uninit(dev);
if (ret)
return ret;
ret = ice_dcf_dev_init(dev);
return ret;
}
static const struct eth_dev_ops ice_dcf_eth_dev_ops = {
.dev_start = ice_dcf_dev_start,
.dev_stop = ice_dcf_dev_stop,
.dev_close = ice_dcf_dev_close,
.dev_reset = ice_dcf_dev_reset,
.dev_configure = ice_dcf_dev_configure,
.dev_infos_get = ice_dcf_dev_info_get,
.rx_queue_setup = ice_rx_queue_setup,
.tx_queue_setup = ice_tx_queue_setup,
.rx_queue_release = ice_dev_rx_queue_release,
.tx_queue_release = ice_dev_tx_queue_release,
.rx_queue_start = ice_dcf_rx_queue_start,
.tx_queue_start = ice_dcf_tx_queue_start,
.rx_queue_stop = ice_dcf_rx_queue_stop,
.tx_queue_stop = ice_dcf_tx_queue_stop,
.link_update = ice_dcf_link_update,
.stats_get = ice_dcf_stats_get,
.stats_reset = ice_dcf_stats_reset,
.promiscuous_enable = ice_dcf_dev_promiscuous_enable,
.promiscuous_disable = ice_dcf_dev_promiscuous_disable,
.allmulticast_enable = ice_dcf_dev_allmulticast_enable,
.allmulticast_disable = ice_dcf_dev_allmulticast_disable,
.flow_ops_get = ice_dcf_dev_flow_ops_get,
.udp_tunnel_port_add = ice_dcf_dev_udp_tunnel_port_add,
.udp_tunnel_port_del = ice_dcf_dev_udp_tunnel_port_del,
.tm_ops_get = ice_dcf_tm_ops_get,
};
static int
ice_dcf_dev_init(struct rte_eth_dev *eth_dev)
{
struct ice_dcf_adapter *adapter = eth_dev->data->dev_private;
eth_dev->dev_ops = &ice_dcf_eth_dev_ops;
eth_dev->rx_pkt_burst = ice_dcf_recv_pkts;
eth_dev->tx_pkt_burst = ice_dcf_xmit_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
adapter->real_hw.vc_event_msg_cb = ice_dcf_handle_pf_event_msg;
if (ice_dcf_init_hw(eth_dev, &adapter->real_hw) != 0) {
PMD_INIT_LOG(ERR, "Failed to init DCF hardware");
return -1;
}
if (ice_dcf_init_parent_adapter(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Failed to init DCF parent adapter");
ice_dcf_uninit_hw(eth_dev, &adapter->real_hw);
return -1;
}
return 0;
}
static int
ice_dcf_dev_uninit(struct rte_eth_dev *eth_dev)
{
ice_dcf_dev_close(eth_dev);
return 0;
}
static int
ice_dcf_cap_check_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "dcf"))
return -1;
return 0;
}
static int
ice_dcf_cap_selected(struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
const char *key = "cap";
int ret = 0;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, key))
goto exit;
/* dcf capability selected when there's a key-value pair: cap=dcf */
if (rte_kvargs_process(kvlist, key,
ice_dcf_cap_check_handler, NULL) < 0)
goto exit;
ret = 1;
exit:
rte_kvargs_free(kvlist);
return ret;
}
static int
eth_ice_dcf_pci_probe(__rte_unused struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_eth_devargs eth_da = { .nb_representor_ports = 0 };
struct ice_dcf_vf_repr_param repr_param;
char repr_name[RTE_ETH_NAME_MAX_LEN];
struct ice_dcf_adapter *dcf_adapter;
struct rte_eth_dev *dcf_ethdev;
uint16_t dcf_vsi_id;
int i, ret;
if (!ice_dcf_cap_selected(pci_dev->device.devargs))
return 1;
ret = rte_eth_devargs_parse(pci_dev->device.devargs->args, &eth_da);
if (ret)
return ret;
ret = rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct ice_dcf_adapter),
ice_dcf_dev_init);
if (ret || !eth_da.nb_representor_ports)
return ret;
if (eth_da.type != RTE_ETH_REPRESENTOR_VF)
return -ENOTSUP;
dcf_ethdev = rte_eth_dev_allocated(pci_dev->device.name);
if (dcf_ethdev == NULL)
return -ENODEV;
dcf_adapter = dcf_ethdev->data->dev_private;
ret = ice_dcf_init_repr_info(dcf_adapter);
if (ret)
return ret;
if (eth_da.nb_representor_ports > dcf_adapter->real_hw.num_vfs ||
eth_da.nb_representor_ports >= RTE_MAX_ETHPORTS) {
PMD_DRV_LOG(ERR, "the number of port representors is too large: %u",
eth_da.nb_representor_ports);
ice_dcf_free_repr_info(dcf_adapter);
return -EINVAL;
}
dcf_vsi_id = dcf_adapter->real_hw.vsi_id | VIRTCHNL_DCF_VF_VSI_VALID;
repr_param.dcf_eth_dev = dcf_ethdev;
repr_param.switch_domain_id = 0;
for (i = 0; i < eth_da.nb_representor_ports; i++) {
uint16_t vf_id = eth_da.representor_ports[i];
struct rte_eth_dev *vf_rep_eth_dev;
if (vf_id >= dcf_adapter->real_hw.num_vfs) {
PMD_DRV_LOG(ERR, "VF ID %u is out of range (0 ~ %u)",
vf_id, dcf_adapter->real_hw.num_vfs - 1);
ret = -EINVAL;
break;
}
if (dcf_adapter->real_hw.vf_vsi_map[vf_id] == dcf_vsi_id) {
PMD_DRV_LOG(ERR, "VF ID %u is DCF's ID.\n", vf_id);
ret = -EINVAL;
break;
}
repr_param.vf_id = vf_id;
snprintf(repr_name, sizeof(repr_name), "net_%s_representor_%u",
pci_dev->device.name, vf_id);
ret = rte_eth_dev_create(&pci_dev->device, repr_name,
sizeof(struct ice_dcf_vf_repr),
NULL, NULL, ice_dcf_vf_repr_init,
&repr_param);
if (ret) {
PMD_DRV_LOG(ERR, "failed to create DCF VF representor %s",
repr_name);
break;
}
vf_rep_eth_dev = rte_eth_dev_allocated(repr_name);
if (!vf_rep_eth_dev) {
PMD_DRV_LOG(ERR,
"Failed to find the ethdev for DCF VF representor: %s",
repr_name);
ret = -ENODEV;
break;
}
dcf_adapter->repr_infos[vf_id].vf_rep_eth_dev = vf_rep_eth_dev;
dcf_adapter->num_reprs++;
}
return ret;
}
static int
eth_ice_dcf_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_eth_dev *eth_dev;
eth_dev = rte_eth_dev_allocated(pci_dev->device.name);
if (!eth_dev)
return 0;
if (eth_dev->data->dev_flags & RTE_ETH_DEV_REPRESENTOR)
return rte_eth_dev_pci_generic_remove(pci_dev,
ice_dcf_vf_repr_uninit);
else
return rte_eth_dev_pci_generic_remove(pci_dev,
ice_dcf_dev_uninit);
}
static const struct rte_pci_id pci_id_ice_dcf_map[] = {
{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static struct rte_pci_driver rte_ice_dcf_pmd = {
.id_table = pci_id_ice_dcf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_ice_dcf_pci_probe,
.remove = eth_ice_dcf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_ice_dcf, rte_ice_dcf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_ice_dcf, pci_id_ice_dcf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_ice_dcf, "* igb_uio | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_ice_dcf, "cap=dcf");