numam-dpdk/drivers/net/sfc/sfc_ef100_tx.c
Andrew Rybchenko 50448dd3ab net/sfc: merge Rx and Tx doorbell counters into one
Datapath queue is either Rx or Tx, so just one counter is sufficient
for doorbells. It can count Tx doorbells in the case of Tx queue and
Rx doorbells in the case of Rx queue.

Signed-off-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2021-11-04 17:42:05 +01:00

996 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2021 Xilinx, Inc.
* Copyright(c) 2018-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <stdbool.h>
#include <rte_mbuf.h>
#include <rte_mbuf_dyn.h>
#include <rte_io.h>
#include <rte_net.h>
#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef100.h"
#include "sfc_debug.h"
#include "sfc_dp_tx.h"
#include "sfc_tweak.h"
#include "sfc_kvargs.h"
#include "sfc_ef100.h"
#define sfc_ef100_tx_err(_txq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_txq)->dp.dpq, __VA_ARGS__)
#define sfc_ef100_tx_debug(_txq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_txq)->dp.dpq, \
__VA_ARGS__)
/** Maximum length of the send descriptor data */
#define SFC_EF100_TX_SEND_DESC_LEN_MAX \
((1u << ESF_GZ_TX_SEND_LEN_WIDTH) - 1)
/** Maximum length of the segment descriptor data */
#define SFC_EF100_TX_SEG_DESC_LEN_MAX \
((1u << ESF_GZ_TX_SEG_LEN_WIDTH) - 1)
/**
* Maximum number of descriptors/buffers in the Tx ring.
* It should guarantee that corresponding event queue never overfill.
* EF100 native datapath uses event queue of the same size as Tx queue.
* Maximum number of events on datapath can be estimated as number of
* Tx queue entries (one event per Tx buffer in the worst case) plus
* Tx error and flush events.
*/
#define SFC_EF100_TXQ_LIMIT(_ndesc) \
((_ndesc) - 1 /* head must not step on tail */ - \
1 /* Rx error */ - 1 /* flush */)
struct sfc_ef100_tx_sw_desc {
struct rte_mbuf *mbuf;
};
struct sfc_ef100_txq {
unsigned int flags;
#define SFC_EF100_TXQ_STARTED 0x1
#define SFC_EF100_TXQ_NOT_RUNNING 0x2
#define SFC_EF100_TXQ_EXCEPTION 0x4
unsigned int ptr_mask;
unsigned int added;
unsigned int completed;
unsigned int max_fill_level;
unsigned int free_thresh;
struct sfc_ef100_tx_sw_desc *sw_ring;
efx_oword_t *txq_hw_ring;
volatile void *doorbell;
/* Completion/reap */
unsigned int evq_read_ptr;
unsigned int evq_phase_bit_shift;
volatile efx_qword_t *evq_hw_ring;
uint16_t tso_tcp_header_offset_limit;
uint16_t tso_max_nb_header_descs;
uint16_t tso_max_header_len;
uint16_t tso_max_nb_payload_descs;
uint32_t tso_max_payload_len;
uint32_t tso_max_nb_outgoing_frames;
/* Datapath transmit queue anchor */
struct sfc_dp_txq dp;
};
static inline struct sfc_ef100_txq *
sfc_ef100_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
{
return container_of(dp_txq, struct sfc_ef100_txq, dp);
}
static int
sfc_ef100_tx_prepare_pkt_tso(struct sfc_ef100_txq * const txq,
struct rte_mbuf *m)
{
size_t header_len = ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
m->outer_l2_len + m->outer_l3_len : 0) +
m->l2_len + m->l3_len + m->l4_len;
size_t payload_len = m->pkt_len - header_len;
unsigned long mss_conformant_max_payload_len;
unsigned int nb_payload_descs;
#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
switch (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
case 0:
/* FALLTHROUGH */
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
/* FALLTHROUGH */
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
break;
default:
return ENOTSUP;
}
#endif
mss_conformant_max_payload_len =
m->tso_segsz * txq->tso_max_nb_outgoing_frames;
/*
* Don't really want to know exact number of payload segments.
* Just use total number of segments as upper limit. Practically
* maximum number of payload segments is significantly bigger
* than maximum number header segments, so we can neglect header
* segments excluded total number of segments to estimate number
* of payload segments required.
*/
nb_payload_descs = m->nb_segs;
/*
* Carry out multiple independent checks using bitwise OR
* to avoid unnecessary conditional branching.
*/
if (unlikely((header_len > txq->tso_max_header_len) |
(nb_payload_descs > txq->tso_max_nb_payload_descs) |
(payload_len > txq->tso_max_payload_len) |
(payload_len > mss_conformant_max_payload_len) |
(m->pkt_len == header_len)))
return EINVAL;
return 0;
}
static uint16_t
sfc_ef100_tx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
uint16_t i;
for (i = 0; i < nb_pkts; i++) {
struct rte_mbuf *m = tx_pkts[i];
unsigned int max_nb_header_segs = 0;
bool calc_phdr_cksum = false;
int ret;
/*
* Partial checksum offload is used in the case of
* inner TCP/UDP checksum offload. It requires
* pseudo-header checksum which is calculated below,
* but requires contiguous packet headers.
*/
if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) &&
(m->ol_flags & RTE_MBUF_F_TX_L4_MASK)) {
calc_phdr_cksum = true;
max_nb_header_segs = 1;
} else if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
max_nb_header_segs = txq->tso_max_nb_header_descs;
}
ret = sfc_dp_tx_prepare_pkt(m, max_nb_header_segs, 0,
txq->tso_tcp_header_offset_limit,
txq->max_fill_level, 1, 0);
if (unlikely(ret != 0)) {
rte_errno = ret;
break;
}
if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
ret = sfc_ef100_tx_prepare_pkt_tso(txq, m);
if (unlikely(ret != 0)) {
rte_errno = ret;
break;
}
} else if (m->nb_segs > EFX_MASK32(ESF_GZ_TX_SEND_NUM_SEGS)) {
rte_errno = EINVAL;
break;
}
if (calc_phdr_cksum) {
/*
* Full checksum offload does IPv4 header checksum
* and does not require any assistance.
*/
ret = rte_net_intel_cksum_flags_prepare(m,
m->ol_flags & ~RTE_MBUF_F_TX_IP_CKSUM);
if (unlikely(ret != 0)) {
rte_errno = -ret;
break;
}
}
}
return i;
}
static bool
sfc_ef100_tx_get_event(struct sfc_ef100_txq *txq, efx_qword_t *ev)
{
volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;
/*
* Exception flag is set when reap is done.
* It is never done twice per packet burst get, and absence of
* the flag is checked on burst get entry.
*/
SFC_ASSERT((txq->flags & SFC_EF100_TXQ_EXCEPTION) == 0);
*ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];
if (!sfc_ef100_ev_present(ev,
(txq->evq_read_ptr >> txq->evq_phase_bit_shift) & 1))
return false;
if (unlikely(!sfc_ef100_ev_type_is(ev,
ESE_GZ_EF100_EV_TX_COMPLETION))) {
/*
* Do not move read_ptr to keep the event for exception
* handling by the control path.
*/
txq->flags |= SFC_EF100_TXQ_EXCEPTION;
sfc_ef100_tx_err(txq,
"TxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
txq->evq_read_ptr, txq->evq_read_ptr & txq->ptr_mask,
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
return false;
}
sfc_ef100_tx_debug(txq, "TxQ got event %08x:%08x at %u (%#x)",
EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
txq->evq_read_ptr,
txq->evq_read_ptr & txq->ptr_mask);
txq->evq_read_ptr++;
return true;
}
static unsigned int
sfc_ef100_tx_process_events(struct sfc_ef100_txq *txq)
{
unsigned int num_descs = 0;
efx_qword_t tx_ev;
while (sfc_ef100_tx_get_event(txq, &tx_ev))
num_descs += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);
return num_descs;
}
static void
sfc_ef100_tx_reap_num_descs(struct sfc_ef100_txq *txq, unsigned int num_descs)
{
if (num_descs > 0) {
unsigned int completed = txq->completed;
unsigned int pending = completed + num_descs;
struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
unsigned int nb = 0;
do {
struct sfc_ef100_tx_sw_desc *txd;
struct rte_mbuf *m;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf == NULL)
continue;
m = rte_pktmbuf_prefree_seg(txd->mbuf);
if (m == NULL)
continue;
txd->mbuf = NULL;
if (nb == RTE_DIM(bulk) ||
(nb != 0 && m->pool != bulk[0]->pool)) {
rte_mempool_put_bulk(bulk[0]->pool,
(void *)bulk, nb);
nb = 0;
}
bulk[nb++] = m;
} while (++completed != pending);
if (nb != 0)
rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);
txq->completed = completed;
}
}
static void
sfc_ef100_tx_reap(struct sfc_ef100_txq *txq)
{
sfc_ef100_tx_reap_num_descs(txq, sfc_ef100_tx_process_events(txq));
}
static void
sfc_ef100_tx_qdesc_prefix_create(const struct rte_mbuf *m, efx_oword_t *tx_desc)
{
efx_mport_id_t *mport_id =
RTE_MBUF_DYNFIELD(m, sfc_dp_mport_offset, efx_mport_id_t *);
EFX_POPULATE_OWORD_3(*tx_desc,
ESF_GZ_TX_PREFIX_EGRESS_MPORT,
mport_id->id,
ESF_GZ_TX_PREFIX_EGRESS_MPORT_EN, 1,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_PREFIX);
}
static uint8_t
sfc_ef100_tx_qdesc_cso_inner_l3(uint64_t tx_tunnel)
{
uint8_t inner_l3;
switch (tx_tunnel) {
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_VXLAN;
break;
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_GENEVE;
break;
default:
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
break;
}
return inner_l3;
}
static void
sfc_ef100_tx_qdesc_send_create(const struct rte_mbuf *m, efx_oword_t *tx_desc)
{
bool outer_l3;
bool outer_l4;
uint8_t inner_l3;
uint8_t partial_en;
uint16_t part_cksum_w;
uint16_t l4_offset_w;
if ((m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) == 0) {
outer_l3 = (m->ol_flags & RTE_MBUF_F_TX_IP_CKSUM);
outer_l4 = (m->ol_flags & RTE_MBUF_F_TX_L4_MASK);
inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
part_cksum_w = 0;
l4_offset_w = 0;
} else {
outer_l3 = (m->ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM);
outer_l4 = (m->ol_flags & RTE_MBUF_F_TX_OUTER_UDP_CKSUM);
inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(m->ol_flags &
RTE_MBUF_F_TX_TUNNEL_MASK);
switch (m->ol_flags & RTE_MBUF_F_TX_L4_MASK) {
case RTE_MBUF_F_TX_TCP_CKSUM:
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_TCP;
part_cksum_w = offsetof(struct rte_tcp_hdr, cksum) >> 1;
break;
case RTE_MBUF_F_TX_UDP_CKSUM:
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_UDP;
part_cksum_w = offsetof(struct rte_udp_hdr,
dgram_cksum) >> 1;
break;
default:
partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
part_cksum_w = 0;
break;
}
l4_offset_w = (m->outer_l2_len + m->outer_l3_len +
m->l2_len + m->l3_len) >> 1;
}
EFX_POPULATE_OWORD_10(*tx_desc,
ESF_GZ_TX_SEND_ADDR, rte_mbuf_data_iova(m),
ESF_GZ_TX_SEND_LEN, rte_pktmbuf_data_len(m),
ESF_GZ_TX_SEND_NUM_SEGS, m->nb_segs,
ESF_GZ_TX_SEND_CSO_PARTIAL_START_W, l4_offset_w,
ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W, part_cksum_w,
ESF_GZ_TX_SEND_CSO_PARTIAL_EN, partial_en,
ESF_GZ_TX_SEND_CSO_INNER_L3, inner_l3,
ESF_GZ_TX_SEND_CSO_OUTER_L3, outer_l3,
ESF_GZ_TX_SEND_CSO_OUTER_L4, outer_l4,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEND);
if (m->ol_flags & RTE_MBUF_F_TX_VLAN) {
efx_oword_t tx_desc_extra_fields;
EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
ESF_GZ_TX_SEND_VLAN_INSERT_TCI, m->vlan_tci);
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
}
}
static void
sfc_ef100_tx_qdesc_seg_create(rte_iova_t addr, uint16_t len,
efx_oword_t *tx_desc)
{
EFX_POPULATE_OWORD_3(*tx_desc,
ESF_GZ_TX_SEG_ADDR, addr,
ESF_GZ_TX_SEG_LEN, len,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG);
}
static void
sfc_ef100_tx_qdesc_tso_create(const struct rte_mbuf *m,
uint16_t nb_header_descs,
uint16_t nb_payload_descs,
size_t header_len, size_t payload_len,
size_t outer_iph_off, size_t outer_udph_off,
size_t iph_off, size_t tcph_off,
efx_oword_t *tx_desc)
{
efx_oword_t tx_desc_extra_fields;
int ed_outer_udp_len = (outer_udph_off != 0) ? 1 : 0;
int ed_outer_ip_len = (outer_iph_off != 0) ? 1 : 0;
int ed_outer_ip_id = (outer_iph_off != 0) ?
ESE_GZ_TX_DESC_IP4_ID_INC_MOD16 : 0;
/*
* If no tunnel encapsulation is present, then the ED_INNER
* fields should be used.
*/
int ed_inner_ip_id = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
uint8_t inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(
m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK);
EFX_POPULATE_OWORD_10(*tx_desc,
ESF_GZ_TX_TSO_MSS, m->tso_segsz,
ESF_GZ_TX_TSO_HDR_NUM_SEGS, nb_header_descs,
ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, nb_payload_descs,
ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, ed_outer_ip_id,
ESF_GZ_TX_TSO_ED_INNER_IP4_ID, ed_inner_ip_id,
ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, ed_outer_ip_len,
ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, ed_outer_udp_len,
ESF_GZ_TX_TSO_HDR_LEN_W, header_len >> 1,
ESF_GZ_TX_TSO_PAYLOAD_LEN, payload_len);
EFX_POPULATE_OWORD_9(tx_desc_extra_fields,
/*
* Outer offsets are required for outer IPv4 ID
* and length edits in the case of tunnel TSO.
*/
ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_iph_off >> 1,
ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_udph_off >> 1,
/*
* Inner offsets are required for inner IPv4 ID
* and IP length edits and partial checksum
* offload in the case of tunnel TSO.
*/
ESF_GZ_TX_TSO_INNER_L3_OFF_W, iph_off >> 1,
ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcph_off >> 1,
ESF_GZ_TX_TSO_CSO_INNER_L4,
inner_l3 != ESE_GZ_TX_DESC_CS_INNER_L3_OFF,
ESF_GZ_TX_TSO_CSO_INNER_L3, inner_l3,
/*
* Use outer full checksum offloads which do
* not require any extra information.
*/
ESF_GZ_TX_TSO_CSO_OUTER_L3, 1,
ESF_GZ_TX_TSO_CSO_OUTER_L4, 1,
ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO);
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
if (m->ol_flags & RTE_MBUF_F_TX_VLAN) {
EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
ESF_GZ_TX_TSO_VLAN_INSERT_EN, 1,
ESF_GZ_TX_TSO_VLAN_INSERT_TCI, m->vlan_tci);
EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
}
}
static inline void
sfc_ef100_tx_qpush(struct sfc_ef100_txq *txq, unsigned int added)
{
efx_dword_t dword;
EFX_POPULATE_DWORD_1(dword, ERF_GZ_TX_RING_PIDX, added & txq->ptr_mask);
/* DMA sync to device is not required */
/*
* rte_write32() has rte_io_wmb() which guarantees that the STORE
* operations (i.e. Rx and event descriptor updates) that precede
* the rte_io_wmb() call are visible to NIC before the STORE
* operations that follow it (i.e. doorbell write).
*/
rte_write32(dword.ed_u32[0], txq->doorbell);
txq->dp.dpq.dbells++;
sfc_ef100_tx_debug(txq, "TxQ pushed doorbell at pidx %u (added=%u)",
EFX_DWORD_FIELD(dword, ERF_GZ_TX_RING_PIDX),
added);
}
static unsigned int
sfc_ef100_tx_pkt_descs_max(const struct rte_mbuf *m)
{
unsigned int extra_descs = 0;
/** Maximum length of an mbuf segment data */
#define SFC_MBUF_SEG_LEN_MAX UINT16_MAX
RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);
if (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
/* Tx TSO descriptor */
extra_descs++;
/*
* Extra Tx segment descriptor may be required if header
* ends in the middle of segment.
*/
extra_descs++;
} else {
/*
* mbuf segment cannot be bigger than maximum segment length
* and maximum packet length since TSO is not supported yet.
* Make sure that the first segment does not need fragmentation
* (split into many Tx descriptors).
*/
RTE_BUILD_BUG_ON(SFC_EF100_TX_SEND_DESC_LEN_MAX <
RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
SFC_MBUF_SEG_LEN_MAX));
}
if (m->ol_flags & sfc_dp_mport_override) {
/* Tx override prefix descriptor will be used */
extra_descs++;
}
/*
* Any segment of scattered packet cannot be bigger than maximum
* segment length. Make sure that subsequent segments do not need
* fragmentation (split into many Tx descriptors).
*/
RTE_BUILD_BUG_ON(SFC_EF100_TX_SEG_DESC_LEN_MAX < SFC_MBUF_SEG_LEN_MAX);
return m->nb_segs + extra_descs;
}
static struct rte_mbuf *
sfc_ef100_xmit_tso_pkt(struct sfc_ef100_txq * const txq,
struct rte_mbuf *m, unsigned int *added)
{
struct rte_mbuf *m_seg = m;
unsigned int nb_hdr_descs;
unsigned int nb_pld_descs;
unsigned int seg_split = 0;
unsigned int tso_desc_id;
unsigned int id;
size_t outer_iph_off;
size_t outer_udph_off;
size_t iph_off;
size_t tcph_off;
size_t header_len;
size_t remaining_hdr_len;
if (m->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
outer_iph_off = m->outer_l2_len;
outer_udph_off = outer_iph_off + m->outer_l3_len;
} else {
outer_iph_off = 0;
outer_udph_off = 0;
}
iph_off = outer_udph_off + m->l2_len;
tcph_off = iph_off + m->l3_len;
header_len = tcph_off + m->l4_len;
/*
* Remember ID of the TX_TSO descriptor to be filled in.
* We can't fill it in right now since we need to calculate
* number of header and payload segments first and don't want
* to traverse it twice here.
*/
tso_desc_id = (*added)++ & txq->ptr_mask;
remaining_hdr_len = header_len;
do {
id = (*added)++ & txq->ptr_mask;
if (rte_pktmbuf_data_len(m_seg) <= remaining_hdr_len) {
/* The segment is fully header segment */
sfc_ef100_tx_qdesc_seg_create(
rte_mbuf_data_iova(m_seg),
rte_pktmbuf_data_len(m_seg),
&txq->txq_hw_ring[id]);
remaining_hdr_len -= rte_pktmbuf_data_len(m_seg);
} else {
/*
* The segment must be split into header and
* payload segments
*/
sfc_ef100_tx_qdesc_seg_create(
rte_mbuf_data_iova(m_seg),
remaining_hdr_len,
&txq->txq_hw_ring[id]);
SFC_ASSERT(txq->sw_ring[id].mbuf == NULL);
id = (*added)++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_seg_create(
rte_mbuf_data_iova(m_seg) + remaining_hdr_len,
rte_pktmbuf_data_len(m_seg) - remaining_hdr_len,
&txq->txq_hw_ring[id]);
remaining_hdr_len = 0;
seg_split = 1;
}
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
} while (remaining_hdr_len > 0);
/*
* If a segment is split into header and payload segments, added
* pointer counts it twice and we should correct it.
*/
nb_hdr_descs = ((id - tso_desc_id) & txq->ptr_mask) - seg_split;
nb_pld_descs = m->nb_segs - nb_hdr_descs + seg_split;
sfc_ef100_tx_qdesc_tso_create(m, nb_hdr_descs, nb_pld_descs, header_len,
rte_pktmbuf_pkt_len(m) - header_len,
outer_iph_off, outer_udph_off,
iph_off, tcph_off,
&txq->txq_hw_ring[tso_desc_id]);
return m_seg;
}
static uint16_t
sfc_ef100_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
unsigned int added;
unsigned int dma_desc_space;
bool reap_done;
struct rte_mbuf **pktp;
struct rte_mbuf **pktp_end;
if (unlikely(txq->flags &
(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
return 0;
added = txq->added;
dma_desc_space = txq->max_fill_level - (added - txq->completed);
reap_done = (dma_desc_space < txq->free_thresh);
if (reap_done) {
sfc_ef100_tx_reap(txq);
dma_desc_space = txq->max_fill_level - (added - txq->completed);
}
for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
pktp != pktp_end;
++pktp) {
struct rte_mbuf *m_seg = *pktp;
unsigned int pkt_start = added;
unsigned int id;
if (likely(pktp + 1 != pktp_end))
rte_mbuf_prefetch_part1(pktp[1]);
if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space) {
if (reap_done)
break;
/* Push already prepared descriptors before polling */
if (added != txq->added) {
sfc_ef100_tx_qpush(txq, added);
txq->added = added;
}
sfc_ef100_tx_reap(txq);
reap_done = true;
dma_desc_space = txq->max_fill_level -
(added - txq->completed);
if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space)
break;
}
if (m_seg->ol_flags & sfc_dp_mport_override) {
id = added++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_prefix_create(m_seg,
&txq->txq_hw_ring[id]);
}
if (m_seg->ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
m_seg = sfc_ef100_xmit_tso_pkt(txq, m_seg, &added);
} else {
id = added++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_send_create(m_seg,
&txq->txq_hw_ring[id]);
/*
* rte_pktmbuf_free() is commonly used in DPDK for
* recycling packets - the function checks every
* segment's reference counter and returns the
* buffer to its pool whenever possible;
* nevertheless, freeing mbuf segments one by one
* may entail some performance decline;
* from this point, sfc_efx_tx_reap() does the same job
* on its own and frees buffers in bulks (all mbufs
* within a bulk belong to the same pool);
* from this perspective, individual segment pointers
* must be associated with the corresponding SW
* descriptors independently so that only one loop
* is sufficient on reap to inspect all the buffers
*/
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
}
while (m_seg != NULL) {
RTE_BUILD_BUG_ON(SFC_MBUF_SEG_LEN_MAX >
SFC_EF100_TX_SEG_DESC_LEN_MAX);
id = added++ & txq->ptr_mask;
sfc_ef100_tx_qdesc_seg_create(rte_mbuf_data_iova(m_seg),
rte_pktmbuf_data_len(m_seg),
&txq->txq_hw_ring[id]);
txq->sw_ring[id].mbuf = m_seg;
m_seg = m_seg->next;
}
dma_desc_space -= (added - pkt_start);
sfc_pkts_bytes_add(&txq->dp.dpq.stats, 1,
rte_pktmbuf_pkt_len(*pktp));
}
if (likely(added != txq->added)) {
sfc_ef100_tx_qpush(txq, added);
txq->added = added;
}
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
if (!reap_done)
sfc_ef100_tx_reap(txq);
#endif
return pktp - &tx_pkts[0];
}
static sfc_dp_tx_get_dev_info_t sfc_ef100_get_dev_info;
static void
sfc_ef100_get_dev_info(struct rte_eth_dev_info *dev_info)
{
/*
* Number of descriptors just defines maximum number of pushed
* descriptors (fill level).
*/
dev_info->tx_desc_lim.nb_min = 1;
dev_info->tx_desc_lim.nb_align = 1;
}
static sfc_dp_tx_qsize_up_rings_t sfc_ef100_tx_qsize_up_rings;
static int
sfc_ef100_tx_qsize_up_rings(uint16_t nb_tx_desc,
struct sfc_dp_tx_hw_limits *limits,
unsigned int *txq_entries,
unsigned int *evq_entries,
unsigned int *txq_max_fill_level)
{
/*
* rte_ethdev API guarantees that the number meets min, max and
* alignment requirements.
*/
if (nb_tx_desc <= limits->txq_min_entries)
*txq_entries = limits->txq_min_entries;
else
*txq_entries = rte_align32pow2(nb_tx_desc);
*evq_entries = *txq_entries;
*txq_max_fill_level = RTE_MIN(nb_tx_desc,
SFC_EF100_TXQ_LIMIT(*evq_entries));
return 0;
}
static sfc_dp_tx_qcreate_t sfc_ef100_tx_qcreate;
static int
sfc_ef100_tx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_tx_qcreate_info *info,
struct sfc_dp_txq **dp_txqp)
{
struct sfc_ef100_txq *txq;
int rc;
rc = EINVAL;
if (info->txq_entries != info->evq_entries)
goto fail_bad_args;
rc = ENOMEM;
txq = rte_zmalloc_socket("sfc-ef100-txq", sizeof(*txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL)
goto fail_txq_alloc;
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
txq->sw_ring = rte_calloc_socket("sfc-ef100-txq-sw_ring",
info->txq_entries,
sizeof(*txq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL)
goto fail_sw_ring_alloc;
txq->flags = SFC_EF100_TXQ_NOT_RUNNING;
txq->ptr_mask = info->txq_entries - 1;
txq->max_fill_level = info->max_fill_level;
txq->free_thresh = info->free_thresh;
txq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
txq->txq_hw_ring = info->txq_hw_ring;
txq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_GZ_TX_RING_DOORBELL_OFST +
(info->hw_index << info->vi_window_shift);
txq->evq_hw_ring = info->evq_hw_ring;
txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
txq->tso_max_nb_header_descs = info->tso_max_nb_header_descs;
txq->tso_max_header_len = info->tso_max_header_len;
txq->tso_max_nb_payload_descs = info->tso_max_nb_payload_descs;
txq->tso_max_payload_len = info->tso_max_payload_len;
txq->tso_max_nb_outgoing_frames = info->tso_max_nb_outgoing_frames;
sfc_ef100_tx_debug(txq, "TxQ doorbell is %p", txq->doorbell);
*dp_txqp = &txq->dp;
return 0;
fail_sw_ring_alloc:
rte_free(txq);
fail_txq_alloc:
fail_bad_args:
return rc;
}
static sfc_dp_tx_qdestroy_t sfc_ef100_tx_qdestroy;
static void
sfc_ef100_tx_qdestroy(struct sfc_dp_txq *dp_txq)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
rte_free(txq->sw_ring);
rte_free(txq);
}
static sfc_dp_tx_qstart_t sfc_ef100_tx_qstart;
static int
sfc_ef100_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
unsigned int txq_desc_index)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
txq->evq_read_ptr = evq_read_ptr;
txq->added = txq->completed = txq_desc_index;
txq->flags |= SFC_EF100_TXQ_STARTED;
txq->flags &= ~(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION);
return 0;
}
static sfc_dp_tx_qstop_t sfc_ef100_tx_qstop;
static void
sfc_ef100_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
txq->flags |= SFC_EF100_TXQ_NOT_RUNNING;
*evq_read_ptr = txq->evq_read_ptr;
}
static sfc_dp_tx_qtx_ev_t sfc_ef100_tx_qtx_ev;
static bool
sfc_ef100_tx_qtx_ev(struct sfc_dp_txq *dp_txq, unsigned int num_descs)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
SFC_ASSERT(txq->flags & SFC_EF100_TXQ_NOT_RUNNING);
sfc_ef100_tx_reap_num_descs(txq, num_descs);
return false;
}
static sfc_dp_tx_qreap_t sfc_ef100_tx_qreap;
static void
sfc_ef100_tx_qreap(struct sfc_dp_txq *dp_txq)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
unsigned int completed;
for (completed = txq->completed; completed != txq->added; ++completed) {
struct sfc_ef100_tx_sw_desc *txd;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf != NULL) {
rte_pktmbuf_free_seg(txd->mbuf);
txd->mbuf = NULL;
}
}
txq->flags &= ~SFC_EF100_TXQ_STARTED;
}
static unsigned int
sfc_ef100_tx_qdesc_npending(struct sfc_ef100_txq *txq)
{
const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
unsigned int npending = 0;
efx_qword_t tx_ev;
if (unlikely(txq->flags &
(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
return 0;
while (sfc_ef100_tx_get_event(txq, &tx_ev))
npending += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);
/*
* The function does not process events, so return event queue read
* pointer to the original position to allow the events that were
* read to be processed later
*/
txq->evq_read_ptr = evq_old_read_ptr;
return npending;
}
static sfc_dp_tx_qdesc_status_t sfc_ef100_tx_qdesc_status;
static int
sfc_ef100_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
{
struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
unsigned int pushed = txq->added - txq->completed;
if (unlikely(offset > txq->ptr_mask))
return -EINVAL;
if (unlikely(offset >= txq->max_fill_level))
return RTE_ETH_TX_DESC_UNAVAIL;
return (offset >= pushed ||
offset < sfc_ef100_tx_qdesc_npending(txq)) ?
RTE_ETH_TX_DESC_DONE : RTE_ETH_TX_DESC_FULL;
}
struct sfc_dp_tx sfc_ef100_tx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF100,
.type = SFC_DP_TX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF100,
},
.features = SFC_DP_TX_FEAT_MULTI_PROCESS |
SFC_DP_TX_FEAT_STATS,
.dev_offload_capa = 0,
.queue_offload_capa = RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
RTE_ETH_TX_OFFLOAD_TCP_TSO |
RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO,
.get_dev_info = sfc_ef100_get_dev_info,
.qsize_up_rings = sfc_ef100_tx_qsize_up_rings,
.qcreate = sfc_ef100_tx_qcreate,
.qdestroy = sfc_ef100_tx_qdestroy,
.qstart = sfc_ef100_tx_qstart,
.qtx_ev = sfc_ef100_tx_qtx_ev,
.qstop = sfc_ef100_tx_qstop,
.qreap = sfc_ef100_tx_qreap,
.qdesc_status = sfc_ef100_tx_qdesc_status,
.pkt_prepare = sfc_ef100_tx_prepare_pkts,
.pkt_burst = sfc_ef100_xmit_pkts,
};