6e12ec4c4d
Add checks for: - all instructions are valid ones (known opcodes, correct syntax, valid reg/off/imm values, etc.) - no unreachable instructions - no loops - basic stack boundaries checks - division by zero Still need to add checks for: - use/return only initialized registers and stack data. - memory boundaries violation Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Ferruh Yigit <ferruh.yigit@intel.com>
1185 lines
30 KiB
C
1185 lines
30 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2018 Intel Corporation
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_eal.h>
|
|
|
|
#include "bpf_impl.h"
|
|
|
|
/* possible instruction node colour */
|
|
enum {
|
|
WHITE,
|
|
GREY,
|
|
BLACK,
|
|
MAX_NODE_COLOUR
|
|
};
|
|
|
|
/* possible edge types */
|
|
enum {
|
|
UNKNOWN_EDGE,
|
|
TREE_EDGE,
|
|
BACK_EDGE,
|
|
CROSS_EDGE,
|
|
MAX_EDGE_TYPE
|
|
};
|
|
|
|
struct bpf_reg_state {
|
|
uint64_t val;
|
|
};
|
|
|
|
struct bpf_eval_state {
|
|
struct bpf_reg_state rs[EBPF_REG_NUM];
|
|
};
|
|
|
|
#define MAX_EDGES 2
|
|
|
|
struct inst_node {
|
|
uint8_t colour;
|
|
uint8_t nb_edge:4;
|
|
uint8_t cur_edge:4;
|
|
uint8_t edge_type[MAX_EDGES];
|
|
uint32_t edge_dest[MAX_EDGES];
|
|
uint32_t prev_node;
|
|
struct bpf_eval_state *evst;
|
|
};
|
|
|
|
struct bpf_verifier {
|
|
const struct rte_bpf_prm *prm;
|
|
struct inst_node *in;
|
|
int32_t stack_sz;
|
|
uint32_t nb_nodes;
|
|
uint32_t nb_jcc_nodes;
|
|
uint32_t node_colour[MAX_NODE_COLOUR];
|
|
uint32_t edge_type[MAX_EDGE_TYPE];
|
|
struct bpf_eval_state *evst;
|
|
struct {
|
|
uint32_t num;
|
|
uint32_t cur;
|
|
struct bpf_eval_state *ent;
|
|
} evst_pool;
|
|
};
|
|
|
|
struct bpf_ins_check {
|
|
struct {
|
|
uint16_t dreg;
|
|
uint16_t sreg;
|
|
} mask;
|
|
struct {
|
|
uint16_t min;
|
|
uint16_t max;
|
|
} off;
|
|
struct {
|
|
uint32_t min;
|
|
uint32_t max;
|
|
} imm;
|
|
const char * (*check)(const struct ebpf_insn *);
|
|
const char * (*eval)(struct bpf_verifier *, const struct ebpf_insn *);
|
|
};
|
|
|
|
#define ALL_REGS RTE_LEN2MASK(EBPF_REG_NUM, uint16_t)
|
|
#define WRT_REGS RTE_LEN2MASK(EBPF_REG_10, uint16_t)
|
|
#define ZERO_REG RTE_LEN2MASK(EBPF_REG_1, uint16_t)
|
|
|
|
/*
|
|
* check and evaluate functions for particular instruction types.
|
|
*/
|
|
|
|
static const char *
|
|
check_alu_bele(const struct ebpf_insn *ins)
|
|
{
|
|
if (ins->imm != 16 && ins->imm != 32 && ins->imm != 64)
|
|
return "invalid imm field";
|
|
return NULL;
|
|
}
|
|
|
|
static const char *
|
|
eval_stack(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
|
|
{
|
|
int32_t ofs;
|
|
|
|
ofs = ins->off;
|
|
|
|
if (ofs >= 0 || ofs < -MAX_BPF_STACK_SIZE)
|
|
return "stack boundary violation";
|
|
|
|
ofs = -ofs;
|
|
bvf->stack_sz = RTE_MAX(bvf->stack_sz, ofs);
|
|
return NULL;
|
|
}
|
|
|
|
static const char *
|
|
eval_store(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
|
|
{
|
|
if (ins->dst_reg == EBPF_REG_10)
|
|
return eval_stack(bvf, ins);
|
|
return NULL;
|
|
}
|
|
|
|
static const char *
|
|
eval_load(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
|
|
{
|
|
if (ins->src_reg == EBPF_REG_10)
|
|
return eval_stack(bvf, ins);
|
|
return NULL;
|
|
}
|
|
|
|
static const char *
|
|
eval_call(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
|
|
{
|
|
uint32_t idx;
|
|
|
|
idx = ins->imm;
|
|
|
|
if (idx >= bvf->prm->nb_xsym ||
|
|
bvf->prm->xsym[idx].type != RTE_BPF_XTYPE_FUNC)
|
|
return "invalid external function index";
|
|
|
|
/* for now don't support function calls on 32 bit platform */
|
|
if (sizeof(uint64_t) != sizeof(uintptr_t))
|
|
return "function calls are supported only for 64 bit apps";
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* validate parameters for each instruction type.
|
|
*/
|
|
static const struct bpf_ins_check ins_chk[UINT8_MAX] = {
|
|
/* ALU IMM 32-bit instructions */
|
|
[(BPF_ALU | BPF_ADD | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_SUB | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_AND | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_OR | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_LSH | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_RSH | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_XOR | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_MUL | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | EBPF_MOV | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(BPF_ALU | BPF_DIV | BPF_K)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 1, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_ALU | BPF_MOD | BPF_K)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 1, .max = UINT32_MAX},
|
|
},
|
|
/* ALU IMM 64-bit instructions */
|
|
[(EBPF_ALU64 | BPF_ADD | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_SUB | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_AND | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_OR | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_LSH | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_RSH | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | EBPF_ARSH | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_XOR | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_MUL | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | EBPF_MOV | BPF_K)] = {
|
|
.mask = {.dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX,},
|
|
},
|
|
[(EBPF_ALU64 | BPF_DIV | BPF_K)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 1, .max = UINT32_MAX},
|
|
},
|
|
[(EBPF_ALU64 | BPF_MOD | BPF_K)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 1, .max = UINT32_MAX},
|
|
},
|
|
/* ALU REG 32-bit instructions */
|
|
[(BPF_ALU | BPF_ADD | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_SUB | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_AND | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_OR | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_LSH | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_RSH | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_XOR | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_MUL | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_DIV | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_MOD | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | EBPF_MOV | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | BPF_NEG)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_ALU | EBPF_END | EBPF_TO_BE)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 16, .max = 64},
|
|
.check = check_alu_bele,
|
|
},
|
|
[(BPF_ALU | EBPF_END | EBPF_TO_LE)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 16, .max = 64},
|
|
.check = check_alu_bele,
|
|
},
|
|
/* ALU REG 64-bit instructions */
|
|
[(EBPF_ALU64 | BPF_ADD | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_SUB | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_AND | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_OR | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_LSH | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_RSH | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | EBPF_ARSH | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_XOR | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_MUL | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_DIV | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_MOD | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | EBPF_MOV | BPF_X)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(EBPF_ALU64 | BPF_NEG)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
/* load instructions */
|
|
[(BPF_LDX | BPF_MEM | BPF_B)] = {
|
|
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_load,
|
|
},
|
|
[(BPF_LDX | BPF_MEM | BPF_H)] = {
|
|
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_load,
|
|
},
|
|
[(BPF_LDX | BPF_MEM | BPF_W)] = {
|
|
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_load,
|
|
},
|
|
[(BPF_LDX | BPF_MEM | EBPF_DW)] = {
|
|
.mask = {. dreg = WRT_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_load,
|
|
},
|
|
/* load 64 bit immediate value */
|
|
[(BPF_LD | BPF_IMM | EBPF_DW)] = {
|
|
.mask = { .dreg = WRT_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
/* store REG instructions */
|
|
[(BPF_STX | BPF_MEM | BPF_B)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_STX | BPF_MEM | BPF_H)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_STX | BPF_MEM | BPF_W)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_STX | BPF_MEM | EBPF_DW)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_store,
|
|
},
|
|
/* atomic add instructions */
|
|
[(BPF_STX | EBPF_XADD | BPF_W)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_STX | EBPF_XADD | EBPF_DW)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
.eval = eval_store,
|
|
},
|
|
/* store IMM instructions */
|
|
[(BPF_ST | BPF_MEM | BPF_B)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_ST | BPF_MEM | BPF_H)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_ST | BPF_MEM | BPF_W)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
.eval = eval_store,
|
|
},
|
|
[(BPF_ST | BPF_MEM | EBPF_DW)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
.eval = eval_store,
|
|
},
|
|
/* jump instruction */
|
|
[(BPF_JMP | BPF_JA)] = {
|
|
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
/* jcc IMM instructions */
|
|
[(BPF_JMP | BPF_JEQ | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JNE | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | BPF_JGT | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JLT | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | BPF_JGE | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JLE | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JSGT | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JSLT | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JSGE | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | EBPF_JSLE | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
[(BPF_JMP | BPF_JSET | BPF_K)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
},
|
|
/* jcc REG instructions */
|
|
[(BPF_JMP | BPF_JEQ | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JNE | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | BPF_JGT | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JLT | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | BPF_JGE | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JLE | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JSGT | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JSLT | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JSGE | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | EBPF_JSLE | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
[(BPF_JMP | BPF_JSET | BPF_X)] = {
|
|
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
|
.off = { .min = 0, .max = UINT16_MAX},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
/* call instruction */
|
|
[(BPF_JMP | EBPF_CALL)] = {
|
|
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = UINT32_MAX},
|
|
.eval = eval_call,
|
|
},
|
|
/* ret instruction */
|
|
[(BPF_JMP | EBPF_EXIT)] = {
|
|
.mask = { .dreg = ZERO_REG, .sreg = ZERO_REG},
|
|
.off = { .min = 0, .max = 0},
|
|
.imm = { .min = 0, .max = 0},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* make sure that instruction syntax is valid,
|
|
* and it fields don't violate partciular instrcution type restrictions.
|
|
*/
|
|
static const char *
|
|
check_syntax(const struct ebpf_insn *ins)
|
|
{
|
|
|
|
uint8_t op;
|
|
uint16_t off;
|
|
uint32_t imm;
|
|
|
|
op = ins->code;
|
|
|
|
if (ins_chk[op].mask.dreg == 0)
|
|
return "invalid opcode";
|
|
|
|
if ((ins_chk[op].mask.dreg & 1 << ins->dst_reg) == 0)
|
|
return "invalid dst-reg field";
|
|
|
|
if ((ins_chk[op].mask.sreg & 1 << ins->src_reg) == 0)
|
|
return "invalid src-reg field";
|
|
|
|
off = ins->off;
|
|
if (ins_chk[op].off.min > off || ins_chk[op].off.max < off)
|
|
return "invalid off field";
|
|
|
|
imm = ins->imm;
|
|
if (ins_chk[op].imm.min > imm || ins_chk[op].imm.max < imm)
|
|
return "invalid imm field";
|
|
|
|
if (ins_chk[op].check != NULL)
|
|
return ins_chk[op].check(ins);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* helper function, return instruction index for the given node.
|
|
*/
|
|
static uint32_t
|
|
get_node_idx(const struct bpf_verifier *bvf, const struct inst_node *node)
|
|
{
|
|
return node - bvf->in;
|
|
}
|
|
|
|
/*
|
|
* helper function, used to walk through constructed CFG.
|
|
*/
|
|
static struct inst_node *
|
|
get_next_node(struct bpf_verifier *bvf, struct inst_node *node)
|
|
{
|
|
uint32_t ce, ne, dst;
|
|
|
|
ne = node->nb_edge;
|
|
ce = node->cur_edge;
|
|
if (ce == ne)
|
|
return NULL;
|
|
|
|
node->cur_edge++;
|
|
dst = node->edge_dest[ce];
|
|
return bvf->in + dst;
|
|
}
|
|
|
|
static void
|
|
set_node_colour(struct bpf_verifier *bvf, struct inst_node *node,
|
|
uint32_t new)
|
|
{
|
|
uint32_t prev;
|
|
|
|
prev = node->colour;
|
|
node->colour = new;
|
|
|
|
bvf->node_colour[prev]--;
|
|
bvf->node_colour[new]++;
|
|
}
|
|
|
|
/*
|
|
* helper function, add new edge between two nodes.
|
|
*/
|
|
static int
|
|
add_edge(struct bpf_verifier *bvf, struct inst_node *node, uint32_t nidx)
|
|
{
|
|
uint32_t ne;
|
|
|
|
if (nidx > bvf->prm->nb_ins) {
|
|
RTE_BPF_LOG(ERR, "%s: program boundary violation at pc: %u, "
|
|
"next pc: %u\n",
|
|
__func__, get_node_idx(bvf, node), nidx);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ne = node->nb_edge;
|
|
if (ne >= RTE_DIM(node->edge_dest)) {
|
|
RTE_BPF_LOG(ERR, "%s: internal error at pc: %u\n",
|
|
__func__, get_node_idx(bvf, node));
|
|
return -EINVAL;
|
|
}
|
|
|
|
node->edge_dest[ne] = nidx;
|
|
node->nb_edge = ne + 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* helper function, determine type of edge between two nodes.
|
|
*/
|
|
static void
|
|
set_edge_type(struct bpf_verifier *bvf, struct inst_node *node,
|
|
const struct inst_node *next)
|
|
{
|
|
uint32_t ce, clr, type;
|
|
|
|
ce = node->cur_edge - 1;
|
|
clr = next->colour;
|
|
|
|
type = UNKNOWN_EDGE;
|
|
|
|
if (clr == WHITE)
|
|
type = TREE_EDGE;
|
|
else if (clr == GREY)
|
|
type = BACK_EDGE;
|
|
else if (clr == BLACK)
|
|
/*
|
|
* in fact it could be either direct or cross edge,
|
|
* but for now, we don't need to distinguish between them.
|
|
*/
|
|
type = CROSS_EDGE;
|
|
|
|
node->edge_type[ce] = type;
|
|
bvf->edge_type[type]++;
|
|
}
|
|
|
|
static struct inst_node *
|
|
get_prev_node(struct bpf_verifier *bvf, struct inst_node *node)
|
|
{
|
|
return bvf->in + node->prev_node;
|
|
}
|
|
|
|
/*
|
|
* Depth-First Search (DFS) through previously constructed
|
|
* Control Flow Graph (CFG).
|
|
* Information collected at this path would be used later
|
|
* to determine is there any loops, and/or unreachable instructions.
|
|
*/
|
|
static void
|
|
dfs(struct bpf_verifier *bvf)
|
|
{
|
|
struct inst_node *next, *node;
|
|
|
|
node = bvf->in;
|
|
while (node != NULL) {
|
|
|
|
if (node->colour == WHITE)
|
|
set_node_colour(bvf, node, GREY);
|
|
|
|
if (node->colour == GREY) {
|
|
|
|
/* find next unprocessed child node */
|
|
do {
|
|
next = get_next_node(bvf, node);
|
|
if (next == NULL)
|
|
break;
|
|
set_edge_type(bvf, node, next);
|
|
} while (next->colour != WHITE);
|
|
|
|
if (next != NULL) {
|
|
/* proceed with next child */
|
|
next->prev_node = get_node_idx(bvf, node);
|
|
node = next;
|
|
} else {
|
|
/*
|
|
* finished with current node and all it's kids,
|
|
* proceed with parent
|
|
*/
|
|
set_node_colour(bvf, node, BLACK);
|
|
node->cur_edge = 0;
|
|
node = get_prev_node(bvf, node);
|
|
}
|
|
} else
|
|
node = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* report unreachable instructions.
|
|
*/
|
|
static void
|
|
log_unreachable(const struct bpf_verifier *bvf)
|
|
{
|
|
uint32_t i;
|
|
struct inst_node *node;
|
|
const struct ebpf_insn *ins;
|
|
|
|
for (i = 0; i != bvf->prm->nb_ins; i++) {
|
|
|
|
node = bvf->in + i;
|
|
ins = bvf->prm->ins + i;
|
|
|
|
if (node->colour == WHITE &&
|
|
ins->code != (BPF_LD | BPF_IMM | EBPF_DW))
|
|
RTE_BPF_LOG(ERR, "unreachable code at pc: %u;\n", i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* report loops detected.
|
|
*/
|
|
static void
|
|
log_loop(const struct bpf_verifier *bvf)
|
|
{
|
|
uint32_t i, j;
|
|
struct inst_node *node;
|
|
|
|
for (i = 0; i != bvf->prm->nb_ins; i++) {
|
|
|
|
node = bvf->in + i;
|
|
if (node->colour != BLACK)
|
|
continue;
|
|
|
|
for (j = 0; j != node->nb_edge; j++) {
|
|
if (node->edge_type[j] == BACK_EDGE)
|
|
RTE_BPF_LOG(ERR,
|
|
"loop at pc:%u --> pc:%u;\n",
|
|
i, node->edge_dest[j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* First pass goes though all instructions in the set, checks that each
|
|
* instruction is a valid one (correct syntax, valid field values, etc.)
|
|
* and constructs control flow graph (CFG).
|
|
* Then deapth-first search is performed over the constructed graph.
|
|
* Programs with unreachable instructions and/or loops will be rejected.
|
|
*/
|
|
static int
|
|
validate(struct bpf_verifier *bvf)
|
|
{
|
|
int32_t rc;
|
|
uint32_t i;
|
|
struct inst_node *node;
|
|
const struct ebpf_insn *ins;
|
|
const char *err;
|
|
|
|
rc = 0;
|
|
for (i = 0; i < bvf->prm->nb_ins; i++) {
|
|
|
|
ins = bvf->prm->ins + i;
|
|
node = bvf->in + i;
|
|
|
|
err = check_syntax(ins);
|
|
if (err != 0) {
|
|
RTE_BPF_LOG(ERR, "%s: %s at pc: %u\n",
|
|
__func__, err, i);
|
|
rc |= -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* construct CFG, jcc nodes have to outgoing edges,
|
|
* 'exit' nodes - none, all others nodes have exaclty one
|
|
* outgoing edge.
|
|
*/
|
|
switch (ins->code) {
|
|
case (BPF_JMP | EBPF_EXIT):
|
|
break;
|
|
case (BPF_JMP | BPF_JEQ | BPF_K):
|
|
case (BPF_JMP | EBPF_JNE | BPF_K):
|
|
case (BPF_JMP | BPF_JGT | BPF_K):
|
|
case (BPF_JMP | EBPF_JLT | BPF_K):
|
|
case (BPF_JMP | BPF_JGE | BPF_K):
|
|
case (BPF_JMP | EBPF_JLE | BPF_K):
|
|
case (BPF_JMP | EBPF_JSGT | BPF_K):
|
|
case (BPF_JMP | EBPF_JSLT | BPF_K):
|
|
case (BPF_JMP | EBPF_JSGE | BPF_K):
|
|
case (BPF_JMP | EBPF_JSLE | BPF_K):
|
|
case (BPF_JMP | BPF_JSET | BPF_K):
|
|
case (BPF_JMP | BPF_JEQ | BPF_X):
|
|
case (BPF_JMP | EBPF_JNE | BPF_X):
|
|
case (BPF_JMP | BPF_JGT | BPF_X):
|
|
case (BPF_JMP | EBPF_JLT | BPF_X):
|
|
case (BPF_JMP | BPF_JGE | BPF_X):
|
|
case (BPF_JMP | EBPF_JLE | BPF_X):
|
|
case (BPF_JMP | EBPF_JSGT | BPF_X):
|
|
case (BPF_JMP | EBPF_JSLT | BPF_X):
|
|
case (BPF_JMP | EBPF_JSGE | BPF_X):
|
|
case (BPF_JMP | EBPF_JSLE | BPF_X):
|
|
case (BPF_JMP | BPF_JSET | BPF_X):
|
|
rc |= add_edge(bvf, node, i + ins->off + 1);
|
|
rc |= add_edge(bvf, node, i + 1);
|
|
bvf->nb_jcc_nodes++;
|
|
break;
|
|
case (BPF_JMP | BPF_JA):
|
|
rc |= add_edge(bvf, node, i + ins->off + 1);
|
|
break;
|
|
/* load 64 bit immediate value */
|
|
case (BPF_LD | BPF_IMM | EBPF_DW):
|
|
rc |= add_edge(bvf, node, i + 2);
|
|
i++;
|
|
break;
|
|
default:
|
|
rc |= add_edge(bvf, node, i + 1);
|
|
break;
|
|
}
|
|
|
|
bvf->nb_nodes++;
|
|
bvf->node_colour[WHITE]++;
|
|
}
|
|
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
dfs(bvf);
|
|
|
|
RTE_BPF_LOG(DEBUG, "%s(%p) stats:\n"
|
|
"nb_nodes=%u;\n"
|
|
"nb_jcc_nodes=%u;\n"
|
|
"node_color={[WHITE]=%u, [GREY]=%u,, [BLACK]=%u};\n"
|
|
"edge_type={[UNKNOWN]=%u, [TREE]=%u, [BACK]=%u, [CROSS]=%u};\n",
|
|
__func__, bvf,
|
|
bvf->nb_nodes,
|
|
bvf->nb_jcc_nodes,
|
|
bvf->node_colour[WHITE], bvf->node_colour[GREY],
|
|
bvf->node_colour[BLACK],
|
|
bvf->edge_type[UNKNOWN_EDGE], bvf->edge_type[TREE_EDGE],
|
|
bvf->edge_type[BACK_EDGE], bvf->edge_type[CROSS_EDGE]);
|
|
|
|
if (bvf->node_colour[BLACK] != bvf->nb_nodes) {
|
|
RTE_BPF_LOG(ERR, "%s(%p) unreachable instructions;\n",
|
|
__func__, bvf);
|
|
log_unreachable(bvf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (bvf->node_colour[GREY] != 0 || bvf->node_colour[WHITE] != 0 ||
|
|
bvf->edge_type[UNKNOWN_EDGE] != 0) {
|
|
RTE_BPF_LOG(ERR, "%s(%p) DFS internal error;\n",
|
|
__func__, bvf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (bvf->edge_type[BACK_EDGE] != 0) {
|
|
RTE_BPF_LOG(ERR, "%s(%p) loops detected;\n",
|
|
__func__, bvf);
|
|
log_loop(bvf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* helper functions get/free eval states.
|
|
*/
|
|
static struct bpf_eval_state *
|
|
pull_eval_state(struct bpf_verifier *bvf)
|
|
{
|
|
uint32_t n;
|
|
|
|
n = bvf->evst_pool.cur;
|
|
if (n == bvf->evst_pool.num)
|
|
return NULL;
|
|
|
|
bvf->evst_pool.cur = n + 1;
|
|
return bvf->evst_pool.ent + n;
|
|
}
|
|
|
|
static void
|
|
push_eval_state(struct bpf_verifier *bvf)
|
|
{
|
|
bvf->evst_pool.cur--;
|
|
}
|
|
|
|
static void
|
|
evst_pool_fini(struct bpf_verifier *bvf)
|
|
{
|
|
bvf->evst = NULL;
|
|
free(bvf->evst_pool.ent);
|
|
memset(&bvf->evst_pool, 0, sizeof(bvf->evst_pool));
|
|
}
|
|
|
|
static int
|
|
evst_pool_init(struct bpf_verifier *bvf)
|
|
{
|
|
uint32_t n;
|
|
|
|
n = bvf->nb_jcc_nodes + 1;
|
|
|
|
bvf->evst_pool.ent = calloc(n, sizeof(bvf->evst_pool.ent[0]));
|
|
if (bvf->evst_pool.ent == NULL)
|
|
return -ENOMEM;
|
|
|
|
bvf->evst_pool.num = n;
|
|
bvf->evst_pool.cur = 0;
|
|
|
|
bvf->evst = pull_eval_state(bvf);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Save current eval state.
|
|
*/
|
|
static int
|
|
save_eval_state(struct bpf_verifier *bvf, struct inst_node *node)
|
|
{
|
|
struct bpf_eval_state *st;
|
|
|
|
/* get new eval_state for this node */
|
|
st = pull_eval_state(bvf);
|
|
if (st == NULL) {
|
|
RTE_BPF_LOG(ERR,
|
|
"%s: internal error (out of space) at pc: %u",
|
|
__func__, get_node_idx(bvf, node));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* make a copy of current state */
|
|
memcpy(st, bvf->evst, sizeof(*st));
|
|
|
|
/* swap current state with new one */
|
|
node->evst = bvf->evst;
|
|
bvf->evst = st;
|
|
|
|
RTE_BPF_LOG(DEBUG, "%s(bvf=%p,node=%u) old/new states: %p/%p;\n",
|
|
__func__, bvf, get_node_idx(bvf, node), node->evst, bvf->evst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Restore previous eval state and mark current eval state as free.
|
|
*/
|
|
static void
|
|
restore_eval_state(struct bpf_verifier *bvf, struct inst_node *node)
|
|
{
|
|
RTE_BPF_LOG(DEBUG, "%s(bvf=%p,node=%u) old/new states: %p/%p;\n",
|
|
__func__, bvf, get_node_idx(bvf, node), bvf->evst, node->evst);
|
|
|
|
bvf->evst = node->evst;
|
|
node->evst = NULL;
|
|
push_eval_state(bvf);
|
|
}
|
|
|
|
/*
|
|
* Do second pass through CFG and try to evaluate instructions
|
|
* via each possible path.
|
|
* Right now evaluation functionality is quite limited.
|
|
* Still need to add extra checks for:
|
|
* - use/return uninitialized registers.
|
|
* - use uninitialized data from the stack.
|
|
* - memory boundaries violation.
|
|
*/
|
|
static int
|
|
evaluate(struct bpf_verifier *bvf)
|
|
{
|
|
int32_t rc;
|
|
uint32_t idx, op;
|
|
const char *err;
|
|
const struct ebpf_insn *ins;
|
|
struct inst_node *next, *node;
|
|
|
|
node = bvf->in;
|
|
ins = bvf->prm->ins;
|
|
rc = 0;
|
|
|
|
while (node != NULL && rc == 0) {
|
|
|
|
/* current node evaluation */
|
|
idx = get_node_idx(bvf, node);
|
|
op = ins[idx].code;
|
|
|
|
if (ins_chk[op].eval != NULL) {
|
|
err = ins_chk[op].eval(bvf, ins + idx);
|
|
if (err != NULL) {
|
|
RTE_BPF_LOG(ERR, "%s: %s at pc: %u\n",
|
|
__func__, err, idx);
|
|
rc = -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* proceed through CFG */
|
|
next = get_next_node(bvf, node);
|
|
if (next != NULL) {
|
|
|
|
/* proceed with next child */
|
|
if (node->cur_edge != node->nb_edge)
|
|
rc |= save_eval_state(bvf, node);
|
|
else if (node->evst != NULL)
|
|
restore_eval_state(bvf, node);
|
|
|
|
next->prev_node = get_node_idx(bvf, node);
|
|
node = next;
|
|
} else {
|
|
/*
|
|
* finished with current node and all it's kids,
|
|
* proceed with parent
|
|
*/
|
|
node->cur_edge = 0;
|
|
node = get_prev_node(bvf, node);
|
|
|
|
/* finished */
|
|
if (node == bvf->in)
|
|
node = NULL;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
bpf_validate(struct rte_bpf *bpf)
|
|
{
|
|
int32_t rc;
|
|
struct bpf_verifier bvf;
|
|
|
|
/* check input argument type, don't allow mbuf ptr on 32-bit */
|
|
if (bpf->prm.prog_arg.type != RTE_BPF_ARG_RAW &&
|
|
bpf->prm.prog_arg.type != RTE_BPF_ARG_PTR &&
|
|
(sizeof(uint64_t) != sizeof(uintptr_t) ||
|
|
bpf->prm.prog_arg.type != RTE_BPF_ARG_PTR_MBUF)) {
|
|
RTE_BPF_LOG(ERR, "%s: unsupported argument type\n", __func__);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
memset(&bvf, 0, sizeof(bvf));
|
|
bvf.prm = &bpf->prm;
|
|
bvf.in = calloc(bpf->prm.nb_ins, sizeof(bvf.in[0]));
|
|
if (bvf.in == NULL)
|
|
return -ENOMEM;
|
|
|
|
rc = validate(&bvf);
|
|
|
|
if (rc == 0) {
|
|
rc = evst_pool_init(&bvf);
|
|
if (rc == 0)
|
|
rc = evaluate(&bvf);
|
|
evst_pool_fini(&bvf);
|
|
}
|
|
|
|
free(bvf.in);
|
|
|
|
/* copy collected info */
|
|
if (rc == 0)
|
|
bpf->stack_sz = bvf.stack_sz;
|
|
|
|
return rc;
|
|
}
|