numam-dpdk/app/test-pmd/icmpecho.c
Dmitry Kozlyuk 04d43857ea net: rename Ethernet header fields
Definition of `rte_ether_addr` structure used a workaround allowing DPDK
and Windows SDK headers to be used in the same file, because Windows SDK
defines `s_addr` as a macro. Rename `s_addr` to `src_addr` and `d_addr`
to `dst_addr` to avoid the conflict and remove the workaround.
Deprecation notice:
https://mails.dpdk.org/archives/dev/2021-July/215270.html

Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
2021-10-08 14:58:11 +02:00

522 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2013 6WIND S.A.
*/
#include <stdarg.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_arp.h>
#include <rte_ip.h>
#include <rte_icmp.h>
#include <rte_string_fns.h>
#include <rte_flow.h>
#include "testpmd.h"
static const char *
arp_op_name(uint16_t arp_op)
{
switch (arp_op) {
case RTE_ARP_OP_REQUEST:
return "ARP Request";
case RTE_ARP_OP_REPLY:
return "ARP Reply";
case RTE_ARP_OP_REVREQUEST:
return "Reverse ARP Request";
case RTE_ARP_OP_REVREPLY:
return "Reverse ARP Reply";
case RTE_ARP_OP_INVREQUEST:
return "Peer Identify Request";
case RTE_ARP_OP_INVREPLY:
return "Peer Identify Reply";
default:
break;
}
return "Unkwown ARP op";
}
static const char *
ip_proto_name(uint16_t ip_proto)
{
static const char * ip_proto_names[] = {
"IP6HOPOPTS", /**< IP6 hop-by-hop options */
"ICMP", /**< control message protocol */
"IGMP", /**< group mgmt protocol */
"GGP", /**< gateway^2 (deprecated) */
"IPv4", /**< IPv4 encapsulation */
"UNASSIGNED",
"TCP", /**< transport control protocol */
"ST", /**< Stream protocol II */
"EGP", /**< exterior gateway protocol */
"PIGP", /**< private interior gateway */
"RCC_MON", /**< BBN RCC Monitoring */
"NVPII", /**< network voice protocol*/
"PUP", /**< pup */
"ARGUS", /**< Argus */
"EMCON", /**< EMCON */
"XNET", /**< Cross Net Debugger */
"CHAOS", /**< Chaos*/
"UDP", /**< user datagram protocol */
"MUX", /**< Multiplexing */
"DCN_MEAS", /**< DCN Measurement Subsystems */
"HMP", /**< Host Monitoring */
"PRM", /**< Packet Radio Measurement */
"XNS_IDP", /**< xns idp */
"TRUNK1", /**< Trunk-1 */
"TRUNK2", /**< Trunk-2 */
"LEAF1", /**< Leaf-1 */
"LEAF2", /**< Leaf-2 */
"RDP", /**< Reliable Data */
"IRTP", /**< Reliable Transaction */
"TP4", /**< tp-4 w/ class negotiation */
"BLT", /**< Bulk Data Transfer */
"NSP", /**< Network Services */
"INP", /**< Merit Internodal */
"SEP", /**< Sequential Exchange */
"3PC", /**< Third Party Connect */
"IDPR", /**< InterDomain Policy Routing */
"XTP", /**< XTP */
"DDP", /**< Datagram Delivery */
"CMTP", /**< Control Message Transport */
"TPXX", /**< TP++ Transport */
"ILTP", /**< IL transport protocol */
"IPv6_HDR", /**< IP6 header */
"SDRP", /**< Source Demand Routing */
"IPv6_RTG", /**< IP6 routing header */
"IPv6_FRAG", /**< IP6 fragmentation header */
"IDRP", /**< InterDomain Routing*/
"RSVP", /**< resource reservation */
"GRE", /**< General Routing Encap. */
"MHRP", /**< Mobile Host Routing */
"BHA", /**< BHA */
"ESP", /**< IP6 Encap Sec. Payload */
"AH", /**< IP6 Auth Header */
"INLSP", /**< Integ. Net Layer Security */
"SWIPE", /**< IP with encryption */
"NHRP", /**< Next Hop Resolution */
"UNASSIGNED",
"UNASSIGNED",
"UNASSIGNED",
"ICMPv6", /**< ICMP6 */
"IPv6NONEXT", /**< IP6 no next header */
"Ipv6DSTOPTS",/**< IP6 destination option */
"AHIP", /**< any host internal protocol */
"CFTP", /**< CFTP */
"HELLO", /**< "hello" routing protocol */
"SATEXPAK", /**< SATNET/Backroom EXPAK */
"KRYPTOLAN", /**< Kryptolan */
"RVD", /**< Remote Virtual Disk */
"IPPC", /**< Pluribus Packet Core */
"ADFS", /**< Any distributed FS */
"SATMON", /**< Satnet Monitoring */
"VISA", /**< VISA Protocol */
"IPCV", /**< Packet Core Utility */
"CPNX", /**< Comp. Prot. Net. Executive */
"CPHB", /**< Comp. Prot. HeartBeat */
"WSN", /**< Wang Span Network */
"PVP", /**< Packet Video Protocol */
"BRSATMON", /**< BackRoom SATNET Monitoring */
"ND", /**< Sun net disk proto (temp.) */
"WBMON", /**< WIDEBAND Monitoring */
"WBEXPAK", /**< WIDEBAND EXPAK */
"EON", /**< ISO cnlp */
"VMTP", /**< VMTP */
"SVMTP", /**< Secure VMTP */
"VINES", /**< Banyon VINES */
"TTP", /**< TTP */
"IGP", /**< NSFNET-IGP */
"DGP", /**< dissimilar gateway prot. */
"TCF", /**< TCF */
"IGRP", /**< Cisco/GXS IGRP */
"OSPFIGP", /**< OSPFIGP */
"SRPC", /**< Strite RPC protocol */
"LARP", /**< Locus Address Resolution */
"MTP", /**< Multicast Transport */
"AX25", /**< AX.25 Frames */
"4IN4", /**< IP encapsulated in IP */
"MICP", /**< Mobile Int.ing control */
"SCCSP", /**< Semaphore Comm. security */
"ETHERIP", /**< Ethernet IP encapsulation */
"ENCAP", /**< encapsulation header */
"AES", /**< any private encr. scheme */
"GMTP", /**< GMTP */
"IPCOMP", /**< payload compression (IPComp) */
"UNASSIGNED",
"UNASSIGNED",
"PIM", /**< Protocol Independent Mcast */
};
if (ip_proto < RTE_DIM(ip_proto_names))
return ip_proto_names[ip_proto];
switch (ip_proto) {
#ifdef IPPROTO_PGM
case IPPROTO_PGM: /**< PGM */
return "PGM";
#endif
case IPPROTO_SCTP: /**< Stream Control Transport Protocol */
return "SCTP";
#ifdef IPPROTO_DIVERT
case IPPROTO_DIVERT: /**< divert pseudo-protocol */
return "DIVERT";
#endif
case IPPROTO_RAW: /**< raw IP packet */
return "RAW";
default:
break;
}
return "UNASSIGNED";
}
static void
ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf)
{
uint32_t ipv4_addr;
ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr);
sprintf(buf, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF,
(ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF,
ipv4_addr & 0xFF);
}
static void
ether_addr_dump(const char *what, const struct rte_ether_addr *ea)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, ea);
if (what)
printf("%s", what);
printf("%s", buf);
}
static void
ipv4_addr_dump(const char *what, uint32_t be_ipv4_addr)
{
char buf[16];
ipv4_addr_to_dot(be_ipv4_addr, buf);
if (what)
printf("%s", what);
printf("%s", buf);
}
static uint16_t
ipv4_hdr_cksum(struct rte_ipv4_hdr *ip_h)
{
uint16_t *v16_h;
uint32_t ip_cksum;
/*
* Compute the sum of successive 16-bit words of the IPv4 header,
* skipping the checksum field of the header.
*/
v16_h = (unaligned_uint16_t *) ip_h;
ip_cksum = v16_h[0] + v16_h[1] + v16_h[2] + v16_h[3] +
v16_h[4] + v16_h[6] + v16_h[7] + v16_h[8] + v16_h[9];
/* reduce 32 bit checksum to 16 bits and complement it */
ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
ip_cksum = (~ip_cksum) & 0x0000FFFF;
return (ip_cksum == 0) ? 0xFFFF : (uint16_t) ip_cksum;
}
#define is_multicast_ipv4_addr(ipv4_addr) \
(((rte_be_to_cpu_32((ipv4_addr)) >> 24) & 0x000000FF) == 0xE0)
/*
* Receive a burst of packets, lookup for ICMP echo requests, and, if any,
* send back ICMP echo replies.
*/
static void
reply_to_icmp_echo_rqsts(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_mbuf *pkt;
struct rte_ether_hdr *eth_h;
struct rte_vlan_hdr *vlan_h;
struct rte_arp_hdr *arp_h;
struct rte_ipv4_hdr *ip_h;
struct rte_icmp_hdr *icmp_h;
struct rte_ether_addr eth_addr;
uint32_t retry;
uint32_t ip_addr;
uint16_t nb_rx;
uint16_t nb_tx;
uint16_t nb_replies;
uint16_t eth_type;
uint16_t vlan_id;
uint16_t arp_op;
uint16_t arp_pro;
uint32_t cksum;
uint8_t i;
int l2_len;
uint64_t start_tsc = 0;
get_start_cycles(&start_tsc);
/*
* First, receive a burst of packets.
*/
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
nb_pkt_per_burst);
inc_rx_burst_stats(fs, nb_rx);
if (unlikely(nb_rx == 0))
return;
fs->rx_packets += nb_rx;
nb_replies = 0;
for (i = 0; i < nb_rx; i++) {
if (likely(i < nb_rx - 1))
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
void *));
pkt = pkts_burst[i];
eth_h = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
eth_type = RTE_BE_TO_CPU_16(eth_h->ether_type);
l2_len = sizeof(struct rte_ether_hdr);
if (verbose_level > 0) {
printf("\nPort %d pkt-len=%u nb-segs=%u\n",
fs->rx_port, pkt->pkt_len, pkt->nb_segs);
ether_addr_dump(" ETH: src=", &eth_h->src_addr);
ether_addr_dump(" dst=", &eth_h->dst_addr);
}
if (eth_type == RTE_ETHER_TYPE_VLAN) {
vlan_h = (struct rte_vlan_hdr *)
((char *)eth_h + sizeof(struct rte_ether_hdr));
l2_len += sizeof(struct rte_vlan_hdr);
eth_type = rte_be_to_cpu_16(vlan_h->eth_proto);
if (verbose_level > 0) {
vlan_id = rte_be_to_cpu_16(vlan_h->vlan_tci)
& 0xFFF;
printf(" [vlan id=%u]", vlan_id);
}
}
if (verbose_level > 0) {
printf(" type=0x%04x\n", eth_type);
}
/* Reply to ARP requests */
if (eth_type == RTE_ETHER_TYPE_ARP) {
arp_h = (struct rte_arp_hdr *) ((char *)eth_h + l2_len);
arp_op = RTE_BE_TO_CPU_16(arp_h->arp_opcode);
arp_pro = RTE_BE_TO_CPU_16(arp_h->arp_protocol);
if (verbose_level > 0) {
printf(" ARP: hrd=%d proto=0x%04x hln=%d "
"pln=%d op=%u (%s)\n",
RTE_BE_TO_CPU_16(arp_h->arp_hardware),
arp_pro, arp_h->arp_hlen,
arp_h->arp_plen, arp_op,
arp_op_name(arp_op));
}
if ((RTE_BE_TO_CPU_16(arp_h->arp_hardware) !=
RTE_ARP_HRD_ETHER) ||
(arp_pro != RTE_ETHER_TYPE_IPV4) ||
(arp_h->arp_hlen != 6) ||
(arp_h->arp_plen != 4)
) {
rte_pktmbuf_free(pkt);
if (verbose_level > 0)
printf("\n");
continue;
}
if (verbose_level > 0) {
rte_ether_addr_copy(&arp_h->arp_data.arp_sha,
&eth_addr);
ether_addr_dump(" sha=", &eth_addr);
ip_addr = arp_h->arp_data.arp_sip;
ipv4_addr_dump(" sip=", ip_addr);
printf("\n");
rte_ether_addr_copy(&arp_h->arp_data.arp_tha,
&eth_addr);
ether_addr_dump(" tha=", &eth_addr);
ip_addr = arp_h->arp_data.arp_tip;
ipv4_addr_dump(" tip=", ip_addr);
printf("\n");
}
if (arp_op != RTE_ARP_OP_REQUEST) {
rte_pktmbuf_free(pkt);
continue;
}
/*
* Build ARP reply.
*/
/* Use source MAC address as destination MAC address. */
rte_ether_addr_copy(&eth_h->src_addr, &eth_h->dst_addr);
/* Set source MAC address with MAC address of TX port */
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
&eth_h->src_addr);
arp_h->arp_opcode = rte_cpu_to_be_16(RTE_ARP_OP_REPLY);
rte_ether_addr_copy(&arp_h->arp_data.arp_tha,
&eth_addr);
rte_ether_addr_copy(&arp_h->arp_data.arp_sha,
&arp_h->arp_data.arp_tha);
rte_ether_addr_copy(&eth_h->src_addr,
&arp_h->arp_data.arp_sha);
/* Swap IP addresses in ARP payload */
ip_addr = arp_h->arp_data.arp_sip;
arp_h->arp_data.arp_sip = arp_h->arp_data.arp_tip;
arp_h->arp_data.arp_tip = ip_addr;
pkts_burst[nb_replies++] = pkt;
continue;
}
if (eth_type != RTE_ETHER_TYPE_IPV4) {
rte_pktmbuf_free(pkt);
continue;
}
ip_h = (struct rte_ipv4_hdr *) ((char *)eth_h + l2_len);
if (verbose_level > 0) {
ipv4_addr_dump(" IPV4: src=", ip_h->src_addr);
ipv4_addr_dump(" dst=", ip_h->dst_addr);
printf(" proto=%d (%s)\n",
ip_h->next_proto_id,
ip_proto_name(ip_h->next_proto_id));
}
/*
* Check if packet is a ICMP echo request.
*/
icmp_h = (struct rte_icmp_hdr *) ((char *)ip_h +
sizeof(struct rte_ipv4_hdr));
if (! ((ip_h->next_proto_id == IPPROTO_ICMP) &&
(icmp_h->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) &&
(icmp_h->icmp_code == 0))) {
rte_pktmbuf_free(pkt);
continue;
}
if (verbose_level > 0)
printf(" ICMP: echo request seq id=%d\n",
rte_be_to_cpu_16(icmp_h->icmp_seq_nb));
/*
* Prepare ICMP echo reply to be sent back.
* - switch ethernet source and destinations addresses,
* - use the request IP source address as the reply IP
* destination address,
* - if the request IP destination address is a multicast
* address:
* - choose a reply IP source address different from the
* request IP source address,
* - re-compute the IP header checksum.
* Otherwise:
* - switch the request IP source and destination
* addresses in the reply IP header,
* - keep the IP header checksum unchanged.
* - set RTE_IP_ICMP_ECHO_REPLY in ICMP header.
* ICMP checksum is computed by assuming it is valid in the
* echo request and not verified.
*/
rte_ether_addr_copy(&eth_h->src_addr, &eth_addr);
rte_ether_addr_copy(&eth_h->dst_addr, &eth_h->src_addr);
rte_ether_addr_copy(&eth_addr, &eth_h->dst_addr);
ip_addr = ip_h->src_addr;
if (is_multicast_ipv4_addr(ip_h->dst_addr)) {
uint32_t ip_src;
ip_src = rte_be_to_cpu_32(ip_addr);
if ((ip_src & 0x00000003) == 1)
ip_src = (ip_src & 0xFFFFFFFC) | 0x00000002;
else
ip_src = (ip_src & 0xFFFFFFFC) | 0x00000001;
ip_h->src_addr = rte_cpu_to_be_32(ip_src);
ip_h->dst_addr = ip_addr;
ip_h->hdr_checksum = ipv4_hdr_cksum(ip_h);
} else {
ip_h->src_addr = ip_h->dst_addr;
ip_h->dst_addr = ip_addr;
}
icmp_h->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
cksum = ~icmp_h->icmp_cksum & 0xffff;
cksum += ~RTE_BE16(RTE_IP_ICMP_ECHO_REQUEST << 8) & 0xffff;
cksum += RTE_BE16(RTE_IP_ICMP_ECHO_REPLY << 8);
cksum = (cksum & 0xffff) + (cksum >> 16);
cksum = (cksum & 0xffff) + (cksum >> 16);
icmp_h->icmp_cksum = ~cksum;
pkts_burst[nb_replies++] = pkt;
}
/* Send back ICMP echo replies, if any. */
if (nb_replies > 0) {
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst,
nb_replies);
/*
* Retry if necessary
*/
if (unlikely(nb_tx < nb_replies) && fs->retry_enabled) {
retry = 0;
while (nb_tx < nb_replies &&
retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port,
fs->tx_queue,
&pkts_burst[nb_tx],
nb_replies - nb_tx);
}
}
fs->tx_packets += nb_tx;
inc_tx_burst_stats(fs, nb_tx);
if (unlikely(nb_tx < nb_replies)) {
fs->fwd_dropped += (nb_replies - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_replies);
}
}
get_end_cycles(fs, start_tsc);
}
struct fwd_engine icmp_echo_engine = {
.fwd_mode_name = "icmpecho",
.port_fwd_begin = NULL,
.port_fwd_end = NULL,
.packet_fwd = reply_to_icmp_echo_rqsts,
};