numam-dpdk/app/test-pmd/testpmd.c
Ferruh Yigit b563c14212 ethdev: remove jumbo offload flag
Removing 'DEV_RX_OFFLOAD_JUMBO_FRAME' offload flag.

Instead of drivers announce this capability, application can deduct the
capability by checking reported 'dev_info.max_mtu' or
'dev_info.max_rx_pktlen'.

And instead of application setting this flag explicitly to enable jumbo
frames, this can be deduced by driver by comparing requested 'mtu' to
'RTE_ETHER_MTU'.

Removing this additional configuration for simplification.

Suggested-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Reviewed-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Huisong Li <lihuisong@huawei.com>
Acked-by: Hyong Youb Kim <hyonkim@cisco.com>
Acked-by: Michal Krawczyk <mk@semihalf.com>
2021-10-18 19:20:21 +02:00

4284 lines
104 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#ifndef RTE_EXEC_ENV_WINDOWS
#include <sys/mman.h>
#endif
#include <sys/types.h>
#include <errno.h>
#include <stdbool.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_mbuf_pool_ops.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_dev.h>
#include <rte_string_fns.h>
#ifdef RTE_NET_IXGBE
#include <rte_pmd_ixgbe.h>
#endif
#ifdef RTE_LIB_PDUMP
#include <rte_pdump.h>
#endif
#include <rte_flow.h>
#include <rte_metrics.h>
#ifdef RTE_LIB_BITRATESTATS
#include <rte_bitrate.h>
#endif
#ifdef RTE_LIB_LATENCYSTATS
#include <rte_latencystats.h>
#endif
#ifdef RTE_EXEC_ENV_WINDOWS
#include <process.h>
#endif
#include "testpmd.h"
#ifndef MAP_HUGETLB
/* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */
#define HUGE_FLAG (0x40000)
#else
#define HUGE_FLAG MAP_HUGETLB
#endif
#ifndef MAP_HUGE_SHIFT
/* older kernels (or FreeBSD) will not have this define */
#define HUGE_SHIFT (26)
#else
#define HUGE_SHIFT MAP_HUGE_SHIFT
#endif
#define EXTMEM_HEAP_NAME "extmem"
#define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M
uint16_t verbose_level = 0; /**< Silent by default. */
int testpmd_logtype; /**< Log type for testpmd logs */
/* use main core for command line ? */
uint8_t interactive = 0;
uint8_t auto_start = 0;
uint8_t tx_first;
char cmdline_filename[PATH_MAX] = {0};
/*
* NUMA support configuration.
* When set, the NUMA support attempts to dispatch the allocation of the
* RX and TX memory rings, and of the DMA memory buffers (mbufs) for the
* probed ports among the CPU sockets 0 and 1.
* Otherwise, all memory is allocated from CPU socket 0.
*/
uint8_t numa_support = 1; /**< numa enabled by default */
/*
* In UMA mode,all memory is allocated from socket 0 if --socket-num is
* not configured.
*/
uint8_t socket_num = UMA_NO_CONFIG;
/*
* Select mempool allocation type:
* - native: use regular DPDK memory
* - anon: use regular DPDK memory to create mempool, but populate using
* anonymous memory (may not be IOVA-contiguous)
* - xmem: use externally allocated hugepage memory
*/
uint8_t mp_alloc_type = MP_ALLOC_NATIVE;
/*
* Store specified sockets on which memory pool to be used by ports
* is allocated.
*/
uint8_t port_numa[RTE_MAX_ETHPORTS];
/*
* Store specified sockets on which RX ring to be used by ports
* is allocated.
*/
uint8_t rxring_numa[RTE_MAX_ETHPORTS];
/*
* Store specified sockets on which TX ring to be used by ports
* is allocated.
*/
uint8_t txring_numa[RTE_MAX_ETHPORTS];
/*
* Record the Ethernet address of peer target ports to which packets are
* forwarded.
* Must be instantiated with the ethernet addresses of peer traffic generator
* ports.
*/
struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS];
portid_t nb_peer_eth_addrs = 0;
/*
* Probed Target Environment.
*/
struct rte_port *ports; /**< For all probed ethernet ports. */
portid_t nb_ports; /**< Number of probed ethernet ports. */
struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */
lcoreid_t nb_lcores; /**< Number of probed logical cores. */
portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */
/*
* Test Forwarding Configuration.
* nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores
* nb_fwd_ports <= nb_cfg_ports <= nb_ports
*/
lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */
lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */
portid_t nb_cfg_ports; /**< Number of configured ports. */
portid_t nb_fwd_ports; /**< Number of forwarding ports. */
unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */
portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */
struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */
streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */
/*
* Forwarding engines.
*/
struct fwd_engine * fwd_engines[] = {
&io_fwd_engine,
&mac_fwd_engine,
&mac_swap_engine,
&flow_gen_engine,
&rx_only_engine,
&tx_only_engine,
&csum_fwd_engine,
&icmp_echo_engine,
&noisy_vnf_engine,
&five_tuple_swap_fwd_engine,
#ifdef RTE_LIBRTE_IEEE1588
&ieee1588_fwd_engine,
#endif
NULL,
};
struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT];
uint16_t mempool_flags;
struct fwd_config cur_fwd_config;
struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */
uint32_t retry_enabled;
uint32_t burst_tx_delay_time = BURST_TX_WAIT_US;
uint32_t burst_tx_retry_num = BURST_TX_RETRIES;
uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */
uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = {
DEFAULT_MBUF_DATA_SIZE
}; /**< Mbuf data space size. */
uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if
* specified on command-line. */
uint16_t stats_period; /**< Period to show statistics (disabled by default) */
/** Extended statistics to show. */
struct rte_eth_xstat_name *xstats_display;
unsigned int xstats_display_num; /**< Size of extended statistics to show */
/*
* In container, it cannot terminate the process which running with 'stats-period'
* option. Set flag to exit stats period loop after received SIGINT/SIGTERM.
*/
uint8_t f_quit;
/*
* Max Rx frame size, set by '--max-pkt-len' parameter.
*/
uint32_t max_rx_pkt_len;
/*
* Configuration of packet segments used to scatter received packets
* if some of split features is configured.
*/
uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT];
uint8_t rx_pkt_nb_segs; /**< Number of segments to split */
uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT];
uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */
/*
* Configuration of packet segments used by the "txonly" processing engine.
*/
uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */
uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = {
TXONLY_DEF_PACKET_LEN,
};
uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */
enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF;
/**< Split policy for packets to TX. */
uint8_t txonly_multi_flow;
/**< Whether multiple flows are generated in TXONLY mode. */
uint32_t tx_pkt_times_inter;
/**< Timings for send scheduling in TXONLY mode, time between bursts. */
uint32_t tx_pkt_times_intra;
/**< Timings for send scheduling in TXONLY mode, time between packets. */
uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */
uint16_t nb_pkt_flowgen_clones; /**< Number of Tx packet clones to send in flowgen mode. */
int nb_flows_flowgen = 1024; /**< Number of flows in flowgen mode. */
uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */
/* current configuration is in DCB or not,0 means it is not in DCB mode */
uint8_t dcb_config = 0;
/*
* Configurable number of RX/TX queues.
*/
queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */
queueid_t nb_rxq = 1; /**< Number of RX queues per port. */
queueid_t nb_txq = 1; /**< Number of TX queues per port. */
/*
* Configurable number of RX/TX ring descriptors.
* Defaults are supplied by drivers via ethdev.
*/
#define RTE_TEST_RX_DESC_DEFAULT 0
#define RTE_TEST_TX_DESC_DEFAULT 0
uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */
uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */
#define RTE_PMD_PARAM_UNSET -1
/*
* Configurable values of RX and TX ring threshold registers.
*/
int8_t rx_pthresh = RTE_PMD_PARAM_UNSET;
int8_t rx_hthresh = RTE_PMD_PARAM_UNSET;
int8_t rx_wthresh = RTE_PMD_PARAM_UNSET;
int8_t tx_pthresh = RTE_PMD_PARAM_UNSET;
int8_t tx_hthresh = RTE_PMD_PARAM_UNSET;
int8_t tx_wthresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of RX free threshold.
*/
int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of RX drop enable.
*/
int8_t rx_drop_en = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of TX free threshold.
*/
int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of TX RS bit threshold.
*/
int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET;
/*
* Configurable value of buffered packets before sending.
*/
uint16_t noisy_tx_sw_bufsz;
/*
* Configurable value of packet buffer timeout.
*/
uint16_t noisy_tx_sw_buf_flush_time;
/*
* Configurable value for size of VNF internal memory area
* used for simulating noisy neighbour behaviour
*/
uint64_t noisy_lkup_mem_sz;
/*
* Configurable value of number of random writes done in
* VNF simulation memory area.
*/
uint64_t noisy_lkup_num_writes;
/*
* Configurable value of number of random reads done in
* VNF simulation memory area.
*/
uint64_t noisy_lkup_num_reads;
/*
* Configurable value of number of random reads/writes done in
* VNF simulation memory area.
*/
uint64_t noisy_lkup_num_reads_writes;
/*
* Receive Side Scaling (RSS) configuration.
*/
uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */
/*
* Port topology configuration
*/
uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */
/*
* Avoids to flush all the RX streams before starts forwarding.
*/
uint8_t no_flush_rx = 0; /* flush by default */
/*
* Flow API isolated mode.
*/
uint8_t flow_isolate_all;
/*
* Avoids to check link status when starting/stopping a port.
*/
uint8_t no_link_check = 0; /* check by default */
/*
* Don't automatically start all ports in interactive mode.
*/
uint8_t no_device_start = 0;
/*
* Enable link status change notification
*/
uint8_t lsc_interrupt = 1; /* enabled by default */
/*
* Enable device removal notification.
*/
uint8_t rmv_interrupt = 1; /* enabled by default */
uint8_t hot_plug = 0; /**< hotplug disabled by default. */
/* After attach, port setup is called on event or by iterator */
bool setup_on_probe_event = true;
/* Clear ptypes on port initialization. */
uint8_t clear_ptypes = true;
/* Hairpin ports configuration mode. */
uint16_t hairpin_mode;
/* Pretty printing of ethdev events */
static const char * const eth_event_desc[] = {
[RTE_ETH_EVENT_UNKNOWN] = "unknown",
[RTE_ETH_EVENT_INTR_LSC] = "link state change",
[RTE_ETH_EVENT_QUEUE_STATE] = "queue state",
[RTE_ETH_EVENT_INTR_RESET] = "reset",
[RTE_ETH_EVENT_VF_MBOX] = "VF mbox",
[RTE_ETH_EVENT_IPSEC] = "IPsec",
[RTE_ETH_EVENT_MACSEC] = "MACsec",
[RTE_ETH_EVENT_INTR_RMV] = "device removal",
[RTE_ETH_EVENT_NEW] = "device probed",
[RTE_ETH_EVENT_DESTROY] = "device released",
[RTE_ETH_EVENT_FLOW_AGED] = "flow aged",
[RTE_ETH_EVENT_MAX] = NULL,
};
/*
* Display or mask ether events
* Default to all events except VF_MBOX
*/
uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) |
(UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) |
(UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) |
(UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) |
(UINT32_C(1) << RTE_ETH_EVENT_IPSEC) |
(UINT32_C(1) << RTE_ETH_EVENT_MACSEC) |
(UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) |
(UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED);
/*
* Decide if all memory are locked for performance.
*/
int do_mlockall = 0;
/*
* NIC bypass mode configuration options.
*/
#if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS
/* The NIC bypass watchdog timeout. */
uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF;
#endif
#ifdef RTE_LIB_LATENCYSTATS
/*
* Set when latency stats is enabled in the commandline
*/
uint8_t latencystats_enabled;
/*
* Lcore ID to serive latency statistics.
*/
lcoreid_t latencystats_lcore_id = -1;
#endif
/*
* Ethernet device configuration.
*/
struct rte_eth_rxmode rx_mode;
struct rte_eth_txmode tx_mode = {
.offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE,
};
struct rte_fdir_conf fdir_conf = {
.mode = RTE_FDIR_MODE_NONE,
.pballoc = RTE_FDIR_PBALLOC_64K,
.status = RTE_FDIR_REPORT_STATUS,
.mask = {
.vlan_tci_mask = 0xFFEF,
.ipv4_mask = {
.src_ip = 0xFFFFFFFF,
.dst_ip = 0xFFFFFFFF,
},
.ipv6_mask = {
.src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
.dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
},
.src_port_mask = 0xFFFF,
.dst_port_mask = 0xFFFF,
.mac_addr_byte_mask = 0xFF,
.tunnel_type_mask = 1,
.tunnel_id_mask = 0xFFFFFFFF,
},
.drop_queue = 127,
};
volatile int test_done = 1; /* stop packet forwarding when set to 1. */
/*
* Display zero values by default for xstats
*/
uint8_t xstats_hide_zero;
/*
* Measure of CPU cycles disabled by default
*/
uint8_t record_core_cycles;
/*
* Display of RX and TX bursts disabled by default
*/
uint8_t record_burst_stats;
unsigned int num_sockets = 0;
unsigned int socket_ids[RTE_MAX_NUMA_NODES];
#ifdef RTE_LIB_BITRATESTATS
/* Bitrate statistics */
struct rte_stats_bitrates *bitrate_data;
lcoreid_t bitrate_lcore_id;
uint8_t bitrate_enabled;
#endif
struct gro_status gro_ports[RTE_MAX_ETHPORTS];
uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES;
/*
* hexadecimal bitmask of RX mq mode can be enabled.
*/
enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS;
/*
* Used to set forced link speed
*/
uint32_t eth_link_speed;
/*
* ID of the current process in multi-process, used to
* configure the queues to be polled.
*/
int proc_id;
/*
* Number of processes in multi-process, used to
* configure the queues to be polled.
*/
unsigned int num_procs = 1;
static void
eth_rx_metadata_negotiate_mp(uint16_t port_id)
{
uint64_t rx_meta_features = 0;
int ret;
if (!is_proc_primary())
return;
rx_meta_features |= RTE_ETH_RX_METADATA_USER_FLAG;
rx_meta_features |= RTE_ETH_RX_METADATA_USER_MARK;
rx_meta_features |= RTE_ETH_RX_METADATA_TUNNEL_ID;
ret = rte_eth_rx_metadata_negotiate(port_id, &rx_meta_features);
if (ret == 0) {
if (!(rx_meta_features & RTE_ETH_RX_METADATA_USER_FLAG)) {
TESTPMD_LOG(DEBUG, "Flow action FLAG will not affect Rx mbufs on port %u\n",
port_id);
}
if (!(rx_meta_features & RTE_ETH_RX_METADATA_USER_MARK)) {
TESTPMD_LOG(DEBUG, "Flow action MARK will not affect Rx mbufs on port %u\n",
port_id);
}
if (!(rx_meta_features & RTE_ETH_RX_METADATA_TUNNEL_ID)) {
TESTPMD_LOG(DEBUG, "Flow tunnel offload support might be limited or unavailable on port %u\n",
port_id);
}
} else if (ret != -ENOTSUP) {
rte_exit(EXIT_FAILURE, "Error when negotiating Rx meta features on port %u: %s\n",
port_id, rte_strerror(-ret));
}
}
static void
flow_pick_transfer_proxy_mp(uint16_t port_id)
{
struct rte_port *port = &ports[port_id];
int ret;
port->flow_transfer_proxy = port_id;
if (!is_proc_primary())
return;
ret = rte_flow_pick_transfer_proxy(port_id, &port->flow_transfer_proxy,
NULL);
if (ret != 0) {
fprintf(stderr, "Error picking flow transfer proxy for port %u: %s - ignore\n",
port_id, rte_strerror(-ret));
}
}
static int
eth_dev_configure_mp(uint16_t port_id, uint16_t nb_rx_q, uint16_t nb_tx_q,
const struct rte_eth_conf *dev_conf)
{
if (is_proc_primary())
return rte_eth_dev_configure(port_id, nb_rx_q, nb_tx_q,
dev_conf);
return 0;
}
static int
eth_dev_start_mp(uint16_t port_id)
{
if (is_proc_primary())
return rte_eth_dev_start(port_id);
return 0;
}
static int
eth_dev_stop_mp(uint16_t port_id)
{
if (is_proc_primary())
return rte_eth_dev_stop(port_id);
return 0;
}
static void
mempool_free_mp(struct rte_mempool *mp)
{
if (is_proc_primary())
rte_mempool_free(mp);
}
static int
eth_dev_set_mtu_mp(uint16_t port_id, uint16_t mtu)
{
if (is_proc_primary())
return rte_eth_dev_set_mtu(port_id, mtu);
return 0;
}
/* Forward function declarations */
static void setup_attached_port(portid_t pi);
static void check_all_ports_link_status(uint32_t port_mask);
static int eth_event_callback(portid_t port_id,
enum rte_eth_event_type type,
void *param, void *ret_param);
static void dev_event_callback(const char *device_name,
enum rte_dev_event_type type,
void *param);
static void fill_xstats_display_info(void);
/*
* Check if all the ports are started.
* If yes, return positive value. If not, return zero.
*/
static int all_ports_started(void);
struct gso_status gso_ports[RTE_MAX_ETHPORTS];
uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN;
/* Holds the registered mbuf dynamic flags names. */
char dynf_names[64][RTE_MBUF_DYN_NAMESIZE];
/*
* Helper function to check if socket is already discovered.
* If yes, return positive value. If not, return zero.
*/
int
new_socket_id(unsigned int socket_id)
{
unsigned int i;
for (i = 0; i < num_sockets; i++) {
if (socket_ids[i] == socket_id)
return 0;
}
return 1;
}
/*
* Setup default configuration.
*/
static void
set_default_fwd_lcores_config(void)
{
unsigned int i;
unsigned int nb_lc;
unsigned int sock_num;
nb_lc = 0;
for (i = 0; i < RTE_MAX_LCORE; i++) {
if (!rte_lcore_is_enabled(i))
continue;
sock_num = rte_lcore_to_socket_id(i);
if (new_socket_id(sock_num)) {
if (num_sockets >= RTE_MAX_NUMA_NODES) {
rte_exit(EXIT_FAILURE,
"Total sockets greater than %u\n",
RTE_MAX_NUMA_NODES);
}
socket_ids[num_sockets++] = sock_num;
}
if (i == rte_get_main_lcore())
continue;
fwd_lcores_cpuids[nb_lc++] = i;
}
nb_lcores = (lcoreid_t) nb_lc;
nb_cfg_lcores = nb_lcores;
nb_fwd_lcores = 1;
}
static void
set_def_peer_eth_addrs(void)
{
portid_t i;
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR;
peer_eth_addrs[i].addr_bytes[5] = i;
}
}
static void
set_default_fwd_ports_config(void)
{
portid_t pt_id;
int i = 0;
RTE_ETH_FOREACH_DEV(pt_id) {
fwd_ports_ids[i++] = pt_id;
/* Update sockets info according to the attached device */
int socket_id = rte_eth_dev_socket_id(pt_id);
if (socket_id >= 0 && new_socket_id(socket_id)) {
if (num_sockets >= RTE_MAX_NUMA_NODES) {
rte_exit(EXIT_FAILURE,
"Total sockets greater than %u\n",
RTE_MAX_NUMA_NODES);
}
socket_ids[num_sockets++] = socket_id;
}
}
nb_cfg_ports = nb_ports;
nb_fwd_ports = nb_ports;
}
void
set_def_fwd_config(void)
{
set_default_fwd_lcores_config();
set_def_peer_eth_addrs();
set_default_fwd_ports_config();
}
#ifndef RTE_EXEC_ENV_WINDOWS
/* extremely pessimistic estimation of memory required to create a mempool */
static int
calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out)
{
unsigned int n_pages, mbuf_per_pg, leftover;
uint64_t total_mem, mbuf_mem, obj_sz;
/* there is no good way to predict how much space the mempool will
* occupy because it will allocate chunks on the fly, and some of those
* will come from default DPDK memory while some will come from our
* external memory, so just assume 128MB will be enough for everyone.
*/
uint64_t hdr_mem = 128 << 20;
/* account for possible non-contiguousness */
obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL);
if (obj_sz > pgsz) {
TESTPMD_LOG(ERR, "Object size is bigger than page size\n");
return -1;
}
mbuf_per_pg = pgsz / obj_sz;
leftover = (nb_mbufs % mbuf_per_pg) > 0;
n_pages = (nb_mbufs / mbuf_per_pg) + leftover;
mbuf_mem = n_pages * pgsz;
total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz);
if (total_mem > SIZE_MAX) {
TESTPMD_LOG(ERR, "Memory size too big\n");
return -1;
}
*out = (size_t)total_mem;
return 0;
}
static int
pagesz_flags(uint64_t page_sz)
{
/* as per mmap() manpage, all page sizes are log2 of page size
* shifted by MAP_HUGE_SHIFT
*/
int log2 = rte_log2_u64(page_sz);
return (log2 << HUGE_SHIFT);
}
static void *
alloc_mem(size_t memsz, size_t pgsz, bool huge)
{
void *addr;
int flags;
/* allocate anonymous hugepages */
flags = MAP_ANONYMOUS | MAP_PRIVATE;
if (huge)
flags |= HUGE_FLAG | pagesz_flags(pgsz);
addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0);
if (addr == MAP_FAILED)
return NULL;
return addr;
}
struct extmem_param {
void *addr;
size_t len;
size_t pgsz;
rte_iova_t *iova_table;
unsigned int iova_table_len;
};
static int
create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param,
bool huge)
{
uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */
RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */
unsigned int cur_page, n_pages, pgsz_idx;
size_t mem_sz, cur_pgsz;
rte_iova_t *iovas = NULL;
void *addr;
int ret;
for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) {
/* skip anything that is too big */
if (pgsizes[pgsz_idx] > SIZE_MAX)
continue;
cur_pgsz = pgsizes[pgsz_idx];
/* if we were told not to allocate hugepages, override */
if (!huge)
cur_pgsz = sysconf(_SC_PAGESIZE);
ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot calculate memory size\n");
return -1;
}
/* allocate our memory */
addr = alloc_mem(mem_sz, cur_pgsz, huge);
/* if we couldn't allocate memory with a specified page size,
* that doesn't mean we can't do it with other page sizes, so
* try another one.
*/
if (addr == NULL)
continue;
/* store IOVA addresses for every page in this memory area */
n_pages = mem_sz / cur_pgsz;
iovas = malloc(sizeof(*iovas) * n_pages);
if (iovas == NULL) {
TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n");
goto fail;
}
/* lock memory if it's not huge pages */
if (!huge)
mlock(addr, mem_sz);
/* populate IOVA addresses */
for (cur_page = 0; cur_page < n_pages; cur_page++) {
rte_iova_t iova;
size_t offset;
void *cur;
offset = cur_pgsz * cur_page;
cur = RTE_PTR_ADD(addr, offset);
/* touch the page before getting its IOVA */
*(volatile char *)cur = 0;
iova = rte_mem_virt2iova(cur);
iovas[cur_page] = iova;
}
break;
}
/* if we couldn't allocate anything */
if (iovas == NULL)
return -1;
param->addr = addr;
param->len = mem_sz;
param->pgsz = cur_pgsz;
param->iova_table = iovas;
param->iova_table_len = n_pages;
return 0;
fail:
if (iovas)
free(iovas);
if (addr)
munmap(addr, mem_sz);
return -1;
}
static int
setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge)
{
struct extmem_param param;
int socket_id, ret;
memset(&param, 0, sizeof(param));
/* check if our heap exists */
socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME);
if (socket_id < 0) {
/* create our heap */
ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot create heap\n");
return -1;
}
}
ret = create_extmem(nb_mbufs, mbuf_sz, &param, huge);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot create memory area\n");
return -1;
}
/* we now have a valid memory area, so add it to heap */
ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME,
param.addr, param.len, param.iova_table,
param.iova_table_len, param.pgsz);
/* when using VFIO, memory is automatically mapped for DMA by EAL */
/* not needed any more */
free(param.iova_table);
if (ret < 0) {
TESTPMD_LOG(ERR, "Cannot add memory to heap\n");
munmap(param.addr, param.len);
return -1;
}
/* success */
TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n",
param.len >> 20);
return 0;
}
static void
dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused,
struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused)
{
uint16_t pid = 0;
int ret;
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_dev_info dev_info;
ret = eth_dev_info_get_print_err(pid, &dev_info);
if (ret != 0) {
TESTPMD_LOG(DEBUG,
"unable to get device info for port %d on addr 0x%p,"
"mempool unmapping will not be performed\n",
pid, memhdr->addr);
continue;
}
ret = rte_dev_dma_unmap(dev_info.device, memhdr->addr, 0, memhdr->len);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to DMA unmap addr 0x%p "
"for device %s\n",
memhdr->addr, dev_info.device->name);
}
}
ret = rte_extmem_unregister(memhdr->addr, memhdr->len);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to un-register addr 0x%p\n", memhdr->addr);
}
}
static void
dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused,
struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused)
{
uint16_t pid = 0;
size_t page_size = sysconf(_SC_PAGESIZE);
int ret;
ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0,
page_size);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to register addr 0x%p\n", memhdr->addr);
return;
}
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_dev_info dev_info;
ret = eth_dev_info_get_print_err(pid, &dev_info);
if (ret != 0) {
TESTPMD_LOG(DEBUG,
"unable to get device info for port %d on addr 0x%p,"
"mempool mapping will not be performed\n",
pid, memhdr->addr);
continue;
}
ret = rte_dev_dma_map(dev_info.device, memhdr->addr, 0, memhdr->len);
if (ret) {
TESTPMD_LOG(DEBUG,
"unable to DMA map addr 0x%p "
"for device %s\n",
memhdr->addr, dev_info.device->name);
}
}
}
#endif
static unsigned int
setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id,
char *pool_name, struct rte_pktmbuf_extmem **ext_mem)
{
struct rte_pktmbuf_extmem *xmem;
unsigned int ext_num, zone_num, elt_num;
uint16_t elt_size;
elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE);
elt_num = EXTBUF_ZONE_SIZE / elt_size;
zone_num = (nb_mbufs + elt_num - 1) / elt_num;
xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num);
if (xmem == NULL) {
TESTPMD_LOG(ERR, "Cannot allocate memory for "
"external buffer descriptors\n");
*ext_mem = NULL;
return 0;
}
for (ext_num = 0; ext_num < zone_num; ext_num++) {
struct rte_pktmbuf_extmem *xseg = xmem + ext_num;
const struct rte_memzone *mz;
char mz_name[RTE_MEMZONE_NAMESIZE];
int ret;
ret = snprintf(mz_name, sizeof(mz_name),
RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num);
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
errno = ENAMETOOLONG;
ext_num = 0;
break;
}
mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE,
socket_id,
RTE_MEMZONE_IOVA_CONTIG |
RTE_MEMZONE_1GB |
RTE_MEMZONE_SIZE_HINT_ONLY,
EXTBUF_ZONE_SIZE);
if (mz == NULL) {
/*
* The caller exits on external buffer creation
* error, so there is no need to free memzones.
*/
errno = ENOMEM;
ext_num = 0;
break;
}
xseg->buf_ptr = mz->addr;
xseg->buf_iova = mz->iova;
xseg->buf_len = EXTBUF_ZONE_SIZE;
xseg->elt_size = elt_size;
}
if (ext_num == 0 && xmem != NULL) {
free(xmem);
xmem = NULL;
}
*ext_mem = xmem;
return ext_num;
}
/*
* Configuration initialisation done once at init time.
*/
static struct rte_mempool *
mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf,
unsigned int socket_id, uint16_t size_idx)
{
char pool_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *rte_mp = NULL;
#ifndef RTE_EXEC_ENV_WINDOWS
uint32_t mb_size;
mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size;
#endif
mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx);
if (!is_proc_primary()) {
rte_mp = rte_mempool_lookup(pool_name);
if (rte_mp == NULL)
rte_exit(EXIT_FAILURE,
"Get mbuf pool for socket %u failed: %s\n",
socket_id, rte_strerror(rte_errno));
return rte_mp;
}
TESTPMD_LOG(INFO,
"create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n",
pool_name, nb_mbuf, mbuf_seg_size, socket_id);
switch (mp_alloc_type) {
case MP_ALLOC_NATIVE:
{
/* wrapper to rte_mempool_create() */
TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
rte_mbuf_best_mempool_ops());
rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
mb_mempool_cache, 0, mbuf_seg_size, socket_id);
break;
}
#ifndef RTE_EXEC_ENV_WINDOWS
case MP_ALLOC_ANON:
{
rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf,
mb_size, (unsigned int) mb_mempool_cache,
sizeof(struct rte_pktmbuf_pool_private),
socket_id, mempool_flags);
if (rte_mp == NULL)
goto err;
if (rte_mempool_populate_anon(rte_mp) == 0) {
rte_mempool_free(rte_mp);
rte_mp = NULL;
goto err;
}
rte_pktmbuf_pool_init(rte_mp, NULL);
rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL);
rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL);
break;
}
case MP_ALLOC_XMEM:
case MP_ALLOC_XMEM_HUGE:
{
int heap_socket;
bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE;
if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0)
rte_exit(EXIT_FAILURE, "Could not create external memory\n");
heap_socket =
rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME);
if (heap_socket < 0)
rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n");
TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
rte_mbuf_best_mempool_ops());
rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
mb_mempool_cache, 0, mbuf_seg_size,
heap_socket);
break;
}
#endif
case MP_ALLOC_XBUF:
{
struct rte_pktmbuf_extmem *ext_mem;
unsigned int ext_num;
ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size,
socket_id, pool_name, &ext_mem);
if (ext_num == 0)
rte_exit(EXIT_FAILURE,
"Can't create pinned data buffers\n");
TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
rte_mbuf_best_mempool_ops());
rte_mp = rte_pktmbuf_pool_create_extbuf
(pool_name, nb_mbuf, mb_mempool_cache,
0, mbuf_seg_size, socket_id,
ext_mem, ext_num);
free(ext_mem);
break;
}
default:
{
rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n");
}
}
#ifndef RTE_EXEC_ENV_WINDOWS
err:
#endif
if (rte_mp == NULL) {
rte_exit(EXIT_FAILURE,
"Creation of mbuf pool for socket %u failed: %s\n",
socket_id, rte_strerror(rte_errno));
} else if (verbose_level > 0) {
rte_mempool_dump(stdout, rte_mp);
}
return rte_mp;
}
/*
* Check given socket id is valid or not with NUMA mode,
* if valid, return 0, else return -1
*/
static int
check_socket_id(const unsigned int socket_id)
{
static int warning_once = 0;
if (new_socket_id(socket_id)) {
if (!warning_once && numa_support)
fprintf(stderr,
"Warning: NUMA should be configured manually by using --port-numa-config and --ring-numa-config parameters along with --numa.\n");
warning_once = 1;
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of RX queues.
* *pid return the port id which has minimal value of
* max_rx_queues in all ports.
*/
queueid_t
get_allowed_max_nb_rxq(portid_t *pid)
{
queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT;
bool max_rxq_valid = false;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
max_rxq_valid = true;
if (dev_info.max_rx_queues < allowed_max_rxq) {
allowed_max_rxq = dev_info.max_rx_queues;
*pid = pi;
}
}
return max_rxq_valid ? allowed_max_rxq : 0;
}
/*
* Check input rxq is valid or not.
* If input rxq is not greater than any of maximum number
* of RX queues of all ports, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_rxq(queueid_t rxq)
{
queueid_t allowed_max_rxq;
portid_t pid = 0;
allowed_max_rxq = get_allowed_max_nb_rxq(&pid);
if (rxq > allowed_max_rxq) {
fprintf(stderr,
"Fail: input rxq (%u) can't be greater than max_rx_queues (%u) of port %u\n",
rxq, allowed_max_rxq, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of TX queues.
* *pid return the port id which has minimal value of
* max_tx_queues in all ports.
*/
queueid_t
get_allowed_max_nb_txq(portid_t *pid)
{
queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT;
bool max_txq_valid = false;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
max_txq_valid = true;
if (dev_info.max_tx_queues < allowed_max_txq) {
allowed_max_txq = dev_info.max_tx_queues;
*pid = pi;
}
}
return max_txq_valid ? allowed_max_txq : 0;
}
/*
* Check input txq is valid or not.
* If input txq is not greater than any of maximum number
* of TX queues of all ports, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_txq(queueid_t txq)
{
queueid_t allowed_max_txq;
portid_t pid = 0;
allowed_max_txq = get_allowed_max_nb_txq(&pid);
if (txq > allowed_max_txq) {
fprintf(stderr,
"Fail: input txq (%u) can't be greater than max_tx_queues (%u) of port %u\n",
txq, allowed_max_txq, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of RXDs of every rx queue.
* *pid return the port id which has minimal value of
* max_rxd in all queues of all ports.
*/
static uint16_t
get_allowed_max_nb_rxd(portid_t *pid)
{
uint16_t allowed_max_rxd = UINT16_MAX;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) {
allowed_max_rxd = dev_info.rx_desc_lim.nb_max;
*pid = pi;
}
}
return allowed_max_rxd;
}
/*
* Get the allowed minimal number of RXDs of every rx queue.
* *pid return the port id which has minimal value of
* min_rxd in all queues of all ports.
*/
static uint16_t
get_allowed_min_nb_rxd(portid_t *pid)
{
uint16_t allowed_min_rxd = 0;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) {
allowed_min_rxd = dev_info.rx_desc_lim.nb_min;
*pid = pi;
}
}
return allowed_min_rxd;
}
/*
* Check input rxd is valid or not.
* If input rxd is not greater than any of maximum number
* of RXDs of every Rx queues and is not less than any of
* minimal number of RXDs of every Rx queues, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_rxd(queueid_t rxd)
{
uint16_t allowed_max_rxd;
uint16_t allowed_min_rxd;
portid_t pid = 0;
allowed_max_rxd = get_allowed_max_nb_rxd(&pid);
if (rxd > allowed_max_rxd) {
fprintf(stderr,
"Fail: input rxd (%u) can't be greater than max_rxds (%u) of port %u\n",
rxd, allowed_max_rxd, pid);
return -1;
}
allowed_min_rxd = get_allowed_min_nb_rxd(&pid);
if (rxd < allowed_min_rxd) {
fprintf(stderr,
"Fail: input rxd (%u) can't be less than min_rxds (%u) of port %u\n",
rxd, allowed_min_rxd, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of TXDs of every rx queues.
* *pid return the port id which has minimal value of
* max_txd in every tx queue.
*/
static uint16_t
get_allowed_max_nb_txd(portid_t *pid)
{
uint16_t allowed_max_txd = UINT16_MAX;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) {
allowed_max_txd = dev_info.tx_desc_lim.nb_max;
*pid = pi;
}
}
return allowed_max_txd;
}
/*
* Get the allowed maximum number of TXDs of every tx queues.
* *pid return the port id which has minimal value of
* min_txd in every tx queue.
*/
static uint16_t
get_allowed_min_nb_txd(portid_t *pid)
{
uint16_t allowed_min_txd = 0;
portid_t pi;
struct rte_eth_dev_info dev_info;
RTE_ETH_FOREACH_DEV(pi) {
if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
continue;
if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) {
allowed_min_txd = dev_info.tx_desc_lim.nb_min;
*pid = pi;
}
}
return allowed_min_txd;
}
/*
* Check input txd is valid or not.
* If input txd is not greater than any of maximum number
* of TXDs of every Rx queues, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_txd(queueid_t txd)
{
uint16_t allowed_max_txd;
uint16_t allowed_min_txd;
portid_t pid = 0;
allowed_max_txd = get_allowed_max_nb_txd(&pid);
if (txd > allowed_max_txd) {
fprintf(stderr,
"Fail: input txd (%u) can't be greater than max_txds (%u) of port %u\n",
txd, allowed_max_txd, pid);
return -1;
}
allowed_min_txd = get_allowed_min_nb_txd(&pid);
if (txd < allowed_min_txd) {
fprintf(stderr,
"Fail: input txd (%u) can't be less than min_txds (%u) of port %u\n",
txd, allowed_min_txd, pid);
return -1;
}
return 0;
}
/*
* Get the allowed maximum number of hairpin queues.
* *pid return the port id which has minimal value of
* max_hairpin_queues in all ports.
*/
queueid_t
get_allowed_max_nb_hairpinq(portid_t *pid)
{
queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT;
portid_t pi;
struct rte_eth_hairpin_cap cap;
RTE_ETH_FOREACH_DEV(pi) {
if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) {
*pid = pi;
return 0;
}
if (cap.max_nb_queues < allowed_max_hairpinq) {
allowed_max_hairpinq = cap.max_nb_queues;
*pid = pi;
}
}
return allowed_max_hairpinq;
}
/*
* Check input hairpin is valid or not.
* If input hairpin is not greater than any of maximum number
* of hairpin queues of all ports, it is valid.
* if valid, return 0, else return -1
*/
int
check_nb_hairpinq(queueid_t hairpinq)
{
queueid_t allowed_max_hairpinq;
portid_t pid = 0;
allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid);
if (hairpinq > allowed_max_hairpinq) {
fprintf(stderr,
"Fail: input hairpin (%u) can't be greater than max_hairpin_queues (%u) of port %u\n",
hairpinq, allowed_max_hairpinq, pid);
return -1;
}
return 0;
}
static int
get_eth_overhead(struct rte_eth_dev_info *dev_info)
{
uint32_t eth_overhead;
if (dev_info->max_mtu != UINT16_MAX &&
dev_info->max_rx_pktlen > dev_info->max_mtu)
eth_overhead = dev_info->max_rx_pktlen - dev_info->max_mtu;
else
eth_overhead = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
return eth_overhead;
}
static void
init_config_port_offloads(portid_t pid, uint32_t socket_id)
{
struct rte_port *port = &ports[pid];
int ret;
int i;
eth_rx_metadata_negotiate_mp(pid);
flow_pick_transfer_proxy_mp(pid);
port->dev_conf.txmode = tx_mode;
port->dev_conf.rxmode = rx_mode;
ret = eth_dev_info_get_print_err(pid, &port->dev_info);
if (ret != 0)
rte_exit(EXIT_FAILURE, "rte_eth_dev_info_get() failed\n");
if (!(port->dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE))
port->dev_conf.txmode.offloads &=
~DEV_TX_OFFLOAD_MBUF_FAST_FREE;
/* Apply Rx offloads configuration */
for (i = 0; i < port->dev_info.max_rx_queues; i++)
port->rx_conf[i].offloads = port->dev_conf.rxmode.offloads;
/* Apply Tx offloads configuration */
for (i = 0; i < port->dev_info.max_tx_queues; i++)
port->tx_conf[i].offloads = port->dev_conf.txmode.offloads;
if (eth_link_speed)
port->dev_conf.link_speeds = eth_link_speed;
if (max_rx_pkt_len)
port->dev_conf.rxmode.mtu = max_rx_pkt_len -
get_eth_overhead(&port->dev_info);
/* set flag to initialize port/queue */
port->need_reconfig = 1;
port->need_reconfig_queues = 1;
port->socket_id = socket_id;
port->tx_metadata = 0;
/*
* Check for maximum number of segments per MTU.
* Accordingly update the mbuf data size.
*/
if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX &&
port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) {
uint32_t eth_overhead = get_eth_overhead(&port->dev_info);
uint16_t mtu;
if (rte_eth_dev_get_mtu(pid, &mtu) == 0) {
uint16_t data_size = (mtu + eth_overhead) /
port->dev_info.rx_desc_lim.nb_mtu_seg_max;
uint16_t buffer_size = data_size + RTE_PKTMBUF_HEADROOM;
if (buffer_size > mbuf_data_size[0]) {
mbuf_data_size[0] = buffer_size;
TESTPMD_LOG(WARNING,
"Configured mbuf size of the first segment %hu\n",
mbuf_data_size[0]);
}
}
}
}
static void
init_config(void)
{
portid_t pid;
struct rte_mempool *mbp;
unsigned int nb_mbuf_per_pool;
lcoreid_t lc_id;
struct rte_gro_param gro_param;
uint32_t gso_types;
/* Configuration of logical cores. */
fwd_lcores = rte_zmalloc("testpmd: fwd_lcores",
sizeof(struct fwd_lcore *) * nb_lcores,
RTE_CACHE_LINE_SIZE);
if (fwd_lcores == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) "
"failed\n", nb_lcores);
}
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore",
sizeof(struct fwd_lcore),
RTE_CACHE_LINE_SIZE);
if (fwd_lcores[lc_id] == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) "
"failed\n");
}
fwd_lcores[lc_id]->cpuid_idx = lc_id;
}
RTE_ETH_FOREACH_DEV(pid) {
uint32_t socket_id;
if (numa_support) {
socket_id = port_numa[pid];
if (port_numa[pid] == NUMA_NO_CONFIG) {
socket_id = rte_eth_dev_socket_id(pid);
/*
* if socket_id is invalid,
* set to the first available socket.
*/
if (check_socket_id(socket_id) < 0)
socket_id = socket_ids[0];
}
} else {
socket_id = (socket_num == UMA_NO_CONFIG) ?
0 : socket_num;
}
/* Apply default TxRx configuration for all ports */
init_config_port_offloads(pid, socket_id);
}
/*
* Create pools of mbuf.
* If NUMA support is disabled, create a single pool of mbuf in
* socket 0 memory by default.
* Otherwise, create a pool of mbuf in the memory of sockets 0 and 1.
*
* Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and
* nb_txd can be configured at run time.
*/
if (param_total_num_mbufs)
nb_mbuf_per_pool = param_total_num_mbufs;
else {
nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX +
(nb_lcores * mb_mempool_cache) +
RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST;
nb_mbuf_per_pool *= RTE_MAX_ETHPORTS;
}
if (numa_support) {
uint8_t i, j;
for (i = 0; i < num_sockets; i++)
for (j = 0; j < mbuf_data_size_n; j++)
mempools[i * MAX_SEGS_BUFFER_SPLIT + j] =
mbuf_pool_create(mbuf_data_size[j],
nb_mbuf_per_pool,
socket_ids[i], j);
} else {
uint8_t i;
for (i = 0; i < mbuf_data_size_n; i++)
mempools[i] = mbuf_pool_create
(mbuf_data_size[i],
nb_mbuf_per_pool,
socket_num == UMA_NO_CONFIG ?
0 : socket_num, i);
}
init_port_config();
gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO;
/*
* Records which Mbuf pool to use by each logical core, if needed.
*/
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
mbp = mbuf_pool_find(
rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0);
if (mbp == NULL)
mbp = mbuf_pool_find(0, 0);
fwd_lcores[lc_id]->mbp = mbp;
/* initialize GSO context */
fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp;
fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp;
fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types;
fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN -
RTE_ETHER_CRC_LEN;
fwd_lcores[lc_id]->gso_ctx.flag = 0;
}
fwd_config_setup();
/* create a gro context for each lcore */
gro_param.gro_types = RTE_GRO_TCP_IPV4;
gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES;
gro_param.max_item_per_flow = MAX_PKT_BURST;
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
gro_param.socket_id = rte_lcore_to_socket_id(
fwd_lcores_cpuids[lc_id]);
fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param);
if (fwd_lcores[lc_id]->gro_ctx == NULL) {
rte_exit(EXIT_FAILURE,
"rte_gro_ctx_create() failed\n");
}
}
}
void
reconfig(portid_t new_port_id, unsigned socket_id)
{
/* Reconfiguration of Ethernet ports. */
init_config_port_offloads(new_port_id, socket_id);
init_port_config();
}
int
init_fwd_streams(void)
{
portid_t pid;
struct rte_port *port;
streamid_t sm_id, nb_fwd_streams_new;
queueid_t q;
/* set socket id according to numa or not */
RTE_ETH_FOREACH_DEV(pid) {
port = &ports[pid];
if (nb_rxq > port->dev_info.max_rx_queues) {
fprintf(stderr,
"Fail: nb_rxq(%d) is greater than max_rx_queues(%d)\n",
nb_rxq, port->dev_info.max_rx_queues);
return -1;
}
if (nb_txq > port->dev_info.max_tx_queues) {
fprintf(stderr,
"Fail: nb_txq(%d) is greater than max_tx_queues(%d)\n",
nb_txq, port->dev_info.max_tx_queues);
return -1;
}
if (numa_support) {
if (port_numa[pid] != NUMA_NO_CONFIG)
port->socket_id = port_numa[pid];
else {
port->socket_id = rte_eth_dev_socket_id(pid);
/*
* if socket_id is invalid,
* set to the first available socket.
*/
if (check_socket_id(port->socket_id) < 0)
port->socket_id = socket_ids[0];
}
}
else {
if (socket_num == UMA_NO_CONFIG)
port->socket_id = 0;
else
port->socket_id = socket_num;
}
}
q = RTE_MAX(nb_rxq, nb_txq);
if (q == 0) {
fprintf(stderr,
"Fail: Cannot allocate fwd streams as number of queues is 0\n");
return -1;
}
nb_fwd_streams_new = (streamid_t)(nb_ports * q);
if (nb_fwd_streams_new == nb_fwd_streams)
return 0;
/* clear the old */
if (fwd_streams != NULL) {
for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
if (fwd_streams[sm_id] == NULL)
continue;
rte_free(fwd_streams[sm_id]);
fwd_streams[sm_id] = NULL;
}
rte_free(fwd_streams);
fwd_streams = NULL;
}
/* init new */
nb_fwd_streams = nb_fwd_streams_new;
if (nb_fwd_streams) {
fwd_streams = rte_zmalloc("testpmd: fwd_streams",
sizeof(struct fwd_stream *) * nb_fwd_streams,
RTE_CACHE_LINE_SIZE);
if (fwd_streams == NULL)
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d"
" (struct fwd_stream *)) failed\n",
nb_fwd_streams);
for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
fwd_streams[sm_id] = rte_zmalloc("testpmd:"
" struct fwd_stream", sizeof(struct fwd_stream),
RTE_CACHE_LINE_SIZE);
if (fwd_streams[sm_id] == NULL)
rte_exit(EXIT_FAILURE, "rte_zmalloc"
"(struct fwd_stream) failed\n");
}
}
return 0;
}
static void
pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs)
{
uint64_t total_burst, sburst;
uint64_t nb_burst;
uint64_t burst_stats[4];
uint16_t pktnb_stats[4];
uint16_t nb_pkt;
int burst_percent[4], sburstp;
int i;
/*
* First compute the total number of packet bursts and the
* two highest numbers of bursts of the same number of packets.
*/
memset(&burst_stats, 0x0, sizeof(burst_stats));
memset(&pktnb_stats, 0x0, sizeof(pktnb_stats));
/* Show stats for 0 burst size always */
total_burst = pbs->pkt_burst_spread[0];
burst_stats[0] = pbs->pkt_burst_spread[0];
pktnb_stats[0] = 0;
/* Find the next 2 burst sizes with highest occurrences. */
for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) {
nb_burst = pbs->pkt_burst_spread[nb_pkt];
if (nb_burst == 0)
continue;
total_burst += nb_burst;
if (nb_burst > burst_stats[1]) {
burst_stats[2] = burst_stats[1];
pktnb_stats[2] = pktnb_stats[1];
burst_stats[1] = nb_burst;
pktnb_stats[1] = nb_pkt;
} else if (nb_burst > burst_stats[2]) {
burst_stats[2] = nb_burst;
pktnb_stats[2] = nb_pkt;
}
}
if (total_burst == 0)
return;
printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst);
for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) {
if (i == 3) {
printf("%d%% of other]\n", 100 - sburstp);
return;
}
sburst += burst_stats[i];
if (sburst == total_burst) {
printf("%d%% of %d pkts]\n",
100 - sburstp, (int) pktnb_stats[i]);
return;
}
burst_percent[i] =
(double)burst_stats[i] / total_burst * 100;
printf("%d%% of %d pkts + ",
burst_percent[i], (int) pktnb_stats[i]);
sburstp += burst_percent[i];
}
}
static void
fwd_stream_stats_display(streamid_t stream_id)
{
struct fwd_stream *fs;
static const char *fwd_top_stats_border = "-------";
fs = fwd_streams[stream_id];
if ((fs->rx_packets == 0) && (fs->tx_packets == 0) &&
(fs->fwd_dropped == 0))
return;
printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> "
"TX Port=%2d/Queue=%2d %s\n",
fwd_top_stats_border, fs->rx_port, fs->rx_queue,
fs->tx_port, fs->tx_queue, fwd_top_stats_border);
printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64
" TX-dropped: %-14"PRIu64,
fs->rx_packets, fs->tx_packets, fs->fwd_dropped);
/* if checksum mode */
if (cur_fwd_eng == &csum_fwd_engine) {
printf(" RX- bad IP checksum: %-14"PRIu64
" Rx- bad L4 checksum: %-14"PRIu64
" Rx- bad outer L4 checksum: %-14"PRIu64"\n",
fs->rx_bad_ip_csum, fs->rx_bad_l4_csum,
fs->rx_bad_outer_l4_csum);
printf(" RX- bad outer IP checksum: %-14"PRIu64"\n",
fs->rx_bad_outer_ip_csum);
} else {
printf("\n");
}
if (record_burst_stats) {
pkt_burst_stats_display("RX", &fs->rx_burst_stats);
pkt_burst_stats_display("TX", &fs->tx_burst_stats);
}
}
void
fwd_stats_display(void)
{
static const char *fwd_stats_border = "----------------------";
static const char *acc_stats_border = "+++++++++++++++";
struct {
struct fwd_stream *rx_stream;
struct fwd_stream *tx_stream;
uint64_t tx_dropped;
uint64_t rx_bad_ip_csum;
uint64_t rx_bad_l4_csum;
uint64_t rx_bad_outer_l4_csum;
uint64_t rx_bad_outer_ip_csum;
} ports_stats[RTE_MAX_ETHPORTS];
uint64_t total_rx_dropped = 0;
uint64_t total_tx_dropped = 0;
uint64_t total_rx_nombuf = 0;
struct rte_eth_stats stats;
uint64_t fwd_cycles = 0;
uint64_t total_recv = 0;
uint64_t total_xmit = 0;
struct rte_port *port;
streamid_t sm_id;
portid_t pt_id;
int i;
memset(ports_stats, 0, sizeof(ports_stats));
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
struct fwd_stream *fs = fwd_streams[sm_id];
if (cur_fwd_config.nb_fwd_streams >
cur_fwd_config.nb_fwd_ports) {
fwd_stream_stats_display(sm_id);
} else {
ports_stats[fs->tx_port].tx_stream = fs;
ports_stats[fs->rx_port].rx_stream = fs;
}
ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped;
ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum;
ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum;
ports_stats[fs->rx_port].rx_bad_outer_l4_csum +=
fs->rx_bad_outer_l4_csum;
ports_stats[fs->rx_port].rx_bad_outer_ip_csum +=
fs->rx_bad_outer_ip_csum;
if (record_core_cycles)
fwd_cycles += fs->core_cycles;
}
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
port = &ports[pt_id];
rte_eth_stats_get(pt_id, &stats);
stats.ipackets -= port->stats.ipackets;
stats.opackets -= port->stats.opackets;
stats.ibytes -= port->stats.ibytes;
stats.obytes -= port->stats.obytes;
stats.imissed -= port->stats.imissed;
stats.oerrors -= port->stats.oerrors;
stats.rx_nombuf -= port->stats.rx_nombuf;
total_recv += stats.ipackets;
total_xmit += stats.opackets;
total_rx_dropped += stats.imissed;
total_tx_dropped += ports_stats[pt_id].tx_dropped;
total_tx_dropped += stats.oerrors;
total_rx_nombuf += stats.rx_nombuf;
printf("\n %s Forward statistics for port %-2d %s\n",
fwd_stats_border, pt_id, fwd_stats_border);
printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64
"RX-total: %-"PRIu64"\n", stats.ipackets, stats.imissed,
stats.ipackets + stats.imissed);
if (cur_fwd_eng == &csum_fwd_engine) {
printf(" Bad-ipcsum: %-14"PRIu64
" Bad-l4csum: %-14"PRIu64
"Bad-outer-l4csum: %-14"PRIu64"\n",
ports_stats[pt_id].rx_bad_ip_csum,
ports_stats[pt_id].rx_bad_l4_csum,
ports_stats[pt_id].rx_bad_outer_l4_csum);
printf(" Bad-outer-ipcsum: %-14"PRIu64"\n",
ports_stats[pt_id].rx_bad_outer_ip_csum);
}
if (stats.ierrors + stats.rx_nombuf > 0) {
printf(" RX-error: %-"PRIu64"\n", stats.ierrors);
printf(" RX-nombufs: %-14"PRIu64"\n", stats.rx_nombuf);
}
printf(" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64
"TX-total: %-"PRIu64"\n",
stats.opackets, ports_stats[pt_id].tx_dropped,
stats.opackets + ports_stats[pt_id].tx_dropped);
if (record_burst_stats) {
if (ports_stats[pt_id].rx_stream)
pkt_burst_stats_display("RX",
&ports_stats[pt_id].rx_stream->rx_burst_stats);
if (ports_stats[pt_id].tx_stream)
pkt_burst_stats_display("TX",
&ports_stats[pt_id].tx_stream->tx_burst_stats);
}
printf(" %s--------------------------------%s\n",
fwd_stats_border, fwd_stats_border);
}
printf("\n %s Accumulated forward statistics for all ports"
"%s\n",
acc_stats_border, acc_stats_border);
printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: "
"%-"PRIu64"\n"
" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: "
"%-"PRIu64"\n",
total_recv, total_rx_dropped, total_recv + total_rx_dropped,
total_xmit, total_tx_dropped, total_xmit + total_tx_dropped);
if (total_rx_nombuf > 0)
printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf);
printf(" %s++++++++++++++++++++++++++++++++++++++++++++++"
"%s\n",
acc_stats_border, acc_stats_border);
if (record_core_cycles) {
#define CYC_PER_MHZ 1E6
if (total_recv > 0 || total_xmit > 0) {
uint64_t total_pkts = 0;
if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 ||
strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0)
total_pkts = total_xmit;
else
total_pkts = total_recv;
printf("\n CPU cycles/packet=%.2F (total cycles="
"%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64
" MHz Clock\n",
(double) fwd_cycles / total_pkts,
fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts,
(uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ));
}
}
}
void
fwd_stats_reset(void)
{
streamid_t sm_id;
portid_t pt_id;
int i;
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
rte_eth_stats_get(pt_id, &ports[pt_id].stats);
}
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
struct fwd_stream *fs = fwd_streams[sm_id];
fs->rx_packets = 0;
fs->tx_packets = 0;
fs->fwd_dropped = 0;
fs->rx_bad_ip_csum = 0;
fs->rx_bad_l4_csum = 0;
fs->rx_bad_outer_l4_csum = 0;
fs->rx_bad_outer_ip_csum = 0;
memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats));
memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats));
fs->core_cycles = 0;
}
}
static void
flush_fwd_rx_queues(void)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
portid_t rxp;
portid_t port_id;
queueid_t rxq;
uint16_t nb_rx;
uint16_t i;
uint8_t j;
uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
uint64_t timer_period;
if (num_procs > 1) {
printf("multi-process not support for flushing fwd Rx queues, skip the below lines and return.\n");
return;
}
/* convert to number of cycles */
timer_period = rte_get_timer_hz(); /* 1 second timeout */
for (j = 0; j < 2; j++) {
for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) {
for (rxq = 0; rxq < nb_rxq; rxq++) {
port_id = fwd_ports_ids[rxp];
/**
* testpmd can stuck in the below do while loop
* if rte_eth_rx_burst() always returns nonzero
* packets. So timer is added to exit this loop
* after 1sec timer expiry.
*/
prev_tsc = rte_rdtsc();
do {
nb_rx = rte_eth_rx_burst(port_id, rxq,
pkts_burst, MAX_PKT_BURST);
for (i = 0; i < nb_rx; i++)
rte_pktmbuf_free(pkts_burst[i]);
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
timer_tsc += diff_tsc;
} while ((nb_rx > 0) &&
(timer_tsc < timer_period));
timer_tsc = 0;
}
}
rte_delay_ms(10); /* wait 10 milli-seconds before retrying */
}
}
static void
run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd)
{
struct fwd_stream **fsm;
streamid_t nb_fs;
streamid_t sm_id;
#ifdef RTE_LIB_BITRATESTATS
uint64_t tics_per_1sec;
uint64_t tics_datum;
uint64_t tics_current;
uint16_t i, cnt_ports;
cnt_ports = nb_ports;
tics_datum = rte_rdtsc();
tics_per_1sec = rte_get_timer_hz();
#endif
fsm = &fwd_streams[fc->stream_idx];
nb_fs = fc->stream_nb;
do {
for (sm_id = 0; sm_id < nb_fs; sm_id++)
(*pkt_fwd)(fsm[sm_id]);
#ifdef RTE_LIB_BITRATESTATS
if (bitrate_enabled != 0 &&
bitrate_lcore_id == rte_lcore_id()) {
tics_current = rte_rdtsc();
if (tics_current - tics_datum >= tics_per_1sec) {
/* Periodic bitrate calculation */
for (i = 0; i < cnt_ports; i++)
rte_stats_bitrate_calc(bitrate_data,
ports_ids[i]);
tics_datum = tics_current;
}
}
#endif
#ifdef RTE_LIB_LATENCYSTATS
if (latencystats_enabled != 0 &&
latencystats_lcore_id == rte_lcore_id())
rte_latencystats_update();
#endif
} while (! fc->stopped);
}
static int
start_pkt_forward_on_core(void *fwd_arg)
{
run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg,
cur_fwd_config.fwd_eng->packet_fwd);
return 0;
}
/*
* Run the TXONLY packet forwarding engine to send a single burst of packets.
* Used to start communication flows in network loopback test configurations.
*/
static int
run_one_txonly_burst_on_core(void *fwd_arg)
{
struct fwd_lcore *fwd_lc;
struct fwd_lcore tmp_lcore;
fwd_lc = (struct fwd_lcore *) fwd_arg;
tmp_lcore = *fwd_lc;
tmp_lcore.stopped = 1;
run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd);
return 0;
}
/*
* Launch packet forwarding:
* - Setup per-port forwarding context.
* - launch logical cores with their forwarding configuration.
*/
static void
launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore)
{
unsigned int i;
unsigned int lc_id;
int diag;
for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) {
lc_id = fwd_lcores_cpuids[i];
if ((interactive == 0) || (lc_id != rte_lcore_id())) {
fwd_lcores[i]->stopped = 0;
diag = rte_eal_remote_launch(pkt_fwd_on_lcore,
fwd_lcores[i], lc_id);
if (diag != 0)
fprintf(stderr,
"launch lcore %u failed - diag=%d\n",
lc_id, diag);
}
}
}
/*
* Launch packet forwarding configuration.
*/
void
start_packet_forwarding(int with_tx_first)
{
port_fwd_begin_t port_fwd_begin;
port_fwd_end_t port_fwd_end;
unsigned int i;
if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq)
rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n");
if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq)
rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n");
if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 &&
strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) &&
(!nb_rxq || !nb_txq))
rte_exit(EXIT_FAILURE,
"Either rxq or txq are 0, cannot use %s fwd mode\n",
cur_fwd_eng->fwd_mode_name);
if (all_ports_started() == 0) {
fprintf(stderr, "Not all ports were started\n");
return;
}
if (test_done == 0) {
fprintf(stderr, "Packet forwarding already started\n");
return;
}
fwd_config_setup();
port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin;
if (port_fwd_begin != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
if (port_fwd_begin(fwd_ports_ids[i])) {
fprintf(stderr,
"Packet forwarding is not ready\n");
return;
}
}
}
if (with_tx_first) {
port_fwd_begin = tx_only_engine.port_fwd_begin;
if (port_fwd_begin != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
if (port_fwd_begin(fwd_ports_ids[i])) {
fprintf(stderr,
"Packet forwarding is not ready\n");
return;
}
}
}
}
test_done = 0;
if(!no_flush_rx)
flush_fwd_rx_queues();
pkt_fwd_config_display(&cur_fwd_config);
rxtx_config_display();
fwd_stats_reset();
if (with_tx_first) {
while (with_tx_first--) {
launch_packet_forwarding(
run_one_txonly_burst_on_core);
rte_eal_mp_wait_lcore();
}
port_fwd_end = tx_only_engine.port_fwd_end;
if (port_fwd_end != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
(*port_fwd_end)(fwd_ports_ids[i]);
}
}
launch_packet_forwarding(start_pkt_forward_on_core);
}
void
stop_packet_forwarding(void)
{
port_fwd_end_t port_fwd_end;
lcoreid_t lc_id;
portid_t pt_id;
int i;
if (test_done) {
fprintf(stderr, "Packet forwarding not started\n");
return;
}
printf("Telling cores to stop...");
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++)
fwd_lcores[lc_id]->stopped = 1;
printf("\nWaiting for lcores to finish...\n");
rte_eal_mp_wait_lcore();
port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end;
if (port_fwd_end != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
(*port_fwd_end)(pt_id);
}
}
fwd_stats_display();
printf("\nDone.\n");
test_done = 1;
}
void
dev_set_link_up(portid_t pid)
{
if (rte_eth_dev_set_link_up(pid) < 0)
fprintf(stderr, "\nSet link up fail.\n");
}
void
dev_set_link_down(portid_t pid)
{
if (rte_eth_dev_set_link_down(pid) < 0)
fprintf(stderr, "\nSet link down fail.\n");
}
static int
all_ports_started(void)
{
portid_t pi;
struct rte_port *port;
RTE_ETH_FOREACH_DEV(pi) {
port = &ports[pi];
/* Check if there is a port which is not started */
if ((port->port_status != RTE_PORT_STARTED) &&
(port->slave_flag == 0))
return 0;
}
/* No port is not started */
return 1;
}
int
port_is_stopped(portid_t port_id)
{
struct rte_port *port = &ports[port_id];
if ((port->port_status != RTE_PORT_STOPPED) &&
(port->slave_flag == 0))
return 0;
return 1;
}
int
all_ports_stopped(void)
{
portid_t pi;
RTE_ETH_FOREACH_DEV(pi) {
if (!port_is_stopped(pi))
return 0;
}
return 1;
}
int
port_is_started(portid_t port_id)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return 0;
if (ports[port_id].port_status != RTE_PORT_STARTED)
return 0;
return 1;
}
/* Configure the Rx and Tx hairpin queues for the selected port. */
static int
setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi)
{
queueid_t qi;
struct rte_eth_hairpin_conf hairpin_conf = {
.peer_count = 1,
};
int i;
int diag;
struct rte_port *port = &ports[pi];
uint16_t peer_rx_port = pi;
uint16_t peer_tx_port = pi;
uint32_t manual = 1;
uint32_t tx_exp = hairpin_mode & 0x10;
if (!(hairpin_mode & 0xf)) {
peer_rx_port = pi;
peer_tx_port = pi;
manual = 0;
} else if (hairpin_mode & 0x1) {
peer_tx_port = rte_eth_find_next_owned_by(pi + 1,
RTE_ETH_DEV_NO_OWNER);
if (peer_tx_port >= RTE_MAX_ETHPORTS)
peer_tx_port = rte_eth_find_next_owned_by(0,
RTE_ETH_DEV_NO_OWNER);
if (p_pi != RTE_MAX_ETHPORTS) {
peer_rx_port = p_pi;
} else {
uint16_t next_pi;
/* Last port will be the peer RX port of the first. */
RTE_ETH_FOREACH_DEV(next_pi)
peer_rx_port = next_pi;
}
manual = 1;
} else if (hairpin_mode & 0x2) {
if (cnt_pi & 0x1) {
peer_rx_port = p_pi;
} else {
peer_rx_port = rte_eth_find_next_owned_by(pi + 1,
RTE_ETH_DEV_NO_OWNER);
if (peer_rx_port >= RTE_MAX_ETHPORTS)
peer_rx_port = pi;
}
peer_tx_port = peer_rx_port;
manual = 1;
}
for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) {
hairpin_conf.peers[0].port = peer_rx_port;
hairpin_conf.peers[0].queue = i + nb_rxq;
hairpin_conf.manual_bind = !!manual;
hairpin_conf.tx_explicit = !!tx_exp;
diag = rte_eth_tx_hairpin_queue_setup
(pi, qi, nb_txd, &hairpin_conf);
i++;
if (diag == 0)
continue;
/* Fail to setup rx queue, return */
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING,
RTE_PORT_STOPPED) == 0)
fprintf(stderr,
"Port %d can not be set back to stopped\n", pi);
fprintf(stderr, "Fail to configure port %d hairpin queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) {
hairpin_conf.peers[0].port = peer_tx_port;
hairpin_conf.peers[0].queue = i + nb_txq;
hairpin_conf.manual_bind = !!manual;
hairpin_conf.tx_explicit = !!tx_exp;
diag = rte_eth_rx_hairpin_queue_setup
(pi, qi, nb_rxd, &hairpin_conf);
i++;
if (diag == 0)
continue;
/* Fail to setup rx queue, return */
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING,
RTE_PORT_STOPPED) == 0)
fprintf(stderr,
"Port %d can not be set back to stopped\n", pi);
fprintf(stderr, "Fail to configure port %d hairpin queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
return 0;
}
/* Configure the Rx with optional split. */
int
rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id,
uint16_t nb_rx_desc, unsigned int socket_id,
struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp)
{
union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {};
unsigned int i, mp_n;
int ret;
if (rx_pkt_nb_segs <= 1 ||
(rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) {
rx_conf->rx_seg = NULL;
rx_conf->rx_nseg = 0;
ret = rte_eth_rx_queue_setup(port_id, rx_queue_id,
nb_rx_desc, socket_id,
rx_conf, mp);
return ret;
}
for (i = 0; i < rx_pkt_nb_segs; i++) {
struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split;
struct rte_mempool *mpx;
/*
* Use last valid pool for the segments with number
* exceeding the pool index.
*/
mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i;
mpx = mbuf_pool_find(socket_id, mp_n);
/* Handle zero as mbuf data buffer size. */
rx_seg->length = rx_pkt_seg_lengths[i] ?
rx_pkt_seg_lengths[i] :
mbuf_data_size[mp_n];
rx_seg->offset = i < rx_pkt_nb_offs ?
rx_pkt_seg_offsets[i] : 0;
rx_seg->mp = mpx ? mpx : mp;
}
rx_conf->rx_nseg = rx_pkt_nb_segs;
rx_conf->rx_seg = rx_useg;
ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc,
socket_id, rx_conf, NULL);
rx_conf->rx_seg = NULL;
rx_conf->rx_nseg = 0;
return ret;
}
static int
alloc_xstats_display_info(portid_t pi)
{
uint64_t **ids_supp = &ports[pi].xstats_info.ids_supp;
uint64_t **prev_values = &ports[pi].xstats_info.prev_values;
uint64_t **curr_values = &ports[pi].xstats_info.curr_values;
if (xstats_display_num == 0)
return 0;
*ids_supp = calloc(xstats_display_num, sizeof(**ids_supp));
if (*ids_supp == NULL)
goto fail_ids_supp;
*prev_values = calloc(xstats_display_num,
sizeof(**prev_values));
if (*prev_values == NULL)
goto fail_prev_values;
*curr_values = calloc(xstats_display_num,
sizeof(**curr_values));
if (*curr_values == NULL)
goto fail_curr_values;
ports[pi].xstats_info.allocated = true;
return 0;
fail_curr_values:
free(*prev_values);
fail_prev_values:
free(*ids_supp);
fail_ids_supp:
return -ENOMEM;
}
static void
free_xstats_display_info(portid_t pi)
{
if (!ports[pi].xstats_info.allocated)
return;
free(ports[pi].xstats_info.ids_supp);
free(ports[pi].xstats_info.prev_values);
free(ports[pi].xstats_info.curr_values);
ports[pi].xstats_info.allocated = false;
}
/** Fill helper structures for specified port to show extended statistics. */
static void
fill_xstats_display_info_for_port(portid_t pi)
{
unsigned int stat, stat_supp;
const char *xstat_name;
struct rte_port *port;
uint64_t *ids_supp;
int rc;
if (xstats_display_num == 0)
return;
if (pi == (portid_t)RTE_PORT_ALL) {
fill_xstats_display_info();
return;
}
port = &ports[pi];
if (port->port_status != RTE_PORT_STARTED)
return;
if (!port->xstats_info.allocated && alloc_xstats_display_info(pi) != 0)
rte_exit(EXIT_FAILURE,
"Failed to allocate xstats display memory\n");
ids_supp = port->xstats_info.ids_supp;
for (stat = stat_supp = 0; stat < xstats_display_num; stat++) {
xstat_name = xstats_display[stat].name;
rc = rte_eth_xstats_get_id_by_name(pi, xstat_name,
ids_supp + stat_supp);
if (rc != 0) {
fprintf(stderr, "No xstat '%s' on port %u - skip it %u\n",
xstat_name, pi, stat);
continue;
}
stat_supp++;
}
port->xstats_info.ids_supp_sz = stat_supp;
}
/** Fill helper structures for all ports to show extended statistics. */
static void
fill_xstats_display_info(void)
{
portid_t pi;
if (xstats_display_num == 0)
return;
RTE_ETH_FOREACH_DEV(pi)
fill_xstats_display_info_for_port(pi);
}
int
start_port(portid_t pid)
{
int diag, need_check_link_status = -1;
portid_t pi;
portid_t p_pi = RTE_MAX_ETHPORTS;
portid_t pl[RTE_MAX_ETHPORTS];
portid_t peer_pl[RTE_MAX_ETHPORTS];
uint16_t cnt_pi = 0;
uint16_t cfg_pi = 0;
int peer_pi;
queueid_t qi;
struct rte_port *port;
struct rte_eth_hairpin_cap cap;
if (port_id_is_invalid(pid, ENABLED_WARN))
return 0;
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
need_check_link_status = 0;
port = &ports[pi];
if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED,
RTE_PORT_HANDLING) == 0) {
fprintf(stderr, "Port %d is now not stopped\n", pi);
continue;
}
if (port->need_reconfig > 0) {
struct rte_eth_conf dev_conf;
int k;
port->need_reconfig = 0;
if (flow_isolate_all) {
int ret = port_flow_isolate(pi, 1);
if (ret) {
fprintf(stderr,
"Failed to apply isolated mode on port %d\n",
pi);
return -1;
}
}
configure_rxtx_dump_callbacks(0);
printf("Configuring Port %d (socket %u)\n", pi,
port->socket_id);
if (nb_hairpinq > 0 &&
rte_eth_dev_hairpin_capability_get(pi, &cap)) {
fprintf(stderr,
"Port %d doesn't support hairpin queues\n",
pi);
return -1;
}
/* configure port */
diag = eth_dev_configure_mp(pi, nb_rxq + nb_hairpinq,
nb_txq + nb_hairpinq,
&(port->dev_conf));
if (diag != 0) {
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0)
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
fprintf(stderr, "Fail to configure port %d\n",
pi);
/* try to reconfigure port next time */
port->need_reconfig = 1;
return -1;
}
/* get device configuration*/
if (0 !=
eth_dev_conf_get_print_err(pi, &dev_conf)) {
fprintf(stderr,
"port %d can not get device configuration\n",
pi);
return -1;
}
/* Apply Rx offloads configuration */
if (dev_conf.rxmode.offloads !=
port->dev_conf.rxmode.offloads) {
port->dev_conf.rxmode.offloads |=
dev_conf.rxmode.offloads;
for (k = 0;
k < port->dev_info.max_rx_queues;
k++)
port->rx_conf[k].offloads |=
dev_conf.rxmode.offloads;
}
/* Apply Tx offloads configuration */
if (dev_conf.txmode.offloads !=
port->dev_conf.txmode.offloads) {
port->dev_conf.txmode.offloads |=
dev_conf.txmode.offloads;
for (k = 0;
k < port->dev_info.max_tx_queues;
k++)
port->tx_conf[k].offloads |=
dev_conf.txmode.offloads;
}
}
if (port->need_reconfig_queues > 0 && is_proc_primary()) {
port->need_reconfig_queues = 0;
/* setup tx queues */
for (qi = 0; qi < nb_txq; qi++) {
if ((numa_support) &&
(txring_numa[pi] != NUMA_NO_CONFIG))
diag = rte_eth_tx_queue_setup(pi, qi,
port->nb_tx_desc[qi],
txring_numa[pi],
&(port->tx_conf[qi]));
else
diag = rte_eth_tx_queue_setup(pi, qi,
port->nb_tx_desc[qi],
port->socket_id,
&(port->tx_conf[qi]));
if (diag == 0)
continue;
/* Fail to setup tx queue, return */
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING,
RTE_PORT_STOPPED) == 0)
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
fprintf(stderr,
"Fail to configure port %d tx queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
for (qi = 0; qi < nb_rxq; qi++) {
/* setup rx queues */
if ((numa_support) &&
(rxring_numa[pi] != NUMA_NO_CONFIG)) {
struct rte_mempool * mp =
mbuf_pool_find
(rxring_numa[pi], 0);
if (mp == NULL) {
fprintf(stderr,
"Failed to setup RX queue: No mempool allocation on the socket %d\n",
rxring_numa[pi]);
return -1;
}
diag = rx_queue_setup(pi, qi,
port->nb_rx_desc[qi],
rxring_numa[pi],
&(port->rx_conf[qi]),
mp);
} else {
struct rte_mempool *mp =
mbuf_pool_find
(port->socket_id, 0);
if (mp == NULL) {
fprintf(stderr,
"Failed to setup RX queue: No mempool allocation on the socket %d\n",
port->socket_id);
return -1;
}
diag = rx_queue_setup(pi, qi,
port->nb_rx_desc[qi],
port->socket_id,
&(port->rx_conf[qi]),
mp);
}
if (diag == 0)
continue;
/* Fail to setup rx queue, return */
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING,
RTE_PORT_STOPPED) == 0)
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
fprintf(stderr,
"Fail to configure port %d rx queues\n",
pi);
/* try to reconfigure queues next time */
port->need_reconfig_queues = 1;
return -1;
}
/* setup hairpin queues */
if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0)
return -1;
}
configure_rxtx_dump_callbacks(verbose_level);
if (clear_ptypes) {
diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN,
NULL, 0);
if (diag < 0)
fprintf(stderr,
"Port %d: Failed to disable Ptype parsing\n",
pi);
}
p_pi = pi;
cnt_pi++;
/* start port */
diag = eth_dev_start_mp(pi);
if (diag < 0) {
fprintf(stderr, "Fail to start port %d: %s\n",
pi, rte_strerror(-diag));
/* Fail to setup rx queue, return */
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0)
fprintf(stderr,
"Port %d can not be set back to stopped\n",
pi);
continue;
}
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0)
fprintf(stderr, "Port %d can not be set into started\n",
pi);
if (eth_macaddr_get_print_err(pi, &port->eth_addr) == 0)
printf("Port %d: " RTE_ETHER_ADDR_PRT_FMT "\n", pi,
RTE_ETHER_ADDR_BYTES(&port->eth_addr));
/* at least one port started, need checking link status */
need_check_link_status = 1;
pl[cfg_pi++] = pi;
}
if (need_check_link_status == 1 && !no_link_check)
check_all_ports_link_status(RTE_PORT_ALL);
else if (need_check_link_status == 0)
fprintf(stderr, "Please stop the ports first\n");
if (hairpin_mode & 0xf) {
uint16_t i;
int j;
/* bind all started hairpin ports */
for (i = 0; i < cfg_pi; i++) {
pi = pl[i];
/* bind current Tx to all peer Rx */
peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl,
RTE_MAX_ETHPORTS, 1);
if (peer_pi < 0)
return peer_pi;
for (j = 0; j < peer_pi; j++) {
if (!port_is_started(peer_pl[j]))
continue;
diag = rte_eth_hairpin_bind(pi, peer_pl[j]);
if (diag < 0) {
fprintf(stderr,
"Error during binding hairpin Tx port %u to %u: %s\n",
pi, peer_pl[j],
rte_strerror(-diag));
return -1;
}
}
/* bind all peer Tx to current Rx */
peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl,
RTE_MAX_ETHPORTS, 0);
if (peer_pi < 0)
return peer_pi;
for (j = 0; j < peer_pi; j++) {
if (!port_is_started(peer_pl[j]))
continue;
diag = rte_eth_hairpin_bind(peer_pl[j], pi);
if (diag < 0) {
fprintf(stderr,
"Error during binding hairpin Tx port %u to %u: %s\n",
peer_pl[j], pi,
rte_strerror(-diag));
return -1;
}
}
}
}
fill_xstats_display_info_for_port(pid);
printf("Done\n");
return 0;
}
void
stop_port(portid_t pid)
{
portid_t pi;
struct rte_port *port;
int need_check_link_status = 0;
portid_t peer_pl[RTE_MAX_ETHPORTS];
int peer_pi;
if (port_id_is_invalid(pid, ENABLED_WARN))
return;
printf("Stopping ports...\n");
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
if (port_is_forwarding(pi) != 0 && test_done == 0) {
fprintf(stderr,
"Please remove port %d from forwarding configuration.\n",
pi);
continue;
}
if (port_is_bonding_slave(pi)) {
fprintf(stderr,
"Please remove port %d from bonded device.\n",
pi);
continue;
}
port = &ports[pi];
if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED,
RTE_PORT_HANDLING) == 0)
continue;
if (hairpin_mode & 0xf) {
int j;
rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS);
/* unbind all peer Tx from current Rx */
peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl,
RTE_MAX_ETHPORTS, 0);
if (peer_pi < 0)
continue;
for (j = 0; j < peer_pi; j++) {
if (!port_is_started(peer_pl[j]))
continue;
rte_eth_hairpin_unbind(peer_pl[j], pi);
}
}
if (port->flow_list)
port_flow_flush(pi);
if (eth_dev_stop_mp(pi) != 0)
RTE_LOG(ERR, EAL, "rte_eth_dev_stop failed for port %u\n",
pi);
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0)
fprintf(stderr, "Port %d can not be set into stopped\n",
pi);
need_check_link_status = 1;
}
if (need_check_link_status && !no_link_check)
check_all_ports_link_status(RTE_PORT_ALL);
printf("Done\n");
}
static void
remove_invalid_ports_in(portid_t *array, portid_t *total)
{
portid_t i;
portid_t new_total = 0;
for (i = 0; i < *total; i++)
if (!port_id_is_invalid(array[i], DISABLED_WARN)) {
array[new_total] = array[i];
new_total++;
}
*total = new_total;
}
static void
remove_invalid_ports(void)
{
remove_invalid_ports_in(ports_ids, &nb_ports);
remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports);
nb_cfg_ports = nb_fwd_ports;
}
void
close_port(portid_t pid)
{
portid_t pi;
struct rte_port *port;
if (port_id_is_invalid(pid, ENABLED_WARN))
return;
printf("Closing ports...\n");
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
if (port_is_forwarding(pi) != 0 && test_done == 0) {
fprintf(stderr,
"Please remove port %d from forwarding configuration.\n",
pi);
continue;
}
if (port_is_bonding_slave(pi)) {
fprintf(stderr,
"Please remove port %d from bonded device.\n",
pi);
continue;
}
port = &ports[pi];
if (rte_atomic16_cmpset(&(port->port_status),
RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) {
fprintf(stderr, "Port %d is already closed\n", pi);
continue;
}
if (is_proc_primary()) {
port_flow_flush(pi);
rte_eth_dev_close(pi);
}
free_xstats_display_info(pi);
}
remove_invalid_ports();
printf("Done\n");
}
void
reset_port(portid_t pid)
{
int diag;
portid_t pi;
struct rte_port *port;
if (port_id_is_invalid(pid, ENABLED_WARN))
return;
if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) ||
(pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) {
fprintf(stderr,
"Can not reset port(s), please stop port(s) first.\n");
return;
}
printf("Resetting ports...\n");
RTE_ETH_FOREACH_DEV(pi) {
if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
continue;
if (port_is_forwarding(pi) != 0 && test_done == 0) {
fprintf(stderr,
"Please remove port %d from forwarding configuration.\n",
pi);
continue;
}
if (port_is_bonding_slave(pi)) {
fprintf(stderr,
"Please remove port %d from bonded device.\n",
pi);
continue;
}
diag = rte_eth_dev_reset(pi);
if (diag == 0) {
port = &ports[pi];
port->need_reconfig = 1;
port->need_reconfig_queues = 1;
} else {
fprintf(stderr, "Failed to reset port %d. diag=%d\n",
pi, diag);
}
}
printf("Done\n");
}
void
attach_port(char *identifier)
{
portid_t pi;
struct rte_dev_iterator iterator;
printf("Attaching a new port...\n");
if (identifier == NULL) {
fprintf(stderr, "Invalid parameters are specified\n");
return;
}
if (rte_dev_probe(identifier) < 0) {
TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier);
return;
}
/* first attach mode: event */
if (setup_on_probe_event) {
/* new ports are detected on RTE_ETH_EVENT_NEW event */
for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++)
if (ports[pi].port_status == RTE_PORT_HANDLING &&
ports[pi].need_setup != 0)
setup_attached_port(pi);
return;
}
/* second attach mode: iterator */
RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) {
/* setup ports matching the devargs used for probing */
if (port_is_forwarding(pi))
continue; /* port was already attached before */
setup_attached_port(pi);
}
}
static void
setup_attached_port(portid_t pi)
{
unsigned int socket_id;
int ret;
socket_id = (unsigned)rte_eth_dev_socket_id(pi);
/* if socket_id is invalid, set to the first available socket. */
if (check_socket_id(socket_id) < 0)
socket_id = socket_ids[0];
reconfig(pi, socket_id);
ret = rte_eth_promiscuous_enable(pi);
if (ret != 0)
fprintf(stderr,
"Error during enabling promiscuous mode for port %u: %s - ignore\n",
pi, rte_strerror(-ret));
ports_ids[nb_ports++] = pi;
fwd_ports_ids[nb_fwd_ports++] = pi;
nb_cfg_ports = nb_fwd_ports;
ports[pi].need_setup = 0;
ports[pi].port_status = RTE_PORT_STOPPED;
printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports);
printf("Done\n");
}
static void
detach_device(struct rte_device *dev)
{
portid_t sibling;
if (dev == NULL) {
fprintf(stderr, "Device already removed\n");
return;
}
printf("Removing a device...\n");
RTE_ETH_FOREACH_DEV_OF(sibling, dev) {
if (ports[sibling].port_status != RTE_PORT_CLOSED) {
if (ports[sibling].port_status != RTE_PORT_STOPPED) {
fprintf(stderr, "Port %u not stopped\n",
sibling);
return;
}
port_flow_flush(sibling);
}
}
if (rte_dev_remove(dev) < 0) {
TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name);
return;
}
remove_invalid_ports();
printf("Device is detached\n");
printf("Now total ports is %d\n", nb_ports);
printf("Done\n");
return;
}
void
detach_port_device(portid_t port_id)
{
int ret;
struct rte_eth_dev_info dev_info;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (ports[port_id].port_status != RTE_PORT_CLOSED) {
if (ports[port_id].port_status != RTE_PORT_STOPPED) {
fprintf(stderr, "Port not stopped\n");
return;
}
fprintf(stderr, "Port was not closed\n");
}
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0) {
TESTPMD_LOG(ERR,
"Failed to get device info for port %d, not detaching\n",
port_id);
return;
}
detach_device(dev_info.device);
}
void
detach_devargs(char *identifier)
{
struct rte_dev_iterator iterator;
struct rte_devargs da;
portid_t port_id;
printf("Removing a device...\n");
memset(&da, 0, sizeof(da));
if (rte_devargs_parsef(&da, "%s", identifier)) {
fprintf(stderr, "cannot parse identifier\n");
return;
}
RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) {
if (ports[port_id].port_status != RTE_PORT_CLOSED) {
if (ports[port_id].port_status != RTE_PORT_STOPPED) {
fprintf(stderr, "Port %u not stopped\n",
port_id);
rte_eth_iterator_cleanup(&iterator);
rte_devargs_reset(&da);
return;
}
port_flow_flush(port_id);
}
}
if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) {
TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n",
da.name, da.bus->name);
rte_devargs_reset(&da);
return;
}
remove_invalid_ports();
printf("Device %s is detached\n", identifier);
printf("Now total ports is %d\n", nb_ports);
printf("Done\n");
rte_devargs_reset(&da);
}
void
pmd_test_exit(void)
{
portid_t pt_id;
unsigned int i;
int ret;
if (test_done == 0)
stop_packet_forwarding();
#ifndef RTE_EXEC_ENV_WINDOWS
for (i = 0 ; i < RTE_DIM(mempools) ; i++) {
if (mempools[i]) {
if (mp_alloc_type == MP_ALLOC_ANON)
rte_mempool_mem_iter(mempools[i], dma_unmap_cb,
NULL);
}
}
#endif
if (ports != NULL) {
no_link_check = 1;
RTE_ETH_FOREACH_DEV(pt_id) {
printf("\nStopping port %d...\n", pt_id);
fflush(stdout);
stop_port(pt_id);
}
RTE_ETH_FOREACH_DEV(pt_id) {
printf("\nShutting down port %d...\n", pt_id);
fflush(stdout);
close_port(pt_id);
}
}
if (hot_plug) {
ret = rte_dev_event_monitor_stop();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to stop device event monitor.");
return;
}
ret = rte_dev_event_callback_unregister(NULL,
dev_event_callback, NULL);
if (ret < 0) {
RTE_LOG(ERR, EAL,
"fail to unregister device event callback.\n");
return;
}
ret = rte_dev_hotplug_handle_disable();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to disable hotplug handling.\n");
return;
}
}
for (i = 0 ; i < RTE_DIM(mempools) ; i++) {
if (mempools[i])
mempool_free_mp(mempools[i]);
}
free(xstats_display);
printf("\nBye...\n");
}
typedef void (*cmd_func_t)(void);
struct pmd_test_command {
const char *cmd_name;
cmd_func_t cmd_func;
};
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
portid_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status[RTE_ETH_LINK_MAX_STR_LEN];
printf("Checking link statuses...\n");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
RTE_ETH_FOREACH_DEV(portid) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
fprintf(stderr,
"Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
rte_eth_link_to_str(link_status,
sizeof(link_status), &link);
printf("Port %d %s\n", portid, link_status);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
}
if (lsc_interrupt)
break;
}
}
static void
rmv_port_callback(void *arg)
{
int need_to_start = 0;
int org_no_link_check = no_link_check;
portid_t port_id = (intptr_t)arg;
struct rte_eth_dev_info dev_info;
int ret;
RTE_ETH_VALID_PORTID_OR_RET(port_id);
if (!test_done && port_is_forwarding(port_id)) {
need_to_start = 1;
stop_packet_forwarding();
}
no_link_check = 1;
stop_port(port_id);
no_link_check = org_no_link_check;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
TESTPMD_LOG(ERR,
"Failed to get device info for port %d, not detaching\n",
port_id);
else {
struct rte_device *device = dev_info.device;
close_port(port_id);
detach_device(device); /* might be already removed or have more ports */
}
if (need_to_start)
start_packet_forwarding(0);
}
/* This function is used by the interrupt thread */
static int
eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param,
void *ret_param)
{
RTE_SET_USED(param);
RTE_SET_USED(ret_param);
if (type >= RTE_ETH_EVENT_MAX) {
fprintf(stderr,
"\nPort %" PRIu16 ": %s called upon invalid event %d\n",
port_id, __func__, type);
fflush(stderr);
} else if (event_print_mask & (UINT32_C(1) << type)) {
printf("\nPort %" PRIu16 ": %s event\n", port_id,
eth_event_desc[type]);
fflush(stdout);
}
switch (type) {
case RTE_ETH_EVENT_NEW:
ports[port_id].need_setup = 1;
ports[port_id].port_status = RTE_PORT_HANDLING;
break;
case RTE_ETH_EVENT_INTR_RMV:
if (port_id_is_invalid(port_id, DISABLED_WARN))
break;
if (rte_eal_alarm_set(100000,
rmv_port_callback, (void *)(intptr_t)port_id))
fprintf(stderr,
"Could not set up deferred device removal\n");
break;
case RTE_ETH_EVENT_DESTROY:
ports[port_id].port_status = RTE_PORT_CLOSED;
printf("Port %u is closed\n", port_id);
break;
default:
break;
}
return 0;
}
static int
register_eth_event_callback(void)
{
int ret;
enum rte_eth_event_type event;
for (event = RTE_ETH_EVENT_UNKNOWN;
event < RTE_ETH_EVENT_MAX; event++) {
ret = rte_eth_dev_callback_register(RTE_ETH_ALL,
event,
eth_event_callback,
NULL);
if (ret != 0) {
TESTPMD_LOG(ERR, "Failed to register callback for "
"%s event\n", eth_event_desc[event]);
return -1;
}
}
return 0;
}
/* This function is used by the interrupt thread */
static void
dev_event_callback(const char *device_name, enum rte_dev_event_type type,
__rte_unused void *arg)
{
uint16_t port_id;
int ret;
if (type >= RTE_DEV_EVENT_MAX) {
fprintf(stderr, "%s called upon invalid event %d\n",
__func__, type);
fflush(stderr);
}
switch (type) {
case RTE_DEV_EVENT_REMOVE:
RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n",
device_name);
ret = rte_eth_dev_get_port_by_name(device_name, &port_id);
if (ret) {
RTE_LOG(ERR, EAL, "can not get port by device %s!\n",
device_name);
return;
}
/*
* Because the user's callback is invoked in eal interrupt
* callback, the interrupt callback need to be finished before
* it can be unregistered when detaching device. So finish
* callback soon and use a deferred removal to detach device
* is need. It is a workaround, once the device detaching be
* moved into the eal in the future, the deferred removal could
* be deleted.
*/
if (rte_eal_alarm_set(100000,
rmv_port_callback, (void *)(intptr_t)port_id))
RTE_LOG(ERR, EAL,
"Could not set up deferred device removal\n");
break;
case RTE_DEV_EVENT_ADD:
RTE_LOG(ERR, EAL, "The device: %s has been added!\n",
device_name);
/* TODO: After finish kernel driver binding,
* begin to attach port.
*/
break;
default:
break;
}
}
static void
rxtx_port_config(struct rte_port *port)
{
uint16_t qid;
uint64_t offloads;
for (qid = 0; qid < nb_rxq; qid++) {
offloads = port->rx_conf[qid].offloads;
port->rx_conf[qid] = port->dev_info.default_rxconf;
if (offloads != 0)
port->rx_conf[qid].offloads = offloads;
/* Check if any Rx parameters have been passed */
if (rx_pthresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh;
if (rx_hthresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh;
if (rx_wthresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh;
if (rx_free_thresh != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_free_thresh = rx_free_thresh;
if (rx_drop_en != RTE_PMD_PARAM_UNSET)
port->rx_conf[qid].rx_drop_en = rx_drop_en;
port->nb_rx_desc[qid] = nb_rxd;
}
for (qid = 0; qid < nb_txq; qid++) {
offloads = port->tx_conf[qid].offloads;
port->tx_conf[qid] = port->dev_info.default_txconf;
if (offloads != 0)
port->tx_conf[qid].offloads = offloads;
/* Check if any Tx parameters have been passed */
if (tx_pthresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh;
if (tx_hthresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh;
if (tx_wthresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh;
if (tx_rs_thresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh;
if (tx_free_thresh != RTE_PMD_PARAM_UNSET)
port->tx_conf[qid].tx_free_thresh = tx_free_thresh;
port->nb_tx_desc[qid] = nb_txd;
}
}
/*
* Helper function to set MTU from frame size
*
* port->dev_info should be set before calling this function.
*
* return 0 on success, negative on error
*/
int
update_mtu_from_frame_size(portid_t portid, uint32_t max_rx_pktlen)
{
struct rte_port *port = &ports[portid];
uint32_t eth_overhead;
uint16_t mtu, new_mtu;
eth_overhead = get_eth_overhead(&port->dev_info);
if (rte_eth_dev_get_mtu(portid, &mtu) != 0) {
printf("Failed to get MTU for port %u\n", portid);
return -1;
}
new_mtu = max_rx_pktlen - eth_overhead;
if (mtu == new_mtu)
return 0;
if (eth_dev_set_mtu_mp(portid, new_mtu) != 0) {
fprintf(stderr,
"Failed to set MTU to %u for port %u\n",
new_mtu, portid);
return -1;
}
port->dev_conf.rxmode.mtu = new_mtu;
return 0;
}
void
init_port_config(void)
{
portid_t pid;
struct rte_port *port;
int ret, i;
RTE_ETH_FOREACH_DEV(pid) {
port = &ports[pid];
port->dev_conf.fdir_conf = fdir_conf;
ret = eth_dev_info_get_print_err(pid, &port->dev_info);
if (ret != 0)
return;
if (nb_rxq > 1) {
port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
port->dev_conf.rx_adv_conf.rss_conf.rss_hf =
rss_hf & port->dev_info.flow_type_rss_offloads;
} else {
port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0;
}
if (port->dcb_flag == 0) {
if (port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) {
port->dev_conf.rxmode.mq_mode =
(enum rte_eth_rx_mq_mode)
(rx_mq_mode & ETH_MQ_RX_RSS);
} else {
port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE;
port->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_RSS_HASH;
for (i = 0;
i < port->dev_info.nb_rx_queues;
i++)
port->rx_conf[i].offloads &=
~DEV_RX_OFFLOAD_RSS_HASH;
}
}
rxtx_port_config(port);
ret = eth_macaddr_get_print_err(pid, &port->eth_addr);
if (ret != 0)
return;
#if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS
rte_pmd_ixgbe_bypass_init(pid);
#endif
if (lsc_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_LSC))
port->dev_conf.intr_conf.lsc = 1;
if (rmv_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_RMV))
port->dev_conf.intr_conf.rmv = 1;
}
}
void set_port_slave_flag(portid_t slave_pid)
{
struct rte_port *port;
port = &ports[slave_pid];
port->slave_flag = 1;
}
void clear_port_slave_flag(portid_t slave_pid)
{
struct rte_port *port;
port = &ports[slave_pid];
port->slave_flag = 0;
}
uint8_t port_is_bonding_slave(portid_t slave_pid)
{
struct rte_port *port;
struct rte_eth_dev_info dev_info;
int ret;
port = &ports[slave_pid];
ret = eth_dev_info_get_print_err(slave_pid, &dev_info);
if (ret != 0) {
TESTPMD_LOG(ERR,
"Failed to get device info for port id %d,"
"cannot determine if the port is a bonded slave",
slave_pid);
return 0;
}
if ((*dev_info.dev_flags & RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1))
return 1;
return 0;
}
const uint16_t vlan_tags[] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31
};
static int
get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf,
enum dcb_mode_enable dcb_mode,
enum rte_eth_nb_tcs num_tcs,
uint8_t pfc_en)
{
uint8_t i;
int32_t rc;
struct rte_eth_rss_conf rss_conf;
/*
* Builds up the correct configuration for dcb+vt based on the vlan tags array
* given above, and the number of traffic classes available for use.
*/
if (dcb_mode == DCB_VT_ENABLED) {
struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
&eth_conf->rx_adv_conf.vmdq_dcb_conf;
struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
&eth_conf->tx_adv_conf.vmdq_dcb_tx_conf;
/* VMDQ+DCB RX and TX configurations */
vmdq_rx_conf->enable_default_pool = 0;
vmdq_rx_conf->default_pool = 0;
vmdq_rx_conf->nb_queue_pools =
(num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS);
vmdq_tx_conf->nb_queue_pools =
(num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS);
vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools;
for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) {
vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i];
vmdq_rx_conf->pool_map[i].pools =
1 << (i % vmdq_rx_conf->nb_queue_pools);
}
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
vmdq_rx_conf->dcb_tc[i] = i % num_tcs;
vmdq_tx_conf->dcb_tc[i] = i % num_tcs;
}
/* set DCB mode of RX and TX of multiple queues */
eth_conf->rxmode.mq_mode =
(enum rte_eth_rx_mq_mode)
(rx_mq_mode & ETH_MQ_RX_VMDQ_DCB);
eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB;
} else {
struct rte_eth_dcb_rx_conf *rx_conf =
&eth_conf->rx_adv_conf.dcb_rx_conf;
struct rte_eth_dcb_tx_conf *tx_conf =
&eth_conf->tx_adv_conf.dcb_tx_conf;
memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf));
rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf);
if (rc != 0)
return rc;
rx_conf->nb_tcs = num_tcs;
tx_conf->nb_tcs = num_tcs;
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
rx_conf->dcb_tc[i] = i % num_tcs;
tx_conf->dcb_tc[i] = i % num_tcs;
}
eth_conf->rxmode.mq_mode =
(enum rte_eth_rx_mq_mode)
(rx_mq_mode & ETH_MQ_RX_DCB_RSS);
eth_conf->rx_adv_conf.rss_conf = rss_conf;
eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB;
}
if (pfc_en)
eth_conf->dcb_capability_en =
ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT;
else
eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT;
return 0;
}
int
init_port_dcb_config(portid_t pid,
enum dcb_mode_enable dcb_mode,
enum rte_eth_nb_tcs num_tcs,
uint8_t pfc_en)
{
struct rte_eth_conf port_conf;
struct rte_port *rte_port;
int retval;
uint16_t i;
if (num_procs > 1) {
printf("The multi-process feature doesn't support dcb.\n");
return -ENOTSUP;
}
rte_port = &ports[pid];
/* retain the original device configuration. */
memcpy(&port_conf, &rte_port->dev_conf, sizeof(struct rte_eth_conf));
/*set configuration of DCB in vt mode and DCB in non-vt mode*/
retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en);
if (retval < 0)
return retval;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
/* re-configure the device . */
retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf);
if (retval < 0)
return retval;
retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info);
if (retval != 0)
return retval;
/* If dev_info.vmdq_pool_base is greater than 0,
* the queue id of vmdq pools is started after pf queues.
*/
if (dcb_mode == DCB_VT_ENABLED &&
rte_port->dev_info.vmdq_pool_base > 0) {
fprintf(stderr,
"VMDQ_DCB multi-queue mode is nonsensical for port %d.\n",
pid);
return -1;
}
/* Assume the ports in testpmd have the same dcb capability
* and has the same number of rxq and txq in dcb mode
*/
if (dcb_mode == DCB_VT_ENABLED) {
if (rte_port->dev_info.max_vfs > 0) {
nb_rxq = rte_port->dev_info.nb_rx_queues;
nb_txq = rte_port->dev_info.nb_tx_queues;
} else {
nb_rxq = rte_port->dev_info.max_rx_queues;
nb_txq = rte_port->dev_info.max_tx_queues;
}
} else {
/*if vt is disabled, use all pf queues */
if (rte_port->dev_info.vmdq_pool_base == 0) {
nb_rxq = rte_port->dev_info.max_rx_queues;
nb_txq = rte_port->dev_info.max_tx_queues;
} else {
nb_rxq = (queueid_t)num_tcs;
nb_txq = (queueid_t)num_tcs;
}
}
rx_free_thresh = 64;
memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf));
rxtx_port_config(rte_port);
/* VLAN filter */
rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
for (i = 0; i < RTE_DIM(vlan_tags); i++)
rx_vft_set(pid, vlan_tags[i], 1);
retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr);
if (retval != 0)
return retval;
rte_port->dcb_flag = 1;
/* Enter DCB configuration status */
dcb_config = 1;
return 0;
}
static void
init_port(void)
{
int i;
/* Configuration of Ethernet ports. */
ports = rte_zmalloc("testpmd: ports",
sizeof(struct rte_port) * RTE_MAX_ETHPORTS,
RTE_CACHE_LINE_SIZE);
if (ports == NULL) {
rte_exit(EXIT_FAILURE,
"rte_zmalloc(%d struct rte_port) failed\n",
RTE_MAX_ETHPORTS);
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++)
ports[i].xstats_info.allocated = false;
for (i = 0; i < RTE_MAX_ETHPORTS; i++)
LIST_INIT(&ports[i].flow_tunnel_list);
/* Initialize ports NUMA structures */
memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
}
static void
force_quit(void)
{
pmd_test_exit();
prompt_exit();
}
static void
print_stats(void)
{
uint8_t i;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' };
/* Clear screen and move to top left */
printf("%s%s", clr, top_left);
printf("\nPort statistics ====================================");
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
nic_stats_display(fwd_ports_ids[i]);
fflush(stdout);
}
static void
signal_handler(int signum)
{
if (signum == SIGINT || signum == SIGTERM) {
fprintf(stderr, "\nSignal %d received, preparing to exit...\n",
signum);
#ifdef RTE_LIB_PDUMP
/* uninitialize packet capture framework */
rte_pdump_uninit();
#endif
#ifdef RTE_LIB_LATENCYSTATS
if (latencystats_enabled != 0)
rte_latencystats_uninit();
#endif
force_quit();
/* Set flag to indicate the force termination. */
f_quit = 1;
/* exit with the expected status */
#ifndef RTE_EXEC_ENV_WINDOWS
signal(signum, SIG_DFL);
kill(getpid(), signum);
#endif
}
}
int
main(int argc, char** argv)
{
int diag;
portid_t port_id;
uint16_t count;
int ret;
signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);
testpmd_logtype = rte_log_register("testpmd");
if (testpmd_logtype < 0)
rte_exit(EXIT_FAILURE, "Cannot register log type");
rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG);
diag = rte_eal_init(argc, argv);
if (diag < 0)
rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n",
rte_strerror(rte_errno));
ret = register_eth_event_callback();
if (ret != 0)
rte_exit(EXIT_FAILURE, "Cannot register for ethdev events");
#ifdef RTE_LIB_PDUMP
/* initialize packet capture framework */
rte_pdump_init();
#endif
count = 0;
RTE_ETH_FOREACH_DEV(port_id) {
ports_ids[count] = port_id;
count++;
}
nb_ports = (portid_t) count;
if (nb_ports == 0)
TESTPMD_LOG(WARNING, "No probed ethernet devices\n");
/* allocate port structures, and init them */
init_port();
set_def_fwd_config();
if (nb_lcores == 0)
rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n"
"Check the core mask argument\n");
/* Bitrate/latency stats disabled by default */
#ifdef RTE_LIB_BITRATESTATS
bitrate_enabled = 0;
#endif
#ifdef RTE_LIB_LATENCYSTATS
latencystats_enabled = 0;
#endif
/* on FreeBSD, mlockall() is disabled by default */
#ifdef RTE_EXEC_ENV_FREEBSD
do_mlockall = 0;
#else
do_mlockall = 1;
#endif
argc -= diag;
argv += diag;
if (argc > 1)
launch_args_parse(argc, argv);
#ifndef RTE_EXEC_ENV_WINDOWS
if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) {
TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n",
strerror(errno));
}
#endif
if (tx_first && interactive)
rte_exit(EXIT_FAILURE, "--tx-first cannot be used on "
"interactive mode.\n");
if (tx_first && lsc_interrupt) {
fprintf(stderr,
"Warning: lsc_interrupt needs to be off when using tx_first. Disabling.\n");
lsc_interrupt = 0;
}
if (!nb_rxq && !nb_txq)
fprintf(stderr,
"Warning: Either rx or tx queues should be non-zero\n");
if (nb_rxq > 1 && nb_rxq > nb_txq)
fprintf(stderr,
"Warning: nb_rxq=%d enables RSS configuration, but nb_txq=%d will prevent to fully test it.\n",
nb_rxq, nb_txq);
init_config();
if (hot_plug) {
ret = rte_dev_hotplug_handle_enable();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to enable hotplug handling.");
return -1;
}
ret = rte_dev_event_monitor_start();
if (ret) {
RTE_LOG(ERR, EAL,
"fail to start device event monitoring.");
return -1;
}
ret = rte_dev_event_callback_register(NULL,
dev_event_callback, NULL);
if (ret) {
RTE_LOG(ERR, EAL,
"fail to register device event callback\n");
return -1;
}
}
if (!no_device_start && start_port(RTE_PORT_ALL) != 0)
rte_exit(EXIT_FAILURE, "Start ports failed\n");
/* set all ports to promiscuous mode by default */
RTE_ETH_FOREACH_DEV(port_id) {
ret = rte_eth_promiscuous_enable(port_id);
if (ret != 0)
fprintf(stderr,
"Error during enabling promiscuous mode for port %u: %s - ignore\n",
port_id, rte_strerror(-ret));
}
/* Init metrics library */
rte_metrics_init(rte_socket_id());
#ifdef RTE_LIB_LATENCYSTATS
if (latencystats_enabled != 0) {
int ret = rte_latencystats_init(1, NULL);
if (ret)
fprintf(stderr,
"Warning: latencystats init() returned error %d\n",
ret);
fprintf(stderr, "Latencystats running on lcore %d\n",
latencystats_lcore_id);
}
#endif
/* Setup bitrate stats */
#ifdef RTE_LIB_BITRATESTATS
if (bitrate_enabled != 0) {
bitrate_data = rte_stats_bitrate_create();
if (bitrate_data == NULL)
rte_exit(EXIT_FAILURE,
"Could not allocate bitrate data.\n");
rte_stats_bitrate_reg(bitrate_data);
}
#endif
#ifdef RTE_LIB_CMDLINE
if (strlen(cmdline_filename) != 0)
cmdline_read_from_file(cmdline_filename);
if (interactive == 1) {
if (auto_start) {
printf("Start automatic packet forwarding\n");
start_packet_forwarding(0);
}
prompt();
pmd_test_exit();
} else
#endif
{
char c;
int rc;
f_quit = 0;
printf("No commandline core given, start packet forwarding\n");
start_packet_forwarding(tx_first);
if (stats_period != 0) {
uint64_t prev_time = 0, cur_time, diff_time = 0;
uint64_t timer_period;
/* Convert to number of cycles */
timer_period = stats_period * rte_get_timer_hz();
while (f_quit == 0) {
cur_time = rte_get_timer_cycles();
diff_time += cur_time - prev_time;
if (diff_time >= timer_period) {
print_stats();
/* Reset the timer */
diff_time = 0;
}
/* Sleep to avoid unnecessary checks */
prev_time = cur_time;
rte_delay_us_sleep(US_PER_S);
}
}
printf("Press enter to exit\n");
rc = read(0, &c, 1);
pmd_test_exit();
if (rc < 0)
return 1;
}
ret = rte_eal_cleanup();
if (ret != 0)
rte_exit(EXIT_FAILURE,
"EAL cleanup failed: %s\n", strerror(-ret));
return EXIT_SUCCESS;
}