9863627f52
Add a function to calculate the length of an IPv4 header as suggested on the mailing list [1]. Call where appropriate. [1] https://mails.dpdk.org/archives/dev/2020-October/184471.html Suggested-by: Thomas Monjalon <thomas@monjalon.net> Signed-off-by: Michael Pfeiffer <michael.pfeiffer@tu-ilmenau.de> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
1137 lines
31 KiB
C
1137 lines
31 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation.
|
|
* Copyright 2014 6WIND S.A.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_vxlan.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_gtp.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_flow.h>
|
|
#include <rte_gro.h>
|
|
#include <rte_gso.h>
|
|
#include <rte_geneve.h>
|
|
|
|
#include "testpmd.h"
|
|
|
|
#define IP_DEFTTL 64 /* from RFC 1340. */
|
|
|
|
#define GRE_CHECKSUM_PRESENT 0x8000
|
|
#define GRE_KEY_PRESENT 0x2000
|
|
#define GRE_SEQUENCE_PRESENT 0x1000
|
|
#define GRE_EXT_LEN 4
|
|
#define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
|
|
GRE_SEQUENCE_PRESENT)
|
|
|
|
/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
|
|
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
|
|
#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
|
|
#else
|
|
#define _htons(x) (x)
|
|
#endif
|
|
|
|
uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
|
|
uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
|
|
|
|
/* structure that caches offload info for the current packet */
|
|
struct testpmd_offload_info {
|
|
uint16_t ethertype;
|
|
uint8_t gso_enable;
|
|
uint16_t l2_len;
|
|
uint16_t l3_len;
|
|
uint16_t l4_len;
|
|
uint8_t l4_proto;
|
|
uint8_t is_tunnel;
|
|
uint16_t outer_ethertype;
|
|
uint16_t outer_l2_len;
|
|
uint16_t outer_l3_len;
|
|
uint8_t outer_l4_proto;
|
|
uint16_t tso_segsz;
|
|
uint16_t tunnel_tso_segsz;
|
|
uint32_t pkt_len;
|
|
};
|
|
|
|
/* simplified GRE header */
|
|
struct simple_gre_hdr {
|
|
uint16_t flags;
|
|
uint16_t proto;
|
|
} __rte_packed;
|
|
|
|
static uint16_t
|
|
get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
|
|
{
|
|
if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
|
|
return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
|
|
else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
|
|
return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
|
|
}
|
|
|
|
/* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
|
|
static void
|
|
parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_tcp_hdr *tcp_hdr;
|
|
|
|
info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
|
|
info->l4_proto = ipv4_hdr->next_proto_id;
|
|
|
|
/* only fill l4_len for TCP, it's useful for TSO */
|
|
if (info->l4_proto == IPPROTO_TCP) {
|
|
tcp_hdr = (struct rte_tcp_hdr *)
|
|
((char *)ipv4_hdr + info->l3_len);
|
|
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
} else if (info->l4_proto == IPPROTO_UDP)
|
|
info->l4_len = sizeof(struct rte_udp_hdr);
|
|
else
|
|
info->l4_len = 0;
|
|
}
|
|
|
|
/* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
|
|
static void
|
|
parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_tcp_hdr *tcp_hdr;
|
|
|
|
info->l3_len = sizeof(struct rte_ipv6_hdr);
|
|
info->l4_proto = ipv6_hdr->proto;
|
|
|
|
/* only fill l4_len for TCP, it's useful for TSO */
|
|
if (info->l4_proto == IPPROTO_TCP) {
|
|
tcp_hdr = (struct rte_tcp_hdr *)
|
|
((char *)ipv6_hdr + info->l3_len);
|
|
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
} else if (info->l4_proto == IPPROTO_UDP)
|
|
info->l4_len = sizeof(struct rte_udp_hdr);
|
|
else
|
|
info->l4_len = 0;
|
|
}
|
|
|
|
/*
|
|
* Parse an ethernet header to fill the ethertype, l2_len, l3_len and
|
|
* ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
|
|
* headers. The l4_len argument is only set in case of TCP (useful for TSO).
|
|
*/
|
|
static void
|
|
parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
struct rte_vlan_hdr *vlan_hdr;
|
|
|
|
info->l2_len = sizeof(struct rte_ether_hdr);
|
|
info->ethertype = eth_hdr->ether_type;
|
|
|
|
while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
|
|
info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
|
|
vlan_hdr = (struct rte_vlan_hdr *)
|
|
((char *)eth_hdr + info->l2_len);
|
|
info->l2_len += sizeof(struct rte_vlan_hdr);
|
|
info->ethertype = vlan_hdr->eth_proto;
|
|
}
|
|
|
|
switch (info->ethertype) {
|
|
case _htons(RTE_ETHER_TYPE_IPV4):
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)
|
|
((char *)eth_hdr + info->l2_len);
|
|
parse_ipv4(ipv4_hdr, info);
|
|
break;
|
|
case _htons(RTE_ETHER_TYPE_IPV6):
|
|
ipv6_hdr = (struct rte_ipv6_hdr *)
|
|
((char *)eth_hdr + info->l2_len);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
break;
|
|
default:
|
|
info->l4_len = 0;
|
|
info->l3_len = 0;
|
|
info->l4_proto = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Fill in outer layers length */
|
|
static void
|
|
update_tunnel_outer(struct testpmd_offload_info *info)
|
|
{
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
info->outer_l4_proto = info->l4_proto;
|
|
}
|
|
|
|
/*
|
|
* Parse a GTP protocol header.
|
|
* No optional fields and next extension header type.
|
|
*/
|
|
static void
|
|
parse_gtp(struct rte_udp_hdr *udp_hdr,
|
|
struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
struct rte_gtp_hdr *gtp_hdr;
|
|
uint8_t gtp_len = sizeof(*gtp_hdr);
|
|
uint8_t ip_ver;
|
|
|
|
/* Check udp destination port. */
|
|
if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
|
|
udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
|
|
udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
|
|
return;
|
|
|
|
update_tunnel_outer(info);
|
|
info->l2_len = 0;
|
|
|
|
gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
|
|
sizeof(struct rte_udp_hdr));
|
|
|
|
/*
|
|
* Check message type. If message type is 0xff, it is
|
|
* a GTP data packet. If not, it is a GTP control packet
|
|
*/
|
|
if (gtp_hdr->msg_type == 0xff) {
|
|
ip_ver = *(uint8_t *)((char *)udp_hdr +
|
|
sizeof(struct rte_udp_hdr) +
|
|
sizeof(struct rte_gtp_hdr));
|
|
ip_ver = (ip_ver) & 0xf0;
|
|
|
|
if (ip_ver == RTE_GTP_TYPE_IPV4) {
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
|
|
gtp_len);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
|
|
parse_ipv4(ipv4_hdr, info);
|
|
} else if (ip_ver == RTE_GTP_TYPE_IPV6) {
|
|
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
|
|
gtp_len);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
}
|
|
} else {
|
|
info->ethertype = 0;
|
|
info->l4_len = 0;
|
|
info->l3_len = 0;
|
|
info->l4_proto = 0;
|
|
}
|
|
|
|
info->l2_len += RTE_ETHER_GTP_HLEN;
|
|
}
|
|
|
|
/* Parse a vxlan header */
|
|
static void
|
|
parse_vxlan(struct rte_udp_hdr *udp_hdr,
|
|
struct testpmd_offload_info *info,
|
|
uint32_t pkt_type)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
|
|
/* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
|
|
* default vxlan port (rfc7348) or that the rx offload flag is set
|
|
* (i40e only currently)
|
|
*/
|
|
if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) &&
|
|
RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
|
|
return;
|
|
|
|
update_tunnel_outer(info);
|
|
|
|
eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
|
|
sizeof(struct rte_udp_hdr) +
|
|
sizeof(struct rte_vxlan_hdr));
|
|
|
|
parse_ethernet(eth_hdr, info);
|
|
info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
|
|
}
|
|
|
|
/* Parse a vxlan-gpe header */
|
|
static void
|
|
parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
|
|
struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
|
|
uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
|
|
|
|
/* Check udp destination port. */
|
|
if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
|
|
return;
|
|
|
|
vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
|
|
sizeof(struct rte_udp_hdr));
|
|
|
|
if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
|
|
RTE_VXLAN_GPE_TYPE_IPV4) {
|
|
update_tunnel_outer(info);
|
|
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
|
|
vxlan_gpe_len);
|
|
|
|
parse_ipv4(ipv4_hdr, info);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
|
|
info->l2_len = 0;
|
|
|
|
} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
|
|
update_tunnel_outer(info);
|
|
|
|
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
|
|
vxlan_gpe_len);
|
|
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
info->l2_len = 0;
|
|
|
|
} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
|
|
update_tunnel_outer(info);
|
|
|
|
eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
|
|
vxlan_gpe_len);
|
|
|
|
parse_ethernet(eth_hdr, info);
|
|
} else
|
|
return;
|
|
|
|
info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
|
|
}
|
|
|
|
/* Parse a geneve header */
|
|
static void
|
|
parse_geneve(struct rte_udp_hdr *udp_hdr,
|
|
struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
struct rte_geneve_hdr *geneve_hdr;
|
|
uint16_t geneve_len;
|
|
|
|
/* Check udp destination port. */
|
|
if (udp_hdr->dst_port != _htons(geneve_udp_port))
|
|
return;
|
|
|
|
geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
|
|
sizeof(struct rte_udp_hdr));
|
|
geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
|
|
if (!geneve_hdr->proto || geneve_hdr->proto ==
|
|
_htons(RTE_ETHER_TYPE_IPV4)) {
|
|
update_tunnel_outer(info);
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
|
|
geneve_len);
|
|
parse_ipv4(ipv4_hdr, info);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
|
|
info->l2_len = 0;
|
|
} else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
|
|
update_tunnel_outer(info);
|
|
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
|
|
geneve_len);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
info->l2_len = 0;
|
|
|
|
} else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
|
|
update_tunnel_outer(info);
|
|
eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
|
|
geneve_len);
|
|
parse_ethernet(eth_hdr, info);
|
|
} else
|
|
return;
|
|
|
|
info->l2_len +=
|
|
(sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
|
|
((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
|
|
}
|
|
|
|
/* Parse a gre header */
|
|
static void
|
|
parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
uint8_t gre_len = 0;
|
|
|
|
gre_len += sizeof(struct simple_gre_hdr);
|
|
|
|
if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
|
|
gre_len += GRE_EXT_LEN;
|
|
if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
|
|
gre_len += GRE_EXT_LEN;
|
|
if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
|
|
gre_len += GRE_EXT_LEN;
|
|
|
|
if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
|
|
update_tunnel_outer(info);
|
|
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
|
|
|
|
parse_ipv4(ipv4_hdr, info);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
|
|
info->l2_len = 0;
|
|
|
|
} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
|
|
update_tunnel_outer(info);
|
|
|
|
ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
|
|
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
|
|
parse_ipv6(ipv6_hdr, info);
|
|
info->l2_len = 0;
|
|
|
|
} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
|
|
update_tunnel_outer(info);
|
|
|
|
eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
|
|
|
|
parse_ethernet(eth_hdr, info);
|
|
} else
|
|
return;
|
|
|
|
info->l2_len += gre_len;
|
|
}
|
|
|
|
|
|
/* Parse an encapsulated ip or ipv6 header */
|
|
static void
|
|
parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
|
|
struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
|
|
uint8_t ip_version;
|
|
|
|
ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
|
|
|
|
if (ip_version != 4 && ip_version != 6)
|
|
return;
|
|
|
|
info->is_tunnel = 1;
|
|
info->outer_ethertype = info->ethertype;
|
|
info->outer_l2_len = info->l2_len;
|
|
info->outer_l3_len = info->l3_len;
|
|
|
|
if (ip_version == 4) {
|
|
parse_ipv4(ipv4_hdr, info);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
|
|
} else {
|
|
parse_ipv6(ipv6_hdr, info);
|
|
info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
|
|
}
|
|
info->l2_len = 0;
|
|
}
|
|
|
|
/* if possible, calculate the checksum of a packet in hw or sw,
|
|
* depending on the testpmd command line configuration */
|
|
static uint64_t
|
|
process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
|
|
uint64_t tx_offloads)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
|
|
struct rte_udp_hdr *udp_hdr;
|
|
struct rte_tcp_hdr *tcp_hdr;
|
|
struct rte_sctp_hdr *sctp_hdr;
|
|
uint64_t ol_flags = 0;
|
|
uint32_t max_pkt_len, tso_segsz = 0;
|
|
|
|
/* ensure packet is large enough to require tso */
|
|
if (!info->is_tunnel) {
|
|
max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
|
|
info->tso_segsz;
|
|
if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
|
|
tso_segsz = info->tso_segsz;
|
|
} else {
|
|
max_pkt_len = info->outer_l2_len + info->outer_l3_len +
|
|
info->l2_len + info->l3_len + info->l4_len +
|
|
info->tunnel_tso_segsz;
|
|
if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
|
|
tso_segsz = info->tunnel_tso_segsz;
|
|
}
|
|
|
|
if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
|
|
ipv4_hdr = l3_hdr;
|
|
ipv4_hdr->hdr_checksum = 0;
|
|
|
|
ol_flags |= PKT_TX_IPV4;
|
|
if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
|
|
ol_flags |= PKT_TX_IP_CKSUM;
|
|
} else {
|
|
if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
|
|
ol_flags |= PKT_TX_IP_CKSUM;
|
|
else
|
|
ipv4_hdr->hdr_checksum =
|
|
rte_ipv4_cksum(ipv4_hdr);
|
|
}
|
|
} else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
|
|
ol_flags |= PKT_TX_IPV6;
|
|
else
|
|
return 0; /* packet type not supported, nothing to do */
|
|
|
|
if (info->l4_proto == IPPROTO_UDP) {
|
|
udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
|
|
/* do not recalculate udp cksum if it was 0 */
|
|
if (udp_hdr->dgram_cksum != 0) {
|
|
udp_hdr->dgram_cksum = 0;
|
|
if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
|
|
ol_flags |= PKT_TX_UDP_CKSUM;
|
|
else {
|
|
udp_hdr->dgram_cksum =
|
|
get_udptcp_checksum(l3_hdr, udp_hdr,
|
|
info->ethertype);
|
|
}
|
|
}
|
|
if (info->gso_enable)
|
|
ol_flags |= PKT_TX_UDP_SEG;
|
|
} else if (info->l4_proto == IPPROTO_TCP) {
|
|
tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
|
|
tcp_hdr->cksum = 0;
|
|
if (tso_segsz)
|
|
ol_flags |= PKT_TX_TCP_SEG;
|
|
else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
|
|
ol_flags |= PKT_TX_TCP_CKSUM;
|
|
else {
|
|
tcp_hdr->cksum =
|
|
get_udptcp_checksum(l3_hdr, tcp_hdr,
|
|
info->ethertype);
|
|
}
|
|
if (info->gso_enable)
|
|
ol_flags |= PKT_TX_TCP_SEG;
|
|
} else if (info->l4_proto == IPPROTO_SCTP) {
|
|
sctp_hdr = (struct rte_sctp_hdr *)
|
|
((char *)l3_hdr + info->l3_len);
|
|
sctp_hdr->cksum = 0;
|
|
/* sctp payload must be a multiple of 4 to be
|
|
* offloaded */
|
|
if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
|
|
((ipv4_hdr->total_length & 0x3) == 0)) {
|
|
ol_flags |= PKT_TX_SCTP_CKSUM;
|
|
} else {
|
|
/* XXX implement CRC32c, example available in
|
|
* RFC3309 */
|
|
}
|
|
}
|
|
|
|
return ol_flags;
|
|
}
|
|
|
|
/* Calculate the checksum of outer header */
|
|
static uint64_t
|
|
process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
|
|
uint64_t tx_offloads, int tso_enabled)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
|
|
struct rte_udp_hdr *udp_hdr;
|
|
uint64_t ol_flags = 0;
|
|
|
|
if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
|
|
ipv4_hdr->hdr_checksum = 0;
|
|
ol_flags |= PKT_TX_OUTER_IPV4;
|
|
|
|
if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
|
|
ol_flags |= PKT_TX_OUTER_IP_CKSUM;
|
|
else
|
|
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
|
|
} else
|
|
ol_flags |= PKT_TX_OUTER_IPV6;
|
|
|
|
if (info->outer_l4_proto != IPPROTO_UDP)
|
|
return ol_flags;
|
|
|
|
udp_hdr = (struct rte_udp_hdr *)
|
|
((char *)outer_l3_hdr + info->outer_l3_len);
|
|
|
|
if (tso_enabled)
|
|
ol_flags |= PKT_TX_TCP_SEG;
|
|
|
|
/* Skip SW outer UDP checksum generation if HW supports it */
|
|
if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
|
|
if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
|
|
udp_hdr->dgram_cksum
|
|
= rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
|
|
else
|
|
udp_hdr->dgram_cksum
|
|
= rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
|
|
|
|
ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
|
|
return ol_flags;
|
|
}
|
|
|
|
/* outer UDP checksum is done in software. In the other side, for
|
|
* UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
|
|
* set to zero.
|
|
*
|
|
* If a packet will be TSOed into small packets by NIC, we cannot
|
|
* set/calculate a non-zero checksum, because it will be a wrong
|
|
* value after the packet be split into several small packets.
|
|
*/
|
|
if (tso_enabled)
|
|
udp_hdr->dgram_cksum = 0;
|
|
|
|
/* do not recalculate udp cksum if it was 0 */
|
|
if (udp_hdr->dgram_cksum != 0) {
|
|
udp_hdr->dgram_cksum = 0;
|
|
if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
|
|
udp_hdr->dgram_cksum =
|
|
rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
|
|
else
|
|
udp_hdr->dgram_cksum =
|
|
rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
|
|
}
|
|
|
|
return ol_flags;
|
|
}
|
|
|
|
/*
|
|
* Helper function.
|
|
* Performs actual copying.
|
|
* Returns number of segments in the destination mbuf on success,
|
|
* or negative error code on failure.
|
|
*/
|
|
static int
|
|
mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
|
|
uint16_t seglen[], uint8_t nb_seg)
|
|
{
|
|
uint32_t dlen, slen, tlen;
|
|
uint32_t i, len;
|
|
const struct rte_mbuf *m;
|
|
const uint8_t *src;
|
|
uint8_t *dst;
|
|
|
|
dlen = 0;
|
|
slen = 0;
|
|
tlen = 0;
|
|
|
|
dst = NULL;
|
|
src = NULL;
|
|
|
|
m = ms;
|
|
i = 0;
|
|
while (ms != NULL && i != nb_seg) {
|
|
|
|
if (slen == 0) {
|
|
slen = rte_pktmbuf_data_len(ms);
|
|
src = rte_pktmbuf_mtod(ms, const uint8_t *);
|
|
}
|
|
|
|
if (dlen == 0) {
|
|
dlen = RTE_MIN(seglen[i], slen);
|
|
md[i]->data_len = dlen;
|
|
md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
|
|
dst = rte_pktmbuf_mtod(md[i], uint8_t *);
|
|
}
|
|
|
|
len = RTE_MIN(slen, dlen);
|
|
memcpy(dst, src, len);
|
|
tlen += len;
|
|
slen -= len;
|
|
dlen -= len;
|
|
src += len;
|
|
dst += len;
|
|
|
|
if (slen == 0)
|
|
ms = ms->next;
|
|
if (dlen == 0)
|
|
i++;
|
|
}
|
|
|
|
if (ms != NULL)
|
|
return -ENOBUFS;
|
|
else if (tlen != m->pkt_len)
|
|
return -EINVAL;
|
|
|
|
md[0]->nb_segs = nb_seg;
|
|
md[0]->pkt_len = tlen;
|
|
md[0]->vlan_tci = m->vlan_tci;
|
|
md[0]->vlan_tci_outer = m->vlan_tci_outer;
|
|
md[0]->ol_flags = m->ol_flags;
|
|
md[0]->tx_offload = m->tx_offload;
|
|
|
|
return nb_seg;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new mbuf with up to tx_pkt_nb_segs segments.
|
|
* Copy packet contents and offload information into the new segmented mbuf.
|
|
*/
|
|
static struct rte_mbuf *
|
|
pkt_copy_split(const struct rte_mbuf *pkt)
|
|
{
|
|
int32_t n, rc;
|
|
uint32_t i, len, nb_seg;
|
|
struct rte_mempool *mp;
|
|
uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
|
|
struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
|
|
|
|
mp = current_fwd_lcore()->mbp;
|
|
|
|
if (tx_pkt_split == TX_PKT_SPLIT_RND)
|
|
nb_seg = random() % tx_pkt_nb_segs + 1;
|
|
else
|
|
nb_seg = tx_pkt_nb_segs;
|
|
|
|
memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
|
|
|
|
/* calculate number of segments to use and their length. */
|
|
len = 0;
|
|
for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
|
|
len += seglen[i];
|
|
md[i] = NULL;
|
|
}
|
|
|
|
n = pkt->pkt_len - len;
|
|
|
|
/* update size of the last segment to fit rest of the packet */
|
|
if (n >= 0) {
|
|
seglen[i - 1] += n;
|
|
len += n;
|
|
}
|
|
|
|
nb_seg = i;
|
|
while (i != 0) {
|
|
p = rte_pktmbuf_alloc(mp);
|
|
if (p == NULL) {
|
|
TESTPMD_LOG(ERR,
|
|
"failed to allocate %u-th of %u mbuf "
|
|
"from mempool: %s\n",
|
|
nb_seg - i, nb_seg, mp->name);
|
|
break;
|
|
}
|
|
|
|
md[--i] = p;
|
|
if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
|
|
TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
|
|
"expected seglen: %u, "
|
|
"actual mbuf tailroom: %u\n",
|
|
mp->name, i, seglen[i],
|
|
rte_pktmbuf_tailroom(md[i]));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* all mbufs successfully allocated, do copy */
|
|
if (i == 0) {
|
|
rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
|
|
if (rc < 0)
|
|
TESTPMD_LOG(ERR,
|
|
"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
|
|
"into %u segments failed with error code: %d\n",
|
|
pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
|
|
|
|
/* figure out how many mbufs to free. */
|
|
i = RTE_MAX(rc, 0);
|
|
}
|
|
|
|
/* free unused mbufs */
|
|
for (; i != nb_seg; i++) {
|
|
rte_pktmbuf_free_seg(md[i]);
|
|
md[i] = NULL;
|
|
}
|
|
|
|
return md[0];
|
|
}
|
|
|
|
/*
|
|
* Receive a burst of packets, and for each packet:
|
|
* - parse packet, and try to recognize a supported packet type (1)
|
|
* - if it's not a supported packet type, don't touch the packet, else:
|
|
* - reprocess the checksum of all supported layers. This is done in SW
|
|
* or HW, depending on testpmd command line configuration
|
|
* - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
|
|
* segmentation offload (this implies HW TCP checksum)
|
|
* Then transmit packets on the output port.
|
|
*
|
|
* (1) Supported packets are:
|
|
* Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
|
|
* Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
|
|
* UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
|
|
* UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
|
|
* UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
|
|
* Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
|
|
*
|
|
* The testpmd command line for this forward engine sets the flags
|
|
* TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
|
|
* wether a checksum must be calculated in software or in hardware. The
|
|
* IP, UDP, TCP and SCTP flags always concern the inner layer. The
|
|
* OUTER_IP is only useful for tunnel packets.
|
|
*/
|
|
static void
|
|
pkt_burst_checksum_forward(struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
|
|
struct rte_gso_ctx *gso_ctx;
|
|
struct rte_mbuf **tx_pkts_burst;
|
|
struct rte_port *txp;
|
|
struct rte_mbuf *m, *p;
|
|
struct rte_ether_hdr *eth_hdr;
|
|
void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
|
|
void **gro_ctx;
|
|
uint16_t gro_pkts_num;
|
|
uint8_t gro_enable;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_prep;
|
|
uint16_t i;
|
|
uint64_t rx_ol_flags, tx_ol_flags;
|
|
uint64_t tx_offloads;
|
|
uint32_t retry;
|
|
uint32_t rx_bad_ip_csum;
|
|
uint32_t rx_bad_l4_csum;
|
|
uint32_t rx_bad_outer_l4_csum;
|
|
struct testpmd_offload_info info;
|
|
uint16_t nb_segments = 0;
|
|
int ret;
|
|
|
|
uint64_t start_tsc = 0;
|
|
|
|
get_start_cycles(&start_tsc);
|
|
|
|
/* receive a burst of packet */
|
|
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
|
|
nb_pkt_per_burst);
|
|
inc_rx_burst_stats(fs, nb_rx);
|
|
if (unlikely(nb_rx == 0))
|
|
return;
|
|
|
|
fs->rx_packets += nb_rx;
|
|
rx_bad_ip_csum = 0;
|
|
rx_bad_l4_csum = 0;
|
|
rx_bad_outer_l4_csum = 0;
|
|
gro_enable = gro_ports[fs->rx_port].enable;
|
|
|
|
txp = &ports[fs->tx_port];
|
|
tx_offloads = txp->dev_conf.txmode.offloads;
|
|
memset(&info, 0, sizeof(info));
|
|
info.tso_segsz = txp->tso_segsz;
|
|
info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
|
|
if (gso_ports[fs->tx_port].enable)
|
|
info.gso_enable = 1;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
if (likely(i < nb_rx - 1))
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
|
|
void *));
|
|
|
|
m = pkts_burst[i];
|
|
info.is_tunnel = 0;
|
|
info.pkt_len = rte_pktmbuf_pkt_len(m);
|
|
tx_ol_flags = m->ol_flags &
|
|
(IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
|
|
rx_ol_flags = m->ol_flags;
|
|
|
|
/* Update the L3/L4 checksum error packet statistics */
|
|
if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
|
|
rx_bad_ip_csum += 1;
|
|
if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
|
|
rx_bad_l4_csum += 1;
|
|
if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
|
|
rx_bad_outer_l4_csum += 1;
|
|
|
|
/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
|
|
* and inner headers */
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
|
|
ð_hdr->d_addr);
|
|
rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
|
|
ð_hdr->s_addr);
|
|
parse_ethernet(eth_hdr, &info);
|
|
l3_hdr = (char *)eth_hdr + info.l2_len;
|
|
|
|
/* check if it's a supported tunnel */
|
|
if (txp->parse_tunnel) {
|
|
if (info.l4_proto == IPPROTO_UDP) {
|
|
struct rte_udp_hdr *udp_hdr;
|
|
|
|
udp_hdr = (struct rte_udp_hdr *)
|
|
((char *)l3_hdr + info.l3_len);
|
|
parse_gtp(udp_hdr, &info);
|
|
if (info.is_tunnel) {
|
|
tx_ol_flags |= PKT_TX_TUNNEL_GTP;
|
|
goto tunnel_update;
|
|
}
|
|
parse_vxlan_gpe(udp_hdr, &info);
|
|
if (info.is_tunnel) {
|
|
tx_ol_flags |=
|
|
PKT_TX_TUNNEL_VXLAN_GPE;
|
|
goto tunnel_update;
|
|
}
|
|
parse_vxlan(udp_hdr, &info,
|
|
m->packet_type);
|
|
if (info.is_tunnel) {
|
|
tx_ol_flags |=
|
|
PKT_TX_TUNNEL_VXLAN;
|
|
goto tunnel_update;
|
|
}
|
|
parse_geneve(udp_hdr, &info);
|
|
if (info.is_tunnel) {
|
|
tx_ol_flags |=
|
|
PKT_TX_TUNNEL_GENEVE;
|
|
goto tunnel_update;
|
|
}
|
|
} else if (info.l4_proto == IPPROTO_GRE) {
|
|
struct simple_gre_hdr *gre_hdr;
|
|
|
|
gre_hdr = (struct simple_gre_hdr *)
|
|
((char *)l3_hdr + info.l3_len);
|
|
parse_gre(gre_hdr, &info);
|
|
if (info.is_tunnel)
|
|
tx_ol_flags |= PKT_TX_TUNNEL_GRE;
|
|
} else if (info.l4_proto == IPPROTO_IPIP) {
|
|
void *encap_ip_hdr;
|
|
|
|
encap_ip_hdr = (char *)l3_hdr + info.l3_len;
|
|
parse_encap_ip(encap_ip_hdr, &info);
|
|
if (info.is_tunnel)
|
|
tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
|
|
}
|
|
}
|
|
|
|
tunnel_update:
|
|
/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
|
|
if (info.is_tunnel) {
|
|
outer_l3_hdr = l3_hdr;
|
|
l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
|
|
}
|
|
|
|
/* step 2: depending on user command line configuration,
|
|
* recompute checksum either in software or flag the
|
|
* mbuf to offload the calculation to the NIC. If TSO
|
|
* is configured, prepare the mbuf for TCP segmentation. */
|
|
|
|
/* process checksums of inner headers first */
|
|
tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
|
|
tx_offloads);
|
|
|
|
/* Then process outer headers if any. Note that the software
|
|
* checksum will be wrong if one of the inner checksums is
|
|
* processed in hardware. */
|
|
if (info.is_tunnel == 1) {
|
|
tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
|
|
tx_offloads,
|
|
!!(tx_ol_flags & PKT_TX_TCP_SEG));
|
|
}
|
|
|
|
/* step 3: fill the mbuf meta data (flags and header lengths) */
|
|
|
|
m->tx_offload = 0;
|
|
if (info.is_tunnel == 1) {
|
|
if (info.tunnel_tso_segsz ||
|
|
(tx_offloads &
|
|
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
|
|
(tx_offloads &
|
|
DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
|
|
(tx_ol_flags & PKT_TX_OUTER_IPV6)) {
|
|
m->outer_l2_len = info.outer_l2_len;
|
|
m->outer_l3_len = info.outer_l3_len;
|
|
m->l2_len = info.l2_len;
|
|
m->l3_len = info.l3_len;
|
|
m->l4_len = info.l4_len;
|
|
m->tso_segsz = info.tunnel_tso_segsz;
|
|
}
|
|
else {
|
|
/* if there is a outer UDP cksum
|
|
processed in sw and the inner in hw,
|
|
the outer checksum will be wrong as
|
|
the payload will be modified by the
|
|
hardware */
|
|
m->l2_len = info.outer_l2_len +
|
|
info.outer_l3_len + info.l2_len;
|
|
m->l3_len = info.l3_len;
|
|
m->l4_len = info.l4_len;
|
|
}
|
|
} else {
|
|
/* this is only useful if an offload flag is
|
|
* set, but it does not hurt to fill it in any
|
|
* case */
|
|
m->l2_len = info.l2_len;
|
|
m->l3_len = info.l3_len;
|
|
m->l4_len = info.l4_len;
|
|
m->tso_segsz = info.tso_segsz;
|
|
}
|
|
m->ol_flags = tx_ol_flags;
|
|
|
|
/* Do split & copy for the packet. */
|
|
if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
|
|
p = pkt_copy_split(m);
|
|
if (p != NULL) {
|
|
rte_pktmbuf_free(m);
|
|
m = p;
|
|
pkts_burst[i] = m;
|
|
}
|
|
}
|
|
|
|
/* if verbose mode is enabled, dump debug info */
|
|
if (verbose_level > 0) {
|
|
char buf[256];
|
|
|
|
printf("-----------------\n");
|
|
printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
|
|
fs->rx_port, m, m->pkt_len, m->nb_segs);
|
|
/* dump rx parsed packet info */
|
|
rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
|
|
printf("rx: l2_len=%d ethertype=%x l3_len=%d "
|
|
"l4_proto=%d l4_len=%d flags=%s\n",
|
|
info.l2_len, rte_be_to_cpu_16(info.ethertype),
|
|
info.l3_len, info.l4_proto, info.l4_len, buf);
|
|
if (rx_ol_flags & PKT_RX_LRO)
|
|
printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
|
|
if (info.is_tunnel == 1)
|
|
printf("rx: outer_l2_len=%d outer_ethertype=%x "
|
|
"outer_l3_len=%d\n", info.outer_l2_len,
|
|
rte_be_to_cpu_16(info.outer_ethertype),
|
|
info.outer_l3_len);
|
|
/* dump tx packet info */
|
|
if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_TX_OFFLOAD_UDP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_CKSUM |
|
|
DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
|
|
info.tso_segsz != 0)
|
|
printf("tx: m->l2_len=%d m->l3_len=%d "
|
|
"m->l4_len=%d\n",
|
|
m->l2_len, m->l3_len, m->l4_len);
|
|
if (info.is_tunnel == 1) {
|
|
if ((tx_offloads &
|
|
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
|
|
(tx_offloads &
|
|
DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
|
|
(tx_ol_flags & PKT_TX_OUTER_IPV6))
|
|
printf("tx: m->outer_l2_len=%d "
|
|
"m->outer_l3_len=%d\n",
|
|
m->outer_l2_len,
|
|
m->outer_l3_len);
|
|
if (info.tunnel_tso_segsz != 0 &&
|
|
(m->ol_flags & PKT_TX_TCP_SEG))
|
|
printf("tx: m->tso_segsz=%d\n",
|
|
m->tso_segsz);
|
|
} else if (info.tso_segsz != 0 &&
|
|
(m->ol_flags & PKT_TX_TCP_SEG))
|
|
printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
|
|
rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
|
|
printf("tx: flags=%s", buf);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
if (unlikely(gro_enable)) {
|
|
if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
|
|
nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
|
|
&(gro_ports[fs->rx_port].param));
|
|
} else {
|
|
gro_ctx = current_fwd_lcore()->gro_ctx;
|
|
nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
|
|
|
|
if (++fs->gro_times >= gro_flush_cycles) {
|
|
gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
|
|
if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
|
|
gro_pkts_num = MAX_PKT_BURST - nb_rx;
|
|
|
|
nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
|
|
RTE_GRO_TCP_IPV4,
|
|
&pkts_burst[nb_rx],
|
|
gro_pkts_num);
|
|
fs->gro_times = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (gso_ports[fs->tx_port].enable == 0)
|
|
tx_pkts_burst = pkts_burst;
|
|
else {
|
|
gso_ctx = &(current_fwd_lcore()->gso_ctx);
|
|
gso_ctx->gso_size = gso_max_segment_size;
|
|
for (i = 0; i < nb_rx; i++) {
|
|
ret = rte_gso_segment(pkts_burst[i], gso_ctx,
|
|
&gso_segments[nb_segments],
|
|
GSO_MAX_PKT_BURST - nb_segments);
|
|
if (ret >= 0)
|
|
nb_segments += ret;
|
|
else {
|
|
TESTPMD_LOG(DEBUG, "Unable to segment packet");
|
|
rte_pktmbuf_free(pkts_burst[i]);
|
|
}
|
|
}
|
|
|
|
tx_pkts_burst = gso_segments;
|
|
nb_rx = nb_segments;
|
|
}
|
|
|
|
nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
|
|
tx_pkts_burst, nb_rx);
|
|
if (nb_prep != nb_rx)
|
|
printf("Preparing packet burst to transmit failed: %s\n",
|
|
rte_strerror(rte_errno));
|
|
|
|
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
|
|
nb_prep);
|
|
|
|
/*
|
|
* Retry if necessary
|
|
*/
|
|
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
|
|
retry = 0;
|
|
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
|
|
rte_delay_us(burst_tx_delay_time);
|
|
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
|
|
&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
|
|
}
|
|
}
|
|
fs->tx_packets += nb_tx;
|
|
fs->rx_bad_ip_csum += rx_bad_ip_csum;
|
|
fs->rx_bad_l4_csum += rx_bad_l4_csum;
|
|
fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
|
|
|
|
inc_tx_burst_stats(fs, nb_tx);
|
|
if (unlikely(nb_tx < nb_rx)) {
|
|
fs->fwd_dropped += (nb_rx - nb_tx);
|
|
do {
|
|
rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
|
|
} while (++nb_tx < nb_rx);
|
|
}
|
|
|
|
get_end_cycles(fs, start_tsc);
|
|
}
|
|
|
|
struct fwd_engine csum_fwd_engine = {
|
|
.fwd_mode_name = "csum",
|
|
.port_fwd_begin = NULL,
|
|
.port_fwd_end = NULL,
|
|
.packet_fwd = pkt_burst_checksum_forward,
|
|
};
|