75d113136f
This commit implements the eventdev ABI changes required by the DLB/DLB2 PMDs. Several data structures and constants are modified or added in this patch, thereby requiring modifications to the dependent apps and examples. The DLB/DLB2 hardware does not conform exactly to the eventdev interface. 1) It has a limit on the number of queues that may be linked to a port. 2) Some ports a further restricted to a maximum of 1 linked queue. 3) DLB does not have the ability to carry the flow_id as part of the event (QE) payload. Note that the DLB2 hardware is capable of carrying the flow_id. Following is a detailed description of the changes that have been made. 1) Add new fields to the rte_event_dev_info struct. These fields allow the device to advertise its capabilities so that applications can take the appropriate actions based on those capabilities. struct rte_event_dev_info { uint32_t max_event_port_links; /**< Maximum number of queues that can be linked to a single event * port by this device. */ uint8_t max_single_link_event_port_queue_pairs; /**< Maximum number of event ports and queues that are optimized for * (and only capable of) single-link configurations supported by this * device. These ports and queues are not accounted for in * max_event_ports or max_event_queues. */ } 2) Add a new field to the rte_event_dev_config struct. This field allows the application to specify how many of its ports are limited to a single link, or will be used in single link mode. /** Event device configuration structure */ struct rte_event_dev_config { uint8_t nb_single_link_event_port_queues; /**< Number of event ports and queues that will be singly-linked to * each other. These are a subset of the overall event ports and * queues; this value cannot exceed *nb_event_ports* or * *nb_event_queues*. If the device has ports and queues that are * optimized for single-link usage, this field is a hint for how many * to allocate; otherwise, regular event ports and queues can be used. */ } 3) Replace the dedicated implicit_release_disabled field with a bit field of explicit port capabilities. The implicit_release_disable functionality is assigned to one bit, and a port-is-single-link-only attribute is assigned to other, with the remaining bits available for future assignment. * Event port configuration bitmap flags */ #define RTE_EVENT_PORT_CFG_DISABLE_IMPL_REL (1ULL << 0) /**< Configure the port not to release outstanding events in * rte_event_dev_dequeue_burst(). If set, all events received through * the port must be explicitly released with RTE_EVENT_OP_RELEASE or * RTE_EVENT_OP_FORWARD. Must be unset if the device is not * RTE_EVENT_DEV_CAP_IMPLICIT_RELEASE_DISABLE capable. */ #define RTE_EVENT_PORT_CFG_SINGLE_LINK (1ULL << 1) /**< This event port links only to a single event queue. * * @see rte_event_port_setup(), rte_event_port_link() */ #define RTE_EVENT_PORT_ATTR_IMPLICIT_RELEASE_DISABLE 3 /** * The implicit release disable attribute of the port */ struct rte_event_port_conf { uint32_t event_port_cfg; /**< Port cfg flags(EVENT_PORT_CFG_) */ } This patch also removes the depreciation notice and announce the new eventdev ABI changes in release note. Signed-off-by: Timothy McDaniel <timothy.mcdaniel@intel.com> Acked-by: Harry van Haaren <harry.van.haaren@intel.com> Acked-by: Pavan Nikhilesh <pbhagavatula@marvell.com> Acked-by: Jerin Jacob <jerinj@marvell.com>
990 lines
24 KiB
C
990 lines
24 KiB
C
/*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
* Copyright 2017 Cavium, Inc.
|
|
*/
|
|
|
|
#include "pipeline_common.h"
|
|
|
|
static __rte_always_inline void
|
|
worker_fwd_event(struct rte_event *ev, uint8_t sched)
|
|
{
|
|
ev->event_type = RTE_EVENT_TYPE_CPU;
|
|
ev->op = RTE_EVENT_OP_FORWARD;
|
|
ev->sched_type = sched;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
worker_event_enqueue(const uint8_t dev, const uint8_t port,
|
|
struct rte_event *ev)
|
|
{
|
|
while (rte_event_enqueue_burst(dev, port, ev, 1) != 1)
|
|
rte_pause();
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
worker_event_enqueue_burst(const uint8_t dev, const uint8_t port,
|
|
struct rte_event *ev, const uint16_t nb_rx)
|
|
{
|
|
uint16_t enq;
|
|
|
|
enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
|
|
while (enq < nb_rx) {
|
|
enq += rte_event_enqueue_burst(dev, port,
|
|
ev + enq, nb_rx - enq);
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
worker_tx_pkt(const uint8_t dev, const uint8_t port, struct rte_event *ev)
|
|
{
|
|
exchange_mac(ev->mbuf);
|
|
rte_event_eth_tx_adapter_txq_set(ev->mbuf, 0);
|
|
while (!rte_event_eth_tx_adapter_enqueue(dev, port, ev, 1, 0))
|
|
rte_pause();
|
|
}
|
|
|
|
/* Single stage pipeline workers */
|
|
|
|
static int
|
|
worker_do_tx_single(void *arg)
|
|
{
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
const uint8_t dev = data->dev_id;
|
|
const uint8_t port = data->port_id;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
struct rte_event ev;
|
|
|
|
while (!fdata->done) {
|
|
|
|
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
received++;
|
|
|
|
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
worker_tx_pkt(dev, port, &ev);
|
|
tx++;
|
|
} else {
|
|
work();
|
|
ev.queue_id++;
|
|
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
|
|
worker_event_enqueue(dev, port, &ev);
|
|
fwd++;
|
|
}
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_do_tx_single_atq(void *arg)
|
|
{
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
const uint8_t dev = data->dev_id;
|
|
const uint8_t port = data->port_id;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
struct rte_event ev;
|
|
|
|
while (!fdata->done) {
|
|
|
|
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
received++;
|
|
|
|
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
worker_tx_pkt(dev, port, &ev);
|
|
tx++;
|
|
} else {
|
|
work();
|
|
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
|
|
worker_event_enqueue(dev, port, &ev);
|
|
fwd++;
|
|
}
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_do_tx_single_burst(void *arg)
|
|
{
|
|
struct rte_event ev[BATCH_SIZE + 1];
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
const uint8_t dev = data->dev_id;
|
|
const uint8_t port = data->port_id;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
|
|
while (!fdata->done) {
|
|
uint16_t i;
|
|
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
|
|
BATCH_SIZE, 0);
|
|
|
|
if (!nb_rx) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
received += nb_rx;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
rte_prefetch0(ev[i + 1].mbuf);
|
|
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
|
|
worker_tx_pkt(dev, port, &ev[i]);
|
|
ev[i].op = RTE_EVENT_OP_RELEASE;
|
|
tx++;
|
|
|
|
} else {
|
|
ev[i].queue_id++;
|
|
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
|
|
}
|
|
work();
|
|
}
|
|
|
|
worker_event_enqueue_burst(dev, port, ev, nb_rx);
|
|
fwd += nb_rx;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_do_tx_single_burst_atq(void *arg)
|
|
{
|
|
struct rte_event ev[BATCH_SIZE + 1];
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
const uint8_t dev = data->dev_id;
|
|
const uint8_t port = data->port_id;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
|
|
while (!fdata->done) {
|
|
uint16_t i;
|
|
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
|
|
BATCH_SIZE, 0);
|
|
|
|
if (!nb_rx) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
received += nb_rx;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
rte_prefetch0(ev[i + 1].mbuf);
|
|
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
|
|
worker_tx_pkt(dev, port, &ev[i]);
|
|
ev[i].op = RTE_EVENT_OP_RELEASE;
|
|
tx++;
|
|
} else
|
|
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
|
|
work();
|
|
}
|
|
|
|
worker_event_enqueue_burst(dev, port, ev, nb_rx);
|
|
fwd += nb_rx;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
return 0;
|
|
}
|
|
|
|
/* Multi stage Pipeline Workers */
|
|
|
|
static int
|
|
worker_do_tx(void *arg)
|
|
{
|
|
struct rte_event ev;
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
const uint8_t dev = data->dev_id;
|
|
const uint8_t port = data->port_id;
|
|
const uint8_t lst_qid = cdata.num_stages - 1;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
|
|
|
|
while (!fdata->done) {
|
|
|
|
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
received++;
|
|
const uint8_t cq_id = ev.queue_id % cdata.num_stages;
|
|
|
|
if (cq_id >= lst_qid) {
|
|
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
worker_tx_pkt(dev, port, &ev);
|
|
tx++;
|
|
continue;
|
|
}
|
|
|
|
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
|
|
ev.queue_id = (cq_id == lst_qid) ?
|
|
cdata.next_qid[ev.queue_id] : ev.queue_id;
|
|
} else {
|
|
ev.queue_id = cdata.next_qid[ev.queue_id];
|
|
worker_fwd_event(&ev, cdata.queue_type);
|
|
}
|
|
work();
|
|
|
|
worker_event_enqueue(dev, port, &ev);
|
|
fwd++;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_do_tx_atq(void *arg)
|
|
{
|
|
struct rte_event ev;
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
const uint8_t dev = data->dev_id;
|
|
const uint8_t port = data->port_id;
|
|
const uint8_t lst_qid = cdata.num_stages - 1;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
|
|
while (!fdata->done) {
|
|
|
|
if (!rte_event_dequeue_burst(dev, port, &ev, 1, 0)) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
received++;
|
|
const uint8_t cq_id = ev.sub_event_type % cdata.num_stages;
|
|
|
|
if (cq_id == lst_qid) {
|
|
if (ev.sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
worker_tx_pkt(dev, port, &ev);
|
|
tx++;
|
|
continue;
|
|
}
|
|
|
|
worker_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
|
|
} else {
|
|
ev.sub_event_type++;
|
|
worker_fwd_event(&ev, cdata.queue_type);
|
|
}
|
|
work();
|
|
|
|
worker_event_enqueue(dev, port, &ev);
|
|
fwd++;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_do_tx_burst(void *arg)
|
|
{
|
|
struct rte_event ev[BATCH_SIZE];
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
uint8_t dev = data->dev_id;
|
|
uint8_t port = data->port_id;
|
|
uint8_t lst_qid = cdata.num_stages - 1;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
|
|
while (!fdata->done) {
|
|
uint16_t i;
|
|
const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
|
|
ev, BATCH_SIZE, 0);
|
|
|
|
if (nb_rx == 0) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
received += nb_rx;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
const uint8_t cq_id = ev[i].queue_id % cdata.num_stages;
|
|
|
|
if (cq_id >= lst_qid) {
|
|
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
worker_tx_pkt(dev, port, &ev[i]);
|
|
tx++;
|
|
ev[i].op = RTE_EVENT_OP_RELEASE;
|
|
continue;
|
|
}
|
|
ev[i].queue_id = (cq_id == lst_qid) ?
|
|
cdata.next_qid[ev[i].queue_id] :
|
|
ev[i].queue_id;
|
|
|
|
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
|
|
} else {
|
|
ev[i].queue_id = cdata.next_qid[ev[i].queue_id];
|
|
worker_fwd_event(&ev[i], cdata.queue_type);
|
|
}
|
|
work();
|
|
}
|
|
worker_event_enqueue_burst(dev, port, ev, nb_rx);
|
|
|
|
fwd += nb_rx;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
worker_do_tx_burst_atq(void *arg)
|
|
{
|
|
struct rte_event ev[BATCH_SIZE];
|
|
|
|
struct worker_data *data = (struct worker_data *)arg;
|
|
uint8_t dev = data->dev_id;
|
|
uint8_t port = data->port_id;
|
|
uint8_t lst_qid = cdata.num_stages - 1;
|
|
size_t fwd = 0, received = 0, tx = 0;
|
|
|
|
while (!fdata->done) {
|
|
uint16_t i;
|
|
|
|
const uint16_t nb_rx = rte_event_dequeue_burst(dev, port,
|
|
ev, BATCH_SIZE, 0);
|
|
|
|
if (nb_rx == 0) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
received += nb_rx;
|
|
|
|
for (i = 0; i < nb_rx; i++) {
|
|
const uint8_t cq_id = ev[i].sub_event_type %
|
|
cdata.num_stages;
|
|
|
|
if (cq_id == lst_qid) {
|
|
if (ev[i].sched_type == RTE_SCHED_TYPE_ATOMIC) {
|
|
worker_tx_pkt(dev, port, &ev[i]);
|
|
tx++;
|
|
ev[i].op = RTE_EVENT_OP_RELEASE;
|
|
continue;
|
|
}
|
|
|
|
worker_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
|
|
} else {
|
|
ev[i].sub_event_type++;
|
|
worker_fwd_event(&ev[i], cdata.queue_type);
|
|
}
|
|
work();
|
|
}
|
|
|
|
worker_event_enqueue_burst(dev, port, ev, nb_rx);
|
|
fwd += nb_rx;
|
|
}
|
|
|
|
if (!cdata.quiet)
|
|
printf(" worker %u thread done. RX=%zu FWD=%zu TX=%zu\n",
|
|
rte_lcore_id(), received, fwd, tx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
setup_eventdev_worker_tx_enq(struct worker_data *worker_data)
|
|
{
|
|
uint8_t i;
|
|
const uint8_t atq = cdata.all_type_queues ? 1 : 0;
|
|
const uint8_t dev_id = 0;
|
|
const uint8_t nb_ports = cdata.num_workers;
|
|
uint8_t nb_slots = 0;
|
|
uint8_t nb_queues = rte_eth_dev_count_avail();
|
|
|
|
/*
|
|
* In case where all type queues are not enabled, use queues equal to
|
|
* number of stages * eth_dev_count and one extra queue per pipeline
|
|
* for Tx.
|
|
*/
|
|
if (!atq) {
|
|
nb_queues *= cdata.num_stages;
|
|
nb_queues += rte_eth_dev_count_avail();
|
|
}
|
|
|
|
struct rte_event_dev_config config = {
|
|
.nb_event_queues = nb_queues,
|
|
.nb_event_ports = nb_ports,
|
|
.nb_single_link_event_port_queues = 0,
|
|
.nb_events_limit = 4096,
|
|
.nb_event_queue_flows = 1024,
|
|
.nb_event_port_dequeue_depth = 128,
|
|
.nb_event_port_enqueue_depth = 128,
|
|
};
|
|
struct rte_event_port_conf wkr_p_conf = {
|
|
.dequeue_depth = cdata.worker_cq_depth,
|
|
.enqueue_depth = 64,
|
|
.new_event_threshold = 4096,
|
|
};
|
|
struct rte_event_queue_conf wkr_q_conf = {
|
|
.schedule_type = cdata.queue_type,
|
|
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
|
|
.nb_atomic_flows = 1024,
|
|
.nb_atomic_order_sequences = 1024,
|
|
};
|
|
|
|
int ret, ndev = rte_event_dev_count();
|
|
|
|
if (ndev < 1) {
|
|
printf("%d: No Eventdev Devices Found\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
|
|
struct rte_event_dev_info dev_info;
|
|
ret = rte_event_dev_info_get(dev_id, &dev_info);
|
|
printf("\tEventdev %d: %s\n", dev_id, dev_info.driver_name);
|
|
|
|
if (dev_info.max_num_events < config.nb_events_limit)
|
|
config.nb_events_limit = dev_info.max_num_events;
|
|
if (dev_info.max_event_port_dequeue_depth <
|
|
config.nb_event_port_dequeue_depth)
|
|
config.nb_event_port_dequeue_depth =
|
|
dev_info.max_event_port_dequeue_depth;
|
|
if (dev_info.max_event_port_enqueue_depth <
|
|
config.nb_event_port_enqueue_depth)
|
|
config.nb_event_port_enqueue_depth =
|
|
dev_info.max_event_port_enqueue_depth;
|
|
|
|
ret = rte_event_dev_configure(dev_id, &config);
|
|
if (ret < 0) {
|
|
printf("%d: Error configuring device\n", __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
printf(" Stages:\n");
|
|
for (i = 0; i < nb_queues; i++) {
|
|
|
|
if (atq) {
|
|
|
|
nb_slots = cdata.num_stages;
|
|
wkr_q_conf.event_queue_cfg =
|
|
RTE_EVENT_QUEUE_CFG_ALL_TYPES;
|
|
} else {
|
|
uint8_t slot;
|
|
|
|
nb_slots = cdata.num_stages + 1;
|
|
slot = i % nb_slots;
|
|
wkr_q_conf.schedule_type = slot == cdata.num_stages ?
|
|
RTE_SCHED_TYPE_ATOMIC : cdata.queue_type;
|
|
}
|
|
|
|
if (rte_event_queue_setup(dev_id, i, &wkr_q_conf) < 0) {
|
|
printf("%d: error creating qid %d\n", __LINE__, i);
|
|
return -1;
|
|
}
|
|
cdata.qid[i] = i;
|
|
cdata.next_qid[i] = i+1;
|
|
if (cdata.enable_queue_priorities) {
|
|
const uint32_t prio_delta =
|
|
(RTE_EVENT_DEV_PRIORITY_LOWEST) /
|
|
nb_slots;
|
|
|
|
/* higher priority for queues closer to tx */
|
|
wkr_q_conf.priority =
|
|
RTE_EVENT_DEV_PRIORITY_LOWEST - prio_delta *
|
|
(i % nb_slots);
|
|
}
|
|
|
|
const char *type_str = "Atomic";
|
|
switch (wkr_q_conf.schedule_type) {
|
|
case RTE_SCHED_TYPE_ORDERED:
|
|
type_str = "Ordered";
|
|
break;
|
|
case RTE_SCHED_TYPE_PARALLEL:
|
|
type_str = "Parallel";
|
|
break;
|
|
}
|
|
printf("\tStage %d, Type %s\tPriority = %d\n", i, type_str,
|
|
wkr_q_conf.priority);
|
|
}
|
|
|
|
printf("\n");
|
|
if (wkr_p_conf.new_event_threshold > config.nb_events_limit)
|
|
wkr_p_conf.new_event_threshold = config.nb_events_limit;
|
|
if (wkr_p_conf.dequeue_depth > config.nb_event_port_dequeue_depth)
|
|
wkr_p_conf.dequeue_depth = config.nb_event_port_dequeue_depth;
|
|
if (wkr_p_conf.enqueue_depth > config.nb_event_port_enqueue_depth)
|
|
wkr_p_conf.enqueue_depth = config.nb_event_port_enqueue_depth;
|
|
|
|
/* set up one port per worker, linking to all stage queues */
|
|
for (i = 0; i < cdata.num_workers; i++) {
|
|
struct worker_data *w = &worker_data[i];
|
|
w->dev_id = dev_id;
|
|
if (rte_event_port_setup(dev_id, i, &wkr_p_conf) < 0) {
|
|
printf("Error setting up port %d\n", i);
|
|
return -1;
|
|
}
|
|
|
|
if (rte_event_port_link(dev_id, i, NULL, NULL, 0)
|
|
!= nb_queues) {
|
|
printf("%d: error creating link for port %d\n",
|
|
__LINE__, i);
|
|
return -1;
|
|
}
|
|
w->port_id = i;
|
|
}
|
|
/*
|
|
* Reduce the load on ingress event queue by splitting the traffic
|
|
* across multiple event queues.
|
|
* for example, nb_stages = 2 and nb_ethdev = 2 then
|
|
*
|
|
* nb_queues = (2 * 2) + 2 = 6 (non atq)
|
|
* rx_stride = 3
|
|
*
|
|
* So, traffic is split across queue 0 and queue 3 since queue id for
|
|
* rx adapter is chosen <ethport_id> * <rx_stride> i.e in the above
|
|
* case eth port 0, 1 will inject packets into event queue 0, 3
|
|
* respectively.
|
|
*
|
|
* This forms two set of queue pipelines 0->1->2->tx and 3->4->5->tx.
|
|
*/
|
|
cdata.rx_stride = atq ? 1 : nb_slots;
|
|
ret = rte_event_dev_service_id_get(dev_id,
|
|
&fdata->evdev_service_id);
|
|
if (ret != -ESRCH && ret != 0) {
|
|
printf("Error getting the service ID\n");
|
|
return -1;
|
|
}
|
|
rte_service_runstate_set(fdata->evdev_service_id, 1);
|
|
rte_service_set_runstate_mapped_check(fdata->evdev_service_id, 0);
|
|
|
|
if (rte_event_dev_start(dev_id) < 0)
|
|
rte_exit(EXIT_FAILURE, "Error starting eventdev");
|
|
|
|
return dev_id;
|
|
}
|
|
|
|
|
|
struct rx_adptr_services {
|
|
uint16_t nb_rx_adptrs;
|
|
uint32_t *rx_adpt_arr;
|
|
};
|
|
|
|
static int32_t
|
|
service_rx_adapter(void *arg)
|
|
{
|
|
int i;
|
|
struct rx_adptr_services *adptr_services = arg;
|
|
|
|
for (i = 0; i < adptr_services->nb_rx_adptrs; i++)
|
|
rte_service_run_iter_on_app_lcore(
|
|
adptr_services->rx_adpt_arr[i], 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initializes a given port using global settings and with the RX buffers
|
|
* coming from the mbuf_pool passed as a parameter.
|
|
*/
|
|
static inline int
|
|
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
|
|
{
|
|
struct rte_eth_rxconf rx_conf;
|
|
static const struct rte_eth_conf port_conf_default = {
|
|
.rxmode = {
|
|
.mq_mode = ETH_MQ_RX_RSS,
|
|
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
|
|
},
|
|
.rx_adv_conf = {
|
|
.rss_conf = {
|
|
.rss_hf = ETH_RSS_IP |
|
|
ETH_RSS_TCP |
|
|
ETH_RSS_UDP,
|
|
}
|
|
}
|
|
};
|
|
const uint16_t rx_rings = 1, tx_rings = 1;
|
|
const uint16_t rx_ring_size = 512, tx_ring_size = 512;
|
|
struct rte_eth_conf port_conf = port_conf_default;
|
|
int retval;
|
|
uint16_t q;
|
|
struct rte_eth_dev_info dev_info;
|
|
struct rte_eth_txconf txconf;
|
|
|
|
if (!rte_eth_dev_is_valid_port(port))
|
|
return -1;
|
|
|
|
retval = rte_eth_dev_info_get(port, &dev_info);
|
|
if (retval != 0) {
|
|
printf("Error during getting device (port %u) info: %s\n",
|
|
port, strerror(-retval));
|
|
return retval;
|
|
}
|
|
|
|
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
|
|
port_conf.txmode.offloads |=
|
|
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
|
|
rx_conf = dev_info.default_rxconf;
|
|
rx_conf.offloads = port_conf.rxmode.offloads;
|
|
|
|
port_conf.rx_adv_conf.rss_conf.rss_hf &=
|
|
dev_info.flow_type_rss_offloads;
|
|
if (port_conf.rx_adv_conf.rss_conf.rss_hf !=
|
|
port_conf_default.rx_adv_conf.rss_conf.rss_hf) {
|
|
printf("Port %u modified RSS hash function based on hardware support,"
|
|
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
|
|
port,
|
|
port_conf_default.rx_adv_conf.rss_conf.rss_hf,
|
|
port_conf.rx_adv_conf.rss_conf.rss_hf);
|
|
}
|
|
|
|
/* Configure the Ethernet device. */
|
|
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
|
|
if (retval != 0)
|
|
return retval;
|
|
|
|
/* Allocate and set up 1 RX queue per Ethernet port. */
|
|
for (q = 0; q < rx_rings; q++) {
|
|
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
|
|
rte_eth_dev_socket_id(port), &rx_conf,
|
|
mbuf_pool);
|
|
if (retval < 0)
|
|
return retval;
|
|
}
|
|
|
|
txconf = dev_info.default_txconf;
|
|
txconf.offloads = port_conf_default.txmode.offloads;
|
|
/* Allocate and set up 1 TX queue per Ethernet port. */
|
|
for (q = 0; q < tx_rings; q++) {
|
|
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
|
|
rte_eth_dev_socket_id(port), &txconf);
|
|
if (retval < 0)
|
|
return retval;
|
|
}
|
|
|
|
/* Display the port MAC address. */
|
|
struct rte_ether_addr addr;
|
|
retval = rte_eth_macaddr_get(port, &addr);
|
|
if (retval != 0) {
|
|
printf("Failed to get MAC address (port %u): %s\n",
|
|
port, rte_strerror(-retval));
|
|
return retval;
|
|
}
|
|
|
|
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
|
|
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
|
|
(unsigned int)port,
|
|
addr.addr_bytes[0], addr.addr_bytes[1],
|
|
addr.addr_bytes[2], addr.addr_bytes[3],
|
|
addr.addr_bytes[4], addr.addr_bytes[5]);
|
|
|
|
/* Enable RX in promiscuous mode for the Ethernet device. */
|
|
retval = rte_eth_promiscuous_enable(port);
|
|
if (retval != 0)
|
|
return retval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
init_ports(uint16_t num_ports)
|
|
{
|
|
uint16_t portid;
|
|
|
|
if (!cdata.num_mbuf)
|
|
cdata.num_mbuf = 16384 * num_ports;
|
|
|
|
struct rte_mempool *mp = rte_pktmbuf_pool_create("packet_pool",
|
|
/* mbufs */ cdata.num_mbuf,
|
|
/* cache_size */ 512,
|
|
/* priv_size*/ 0,
|
|
/* data_room_size */ RTE_MBUF_DEFAULT_BUF_SIZE,
|
|
rte_socket_id());
|
|
|
|
RTE_ETH_FOREACH_DEV(portid)
|
|
if (port_init(portid, mp) != 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\n",
|
|
portid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
init_adapters(uint16_t nb_ports)
|
|
{
|
|
int i;
|
|
int ret;
|
|
uint8_t evdev_id = 0;
|
|
struct rx_adptr_services *adptr_services = NULL;
|
|
struct rte_event_dev_info dev_info;
|
|
|
|
ret = rte_event_dev_info_get(evdev_id, &dev_info);
|
|
adptr_services = rte_zmalloc(NULL, sizeof(struct rx_adptr_services), 0);
|
|
|
|
struct rte_event_port_conf adptr_p_conf = {
|
|
.dequeue_depth = cdata.worker_cq_depth,
|
|
.enqueue_depth = 64,
|
|
.new_event_threshold = 4096,
|
|
};
|
|
|
|
init_ports(nb_ports);
|
|
if (adptr_p_conf.new_event_threshold > dev_info.max_num_events)
|
|
adptr_p_conf.new_event_threshold = dev_info.max_num_events;
|
|
if (adptr_p_conf.dequeue_depth > dev_info.max_event_port_dequeue_depth)
|
|
adptr_p_conf.dequeue_depth =
|
|
dev_info.max_event_port_dequeue_depth;
|
|
if (adptr_p_conf.enqueue_depth > dev_info.max_event_port_enqueue_depth)
|
|
adptr_p_conf.enqueue_depth =
|
|
dev_info.max_event_port_enqueue_depth;
|
|
|
|
struct rte_event_eth_rx_adapter_queue_conf queue_conf;
|
|
memset(&queue_conf, 0, sizeof(queue_conf));
|
|
queue_conf.ev.sched_type = cdata.queue_type;
|
|
|
|
for (i = 0; i < nb_ports; i++) {
|
|
uint32_t cap;
|
|
uint32_t service_id;
|
|
|
|
ret = rte_event_eth_rx_adapter_create(i, evdev_id,
|
|
&adptr_p_conf);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE,
|
|
"failed to create rx adapter[%d]", i);
|
|
|
|
ret = rte_event_eth_rx_adapter_caps_get(evdev_id, i, &cap);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE,
|
|
"failed to get event rx adapter "
|
|
"capabilities");
|
|
|
|
queue_conf.ev.queue_id = cdata.rx_stride ?
|
|
(i * cdata.rx_stride)
|
|
: (uint8_t)cdata.qid[0];
|
|
|
|
ret = rte_event_eth_rx_adapter_queue_add(i, i, -1, &queue_conf);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Failed to add queues to Rx adapter");
|
|
|
|
/* Producer needs to be scheduled. */
|
|
if (!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT)) {
|
|
ret = rte_event_eth_rx_adapter_service_id_get(i,
|
|
&service_id);
|
|
if (ret != -ESRCH && ret != 0) {
|
|
rte_exit(EXIT_FAILURE,
|
|
"Error getting the service ID for rx adptr\n");
|
|
}
|
|
|
|
rte_service_runstate_set(service_id, 1);
|
|
rte_service_set_runstate_mapped_check(service_id, 0);
|
|
|
|
adptr_services->nb_rx_adptrs++;
|
|
adptr_services->rx_adpt_arr = rte_realloc(
|
|
adptr_services->rx_adpt_arr,
|
|
adptr_services->nb_rx_adptrs *
|
|
sizeof(uint32_t), 0);
|
|
adptr_services->rx_adpt_arr[
|
|
adptr_services->nb_rx_adptrs - 1] =
|
|
service_id;
|
|
}
|
|
|
|
ret = rte_event_eth_rx_adapter_start(i);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE, "Rx adapter[%d] start failed",
|
|
i);
|
|
}
|
|
|
|
/* We already know that Tx adapter has INTERNAL port cap*/
|
|
ret = rte_event_eth_tx_adapter_create(cdata.tx_adapter_id, evdev_id,
|
|
&adptr_p_conf);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE, "failed to create tx adapter[%d]",
|
|
cdata.tx_adapter_id);
|
|
|
|
for (i = 0; i < nb_ports; i++) {
|
|
ret = rte_event_eth_tx_adapter_queue_add(cdata.tx_adapter_id, i,
|
|
-1);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Failed to add queues to Tx adapter");
|
|
}
|
|
|
|
ret = rte_event_eth_tx_adapter_start(cdata.tx_adapter_id);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE, "Tx adapter[%d] start failed",
|
|
cdata.tx_adapter_id);
|
|
|
|
if (adptr_services->nb_rx_adptrs) {
|
|
struct rte_service_spec service;
|
|
|
|
memset(&service, 0, sizeof(struct rte_service_spec));
|
|
snprintf(service.name, sizeof(service.name), "rx_service");
|
|
service.callback = service_rx_adapter;
|
|
service.callback_userdata = (void *)adptr_services;
|
|
|
|
int32_t ret = rte_service_component_register(&service,
|
|
&fdata->rxadptr_service_id);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Rx adapter service register failed");
|
|
|
|
rte_service_runstate_set(fdata->rxadptr_service_id, 1);
|
|
rte_service_component_runstate_set(fdata->rxadptr_service_id,
|
|
1);
|
|
rte_service_set_runstate_mapped_check(fdata->rxadptr_service_id,
|
|
0);
|
|
} else {
|
|
memset(fdata->rx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
|
|
rte_free(adptr_services);
|
|
}
|
|
|
|
if (!adptr_services->nb_rx_adptrs && (dev_info.event_dev_cap &
|
|
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED))
|
|
fdata->cap.scheduler = NULL;
|
|
}
|
|
|
|
static void
|
|
worker_tx_enq_opt_check(void)
|
|
{
|
|
int i;
|
|
int ret;
|
|
uint32_t cap = 0;
|
|
uint8_t rx_needed = 0;
|
|
uint8_t sched_needed = 0;
|
|
struct rte_event_dev_info eventdev_info;
|
|
|
|
memset(&eventdev_info, 0, sizeof(struct rte_event_dev_info));
|
|
rte_event_dev_info_get(0, &eventdev_info);
|
|
|
|
if (cdata.all_type_queues && !(eventdev_info.event_dev_cap &
|
|
RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES))
|
|
rte_exit(EXIT_FAILURE,
|
|
"Event dev doesn't support all type queues\n");
|
|
sched_needed = !(eventdev_info.event_dev_cap &
|
|
RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED);
|
|
|
|
RTE_ETH_FOREACH_DEV(i) {
|
|
ret = rte_event_eth_rx_adapter_caps_get(0, i, &cap);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE,
|
|
"failed to get event rx adapter capabilities");
|
|
rx_needed |=
|
|
!(cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT);
|
|
}
|
|
|
|
if (cdata.worker_lcore_mask == 0 ||
|
|
(rx_needed && cdata.rx_lcore_mask == 0) ||
|
|
(sched_needed && cdata.sched_lcore_mask == 0)) {
|
|
printf("Core part of pipeline was not assigned any cores. "
|
|
"This will stall the pipeline, please check core masks "
|
|
"(use -h for details on setting core masks):\n"
|
|
"\trx: %"PRIu64"\n\tsched: %"PRIu64
|
|
"\n\tworkers: %"PRIu64"\n", cdata.rx_lcore_mask,
|
|
cdata.sched_lcore_mask, cdata.worker_lcore_mask);
|
|
rte_exit(-1, "Fix core masks\n");
|
|
}
|
|
|
|
if (!sched_needed)
|
|
memset(fdata->sched_core, 0,
|
|
sizeof(unsigned int) * MAX_NUM_CORE);
|
|
if (!rx_needed)
|
|
memset(fdata->rx_core, 0,
|
|
sizeof(unsigned int) * MAX_NUM_CORE);
|
|
|
|
memset(fdata->tx_core, 0, sizeof(unsigned int) * MAX_NUM_CORE);
|
|
}
|
|
|
|
static worker_loop
|
|
get_worker_loop_single_burst(uint8_t atq)
|
|
{
|
|
if (atq)
|
|
return worker_do_tx_single_burst_atq;
|
|
|
|
return worker_do_tx_single_burst;
|
|
}
|
|
|
|
static worker_loop
|
|
get_worker_loop_single_non_burst(uint8_t atq)
|
|
{
|
|
if (atq)
|
|
return worker_do_tx_single_atq;
|
|
|
|
return worker_do_tx_single;
|
|
}
|
|
|
|
static worker_loop
|
|
get_worker_loop_burst(uint8_t atq)
|
|
{
|
|
if (atq)
|
|
return worker_do_tx_burst_atq;
|
|
|
|
return worker_do_tx_burst;
|
|
}
|
|
|
|
static worker_loop
|
|
get_worker_loop_non_burst(uint8_t atq)
|
|
{
|
|
if (atq)
|
|
return worker_do_tx_atq;
|
|
|
|
return worker_do_tx;
|
|
}
|
|
|
|
static worker_loop
|
|
get_worker_single_stage(bool burst)
|
|
{
|
|
uint8_t atq = cdata.all_type_queues ? 1 : 0;
|
|
|
|
if (burst)
|
|
return get_worker_loop_single_burst(atq);
|
|
|
|
return get_worker_loop_single_non_burst(atq);
|
|
}
|
|
|
|
static worker_loop
|
|
get_worker_multi_stage(bool burst)
|
|
{
|
|
uint8_t atq = cdata.all_type_queues ? 1 : 0;
|
|
|
|
if (burst)
|
|
return get_worker_loop_burst(atq);
|
|
|
|
return get_worker_loop_non_burst(atq);
|
|
}
|
|
|
|
void
|
|
set_worker_tx_enq_setup_data(struct setup_data *caps, bool burst)
|
|
{
|
|
if (cdata.num_stages == 1)
|
|
caps->worker = get_worker_single_stage(burst);
|
|
else
|
|
caps->worker = get_worker_multi_stage(burst);
|
|
|
|
caps->check_opt = worker_tx_enq_opt_check;
|
|
caps->scheduler = schedule_devices;
|
|
caps->evdev_setup = setup_eventdev_worker_tx_enq;
|
|
caps->adptr_setup = init_adapters;
|
|
}
|