numam-dpdk/lib/librte_eal/common/eal_common_memory.c
David Marchand 8a4baf06c1 mem: mark pages as not accessed when reserving VA
When the memory allocator reserves virtual addresses, it still does not
know what they will be used for.
Besides, huge areas are reserved for memory hotplug in multiprocess
setups. But most of the pages are unused in the whole life of the
processes.

Change protection mode to PROT_NONE when only reserving VA.
The memory allocator already switches to the right mode when making use
of it.

It also has the nice effect of getting those pages skipped by the kernel
when calling mlockall() or when a coredump gets generated.

Cc: stable@dpdk.org

Suggested-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: David Marchand <david.marchand@redhat.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Acked-by: Aaron Conole <aconole@redhat.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2020-03-13 13:53:12 +01:00

925 lines
22 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <rte_fbarray.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_log.h>
#include "eal_memalloc.h"
#include "eal_private.h"
#include "eal_internal_cfg.h"
#include "eal_memcfg.h"
#include "malloc_heap.h"
/*
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
* pointer to the mmap'd area and keep *size unmodified. Else, retry
* with a smaller zone: decrease *size by hugepage_sz until it reaches
* 0. In this case, return NULL. Note: this function returns an address
* which is a multiple of hugepage size.
*/
#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
static void *next_baseaddr;
static uint64_t system_page_sz;
#define MAX_MMAP_WITH_DEFINED_ADDR_TRIES 5
void *
eal_get_virtual_area(void *requested_addr, size_t *size,
size_t page_sz, int flags, int mmap_flags)
{
bool addr_is_hint, allow_shrink, unmap, no_align;
uint64_t map_sz;
void *mapped_addr, *aligned_addr;
uint8_t try = 0;
if (system_page_sz == 0)
system_page_sz = sysconf(_SC_PAGESIZE);
mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
if (next_baseaddr == NULL && internal_config.base_virtaddr != 0 &&
rte_eal_process_type() == RTE_PROC_PRIMARY)
next_baseaddr = (void *) internal_config.base_virtaddr;
#ifdef RTE_ARCH_64
if (next_baseaddr == NULL && internal_config.base_virtaddr == 0 &&
rte_eal_process_type() == RTE_PROC_PRIMARY)
next_baseaddr = (void *) eal_get_baseaddr();
#endif
if (requested_addr == NULL && next_baseaddr != NULL) {
requested_addr = next_baseaddr;
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
addr_is_hint = true;
}
/* we don't need alignment of resulting pointer in the following cases:
*
* 1. page size is equal to system size
* 2. we have a requested address, and it is page-aligned, and we will
* be discarding the address if we get a different one.
*
* for all other cases, alignment is potentially necessary.
*/
no_align = (requested_addr != NULL &&
requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
!addr_is_hint) ||
page_sz == system_page_sz;
do {
map_sz = no_align ? *size : *size + page_sz;
if (map_sz > SIZE_MAX) {
RTE_LOG(ERR, EAL, "Map size too big\n");
rte_errno = E2BIG;
return NULL;
}
mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_NONE,
mmap_flags, -1, 0);
if (mapped_addr == MAP_FAILED && allow_shrink)
*size -= page_sz;
if (mapped_addr != MAP_FAILED && addr_is_hint &&
mapped_addr != requested_addr) {
try++;
next_baseaddr = RTE_PTR_ADD(next_baseaddr, page_sz);
if (try <= MAX_MMAP_WITH_DEFINED_ADDR_TRIES) {
/* hint was not used. Try with another offset */
munmap(mapped_addr, map_sz);
mapped_addr = MAP_FAILED;
requested_addr = next_baseaddr;
}
}
} while ((allow_shrink || addr_is_hint) &&
mapped_addr == MAP_FAILED && *size > 0);
/* align resulting address - if map failed, we will ignore the value
* anyway, so no need to add additional checks.
*/
aligned_addr = no_align ? mapped_addr :
RTE_PTR_ALIGN(mapped_addr, page_sz);
if (*size == 0) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
strerror(errno));
rte_errno = errno;
return NULL;
} else if (mapped_addr == MAP_FAILED) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
strerror(errno));
/* pass errno up the call chain */
rte_errno = errno;
return NULL;
} else if (requested_addr != NULL && !addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
requested_addr, aligned_addr);
munmap(mapped_addr, map_sz);
rte_errno = EADDRNOTAVAIL;
return NULL;
} else if (requested_addr != NULL && addr_is_hint &&
aligned_addr != requested_addr) {
RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
requested_addr, aligned_addr);
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
} else if (next_baseaddr != NULL) {
next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
}
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
aligned_addr, *size);
if (unmap) {
munmap(mapped_addr, map_sz);
} else if (!no_align) {
void *map_end, *aligned_end;
size_t before_len, after_len;
/* when we reserve space with alignment, we add alignment to
* mapping size. On 32-bit, if 1GB alignment was requested, this
* would waste 1GB of address space, which is a luxury we cannot
* afford. so, if alignment was performed, check if any unneeded
* address space can be unmapped back.
*/
map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
aligned_end = RTE_PTR_ADD(aligned_addr, *size);
/* unmap space before aligned mmap address */
before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
if (before_len > 0)
munmap(mapped_addr, before_len);
/* unmap space after aligned end mmap address */
after_len = RTE_PTR_DIFF(map_end, aligned_end);
if (after_len > 0)
munmap(aligned_end, after_len);
}
return aligned_addr;
}
static struct rte_memseg *
virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
const struct rte_fbarray *arr;
void *start, *end;
int ms_idx;
if (msl == NULL)
return NULL;
/* a memseg list was specified, check if it's the right one */
start = msl->base_va;
end = RTE_PTR_ADD(start, msl->len);
if (addr < start || addr >= end)
return NULL;
/* now, calculate index */
arr = &msl->memseg_arr;
ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
return rte_fbarray_get(arr, ms_idx);
}
static struct rte_memseg_list *
virt2memseg_list(const void *addr)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
int msl_idx;
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
void *start, *end;
msl = &mcfg->memsegs[msl_idx];
start = msl->base_va;
end = RTE_PTR_ADD(start, msl->len);
if (addr >= start && addr < end)
break;
}
/* if we didn't find our memseg list */
if (msl_idx == RTE_MAX_MEMSEG_LISTS)
return NULL;
return msl;
}
struct rte_memseg_list *
rte_mem_virt2memseg_list(const void *addr)
{
return virt2memseg_list(addr);
}
struct virtiova {
rte_iova_t iova;
void *virt;
};
static int
find_virt(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, void *arg)
{
struct virtiova *vi = arg;
if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
size_t offset = vi->iova - ms->iova;
vi->virt = RTE_PTR_ADD(ms->addr, offset);
/* stop the walk */
return 1;
}
return 0;
}
static int
find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, size_t len, void *arg)
{
struct virtiova *vi = arg;
if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
size_t offset = vi->iova - ms->iova;
vi->virt = RTE_PTR_ADD(ms->addr, offset);
/* stop the walk */
return 1;
}
return 0;
}
void *
rte_mem_iova2virt(rte_iova_t iova)
{
struct virtiova vi;
memset(&vi, 0, sizeof(vi));
vi.iova = iova;
/* for legacy mem, we can get away with scanning VA-contiguous segments,
* as we know they are PA-contiguous as well
*/
if (internal_config.legacy_mem)
rte_memseg_contig_walk(find_virt_legacy, &vi);
else
rte_memseg_walk(find_virt, &vi);
return vi.virt;
}
struct rte_memseg *
rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
{
return virt2memseg(addr, msl != NULL ? msl :
rte_mem_virt2memseg_list(addr));
}
static int
physmem_size(const struct rte_memseg_list *msl, void *arg)
{
uint64_t *total_len = arg;
if (msl->external)
return 0;
*total_len += msl->memseg_arr.count * msl->page_sz;
return 0;
}
/* get the total size of memory */
uint64_t
rte_eal_get_physmem_size(void)
{
uint64_t total_len = 0;
rte_memseg_list_walk(physmem_size, &total_len);
return total_len;
}
static int
dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int msl_idx, ms_idx, fd;
FILE *f = arg;
msl_idx = msl - mcfg->memsegs;
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
return -1;
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
if (ms_idx < 0)
return -1;
fd = eal_memalloc_get_seg_fd(msl_idx, ms_idx);
fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
"virt:%p, socket_id:%"PRId32", "
"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
"nrank:%"PRIx32" fd:%i\n",
msl_idx, ms_idx,
ms->iova,
ms->len,
ms->addr,
ms->socket_id,
ms->hugepage_sz,
ms->nchannel,
ms->nrank,
fd);
return 0;
}
/*
* Defining here because declared in rte_memory.h, but the actual implementation
* is in eal_common_memalloc.c, like all other memalloc internals.
*/
int
rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
void *arg)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_event_callback_register(name, clb, arg);
}
int
rte_mem_event_callback_unregister(const char *name, void *arg)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_event_callback_unregister(name, arg);
}
int
rte_mem_alloc_validator_register(const char *name,
rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
limit);
}
int
rte_mem_alloc_validator_unregister(const char *name, int socket_id)
{
/* FreeBSD boots with legacy mem enabled by default */
if (internal_config.legacy_mem) {
RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
rte_errno = ENOTSUP;
return -1;
}
return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
}
/* Dump the physical memory layout on console */
void
rte_dump_physmem_layout(FILE *f)
{
rte_memseg_walk(dump_memseg, f);
}
static int
check_iova(const struct rte_memseg_list *msl __rte_unused,
const struct rte_memseg *ms, void *arg)
{
uint64_t *mask = arg;
rte_iova_t iova;
/* higher address within segment */
iova = (ms->iova + ms->len) - 1;
if (!(iova & *mask))
return 0;
RTE_LOG(DEBUG, EAL, "memseg iova %"PRIx64", len %zx, out of range\n",
ms->iova, ms->len);
RTE_LOG(DEBUG, EAL, "\tusing dma mask %"PRIx64"\n", *mask);
return 1;
}
#define MAX_DMA_MASK_BITS 63
/* check memseg iovas are within the required range based on dma mask */
static int
check_dma_mask(uint8_t maskbits, bool thread_unsafe)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
uint64_t mask;
int ret;
/* Sanity check. We only check width can be managed with 64 bits
* variables. Indeed any higher value is likely wrong. */
if (maskbits > MAX_DMA_MASK_BITS) {
RTE_LOG(ERR, EAL, "wrong dma mask size %u (Max: %u)\n",
maskbits, MAX_DMA_MASK_BITS);
return -1;
}
/* create dma mask */
mask = ~((1ULL << maskbits) - 1);
if (thread_unsafe)
ret = rte_memseg_walk_thread_unsafe(check_iova, &mask);
else
ret = rte_memseg_walk(check_iova, &mask);
if (ret)
/*
* Dma mask precludes hugepage usage.
* This device can not be used and we do not need to keep
* the dma mask.
*/
return 1;
/*
* we need to keep the more restricted maskbit for checking
* potential dynamic memory allocation in the future.
*/
mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
RTE_MIN(mcfg->dma_maskbits, maskbits);
return 0;
}
int
rte_mem_check_dma_mask(uint8_t maskbits)
{
return check_dma_mask(maskbits, false);
}
int
rte_mem_check_dma_mask_thread_unsafe(uint8_t maskbits)
{
return check_dma_mask(maskbits, true);
}
/*
* Set dma mask to use when memory initialization is done.
*
* This function should ONLY be used by code executed before the memory
* initialization. PMDs should use rte_mem_check_dma_mask if addressing
* limitations by the device.
*/
void
rte_mem_set_dma_mask(uint8_t maskbits)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
mcfg->dma_maskbits = mcfg->dma_maskbits == 0 ? maskbits :
RTE_MIN(mcfg->dma_maskbits, maskbits);
}
/* return the number of memory channels */
unsigned rte_memory_get_nchannel(void)
{
return rte_eal_get_configuration()->mem_config->nchannel;
}
/* return the number of memory rank */
unsigned rte_memory_get_nrank(void)
{
return rte_eal_get_configuration()->mem_config->nrank;
}
static int
rte_eal_memdevice_init(void)
{
struct rte_config *config;
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return 0;
config = rte_eal_get_configuration();
config->mem_config->nchannel = internal_config.force_nchannel;
config->mem_config->nrank = internal_config.force_nrank;
return 0;
}
/* Lock page in physical memory and prevent from swapping. */
int
rte_mem_lock_page(const void *virt)
{
unsigned long virtual = (unsigned long)virt;
int page_size = getpagesize();
unsigned long aligned = (virtual & ~(page_size - 1));
return mlock((void *)aligned, page_size);
}
int
rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ms_idx, ret = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
const struct rte_memseg *ms;
struct rte_fbarray *arr;
if (msl->memseg_arr.count == 0)
continue;
arr = &msl->memseg_arr;
ms_idx = rte_fbarray_find_next_used(arr, 0);
while (ms_idx >= 0) {
int n_segs;
size_t len;
ms = rte_fbarray_get(arr, ms_idx);
/* find how many more segments there are, starting with
* this one.
*/
n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
len = n_segs * msl->page_sz;
ret = func(msl, ms, len, arg);
if (ret)
return ret;
ms_idx = rte_fbarray_find_next_used(arr,
ms_idx + n_segs);
}
}
return 0;
}
int
rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
{
int ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_mcfg_mem_read_lock();
ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ms_idx, ret = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
const struct rte_memseg *ms;
struct rte_fbarray *arr;
if (msl->memseg_arr.count == 0)
continue;
arr = &msl->memseg_arr;
ms_idx = rte_fbarray_find_next_used(arr, 0);
while (ms_idx >= 0) {
ms = rte_fbarray_get(arr, ms_idx);
ret = func(msl, ms, arg);
if (ret)
return ret;
ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
}
}
return 0;
}
int
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
{
int ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_mcfg_mem_read_lock();
ret = rte_memseg_walk_thread_unsafe(func, arg);
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int i, ret = 0;
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
struct rte_memseg_list *msl = &mcfg->memsegs[i];
if (msl->base_va == NULL)
continue;
ret = func(msl, arg);
if (ret)
return ret;
}
return 0;
}
int
rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
{
int ret = 0;
/* do not allow allocations/frees/init while we iterate */
rte_mcfg_mem_read_lock();
ret = rte_memseg_list_walk_thread_unsafe(func, arg);
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_memseg_get_fd_thread_unsafe(const struct rte_memseg *ms)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
struct rte_fbarray *arr;
int msl_idx, seg_idx, ret;
if (ms == NULL) {
rte_errno = EINVAL;
return -1;
}
msl = rte_mem_virt2memseg_list(ms->addr);
if (msl == NULL) {
rte_errno = EINVAL;
return -1;
}
arr = &msl->memseg_arr;
msl_idx = msl - mcfg->memsegs;
seg_idx = rte_fbarray_find_idx(arr, ms);
if (!rte_fbarray_is_used(arr, seg_idx)) {
rte_errno = ENOENT;
return -1;
}
/* segment fd API is not supported for external segments */
if (msl->external) {
rte_errno = ENOTSUP;
return -1;
}
ret = eal_memalloc_get_seg_fd(msl_idx, seg_idx);
if (ret < 0) {
rte_errno = -ret;
ret = -1;
}
return ret;
}
int
rte_memseg_get_fd(const struct rte_memseg *ms)
{
int ret;
rte_mcfg_mem_read_lock();
ret = rte_memseg_get_fd_thread_unsafe(ms);
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_memseg_get_fd_offset_thread_unsafe(const struct rte_memseg *ms,
size_t *offset)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
struct rte_memseg_list *msl;
struct rte_fbarray *arr;
int msl_idx, seg_idx, ret;
if (ms == NULL || offset == NULL) {
rte_errno = EINVAL;
return -1;
}
msl = rte_mem_virt2memseg_list(ms->addr);
if (msl == NULL) {
rte_errno = EINVAL;
return -1;
}
arr = &msl->memseg_arr;
msl_idx = msl - mcfg->memsegs;
seg_idx = rte_fbarray_find_idx(arr, ms);
if (!rte_fbarray_is_used(arr, seg_idx)) {
rte_errno = ENOENT;
return -1;
}
/* segment fd API is not supported for external segments */
if (msl->external) {
rte_errno = ENOTSUP;
return -1;
}
ret = eal_memalloc_get_seg_fd_offset(msl_idx, seg_idx, offset);
if (ret < 0) {
rte_errno = -ret;
ret = -1;
}
return ret;
}
int
rte_memseg_get_fd_offset(const struct rte_memseg *ms, size_t *offset)
{
int ret;
rte_mcfg_mem_read_lock();
ret = rte_memseg_get_fd_offset_thread_unsafe(ms, offset);
rte_mcfg_mem_read_unlock();
return ret;
}
int
rte_extmem_register(void *va_addr, size_t len, rte_iova_t iova_addrs[],
unsigned int n_pages, size_t page_sz)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned int socket_id, n;
int ret = 0;
if (va_addr == NULL || page_sz == 0 || len == 0 ||
!rte_is_power_of_2(page_sz) ||
RTE_ALIGN(len, page_sz) != len ||
((len / page_sz) != n_pages && iova_addrs != NULL) ||
!rte_is_aligned(va_addr, page_sz)) {
rte_errno = EINVAL;
return -1;
}
rte_mcfg_mem_write_lock();
/* make sure the segment doesn't already exist */
if (malloc_heap_find_external_seg(va_addr, len) != NULL) {
rte_errno = EEXIST;
ret = -1;
goto unlock;
}
/* get next available socket ID */
socket_id = mcfg->next_socket_id;
if (socket_id > INT32_MAX) {
RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n");
rte_errno = ENOSPC;
ret = -1;
goto unlock;
}
/* we can create a new memseg */
n = len / page_sz;
if (malloc_heap_create_external_seg(va_addr, iova_addrs, n,
page_sz, "extmem", socket_id) == NULL) {
ret = -1;
goto unlock;
}
/* memseg list successfully created - increment next socket ID */
mcfg->next_socket_id++;
unlock:
rte_mcfg_mem_write_unlock();
return ret;
}
int
rte_extmem_unregister(void *va_addr, size_t len)
{
struct rte_memseg_list *msl;
int ret = 0;
if (va_addr == NULL || len == 0) {
rte_errno = EINVAL;
return -1;
}
rte_mcfg_mem_write_lock();
/* find our segment */
msl = malloc_heap_find_external_seg(va_addr, len);
if (msl == NULL) {
rte_errno = ENOENT;
ret = -1;
goto unlock;
}
ret = malloc_heap_destroy_external_seg(msl);
unlock:
rte_mcfg_mem_write_unlock();
return ret;
}
static int
sync_memory(void *va_addr, size_t len, bool attach)
{
struct rte_memseg_list *msl;
int ret = 0;
if (va_addr == NULL || len == 0) {
rte_errno = EINVAL;
return -1;
}
rte_mcfg_mem_write_lock();
/* find our segment */
msl = malloc_heap_find_external_seg(va_addr, len);
if (msl == NULL) {
rte_errno = ENOENT;
ret = -1;
goto unlock;
}
if (attach)
ret = rte_fbarray_attach(&msl->memseg_arr);
else
ret = rte_fbarray_detach(&msl->memseg_arr);
unlock:
rte_mcfg_mem_write_unlock();
return ret;
}
int
rte_extmem_attach(void *va_addr, size_t len)
{
return sync_memory(va_addr, len, true);
}
int
rte_extmem_detach(void *va_addr, size_t len)
{
return sync_memory(va_addr, len, false);
}
/* init memory subsystem */
int
rte_eal_memory_init(void)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
int retval;
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
if (!mcfg)
return -1;
/* lock mem hotplug here, to prevent races while we init */
rte_mcfg_mem_read_lock();
if (rte_eal_memseg_init() < 0)
goto fail;
if (eal_memalloc_init() < 0)
goto fail;
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
rte_eal_hugepage_init() :
rte_eal_hugepage_attach();
if (retval < 0)
goto fail;
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
goto fail;
return 0;
fail:
rte_mcfg_mem_read_unlock();
return -1;
}