numam-dpdk/app/test/test_compressdev.c
Bruce Richardson 890028e252 test/compress: fix missing include
Build of test_compressdev.c fails on FreeBSD due to the missing
include of unistd.h, to provide the function usleep.

Fixes: b06aa643ca ("test/compress: add initial unit tests")
Cc: stable@dpdk.org

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: David Marchand <david.marchand@redhat.com>
2019-04-19 23:21:13 +02:00

2056 lines
54 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 - 2019 Intel Corporation
*/
#include <string.h>
#include <zlib.h>
#include <math.h>
#include <stdlib.h>
#include <unistd.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_compressdev.h>
#include <rte_string_fns.h>
#include "test_compressdev_test_buffer.h"
#include "test.h"
#define DIV_CEIL(a, b) ((a) / (b) + ((a) % (b) != 0))
#define DEFAULT_WINDOW_SIZE 15
#define DEFAULT_MEM_LEVEL 8
#define MAX_DEQD_RETRIES 10
#define DEQUEUE_WAIT_TIME 10000
/*
* 30% extra size for compressed data compared to original data,
* in case data size cannot be reduced and it is actually bigger
* due to the compress block headers
*/
#define COMPRESS_BUF_SIZE_RATIO 1.3
#define NUM_LARGE_MBUFS 16
#define SMALL_SEG_SIZE 256
#define MAX_SEGS 16
#define NUM_OPS 16
#define NUM_MAX_XFORMS 16
#define NUM_MAX_INFLIGHT_OPS 128
#define CACHE_SIZE 0
#define ZLIB_CRC_CHECKSUM_WINDOW_BITS 31
#define ZLIB_HEADER_SIZE 2
#define ZLIB_TRAILER_SIZE 4
#define GZIP_HEADER_SIZE 10
#define GZIP_TRAILER_SIZE 8
#define OUT_OF_SPACE_BUF 1
#define MAX_MBUF_SEGMENT_SIZE 65535
#define MAX_DATA_MBUF_SIZE (MAX_MBUF_SEGMENT_SIZE - RTE_PKTMBUF_HEADROOM)
#define NUM_BIG_MBUFS 4
#define BIG_DATA_TEST_SIZE (MAX_DATA_MBUF_SIZE * NUM_BIG_MBUFS / 2)
const char *
huffman_type_strings[] = {
[RTE_COMP_HUFFMAN_DEFAULT] = "PMD default",
[RTE_COMP_HUFFMAN_FIXED] = "Fixed",
[RTE_COMP_HUFFMAN_DYNAMIC] = "Dynamic"
};
enum zlib_direction {
ZLIB_NONE,
ZLIB_COMPRESS,
ZLIB_DECOMPRESS,
ZLIB_ALL
};
enum varied_buff {
LB_BOTH = 0, /* both input and output are linear*/
SGL_BOTH, /* both input and output are chained */
SGL_TO_LB, /* input buffer is chained */
LB_TO_SGL /* output buffer is chained */
};
struct priv_op_data {
uint16_t orig_idx;
};
struct comp_testsuite_params {
struct rte_mempool *large_mbuf_pool;
struct rte_mempool *small_mbuf_pool;
struct rte_mempool *big_mbuf_pool;
struct rte_mempool *op_pool;
struct rte_comp_xform *def_comp_xform;
struct rte_comp_xform *def_decomp_xform;
};
struct interim_data_params {
const char * const *test_bufs;
unsigned int num_bufs;
uint16_t *buf_idx;
struct rte_comp_xform **compress_xforms;
struct rte_comp_xform **decompress_xforms;
unsigned int num_xforms;
};
struct test_data_params {
enum rte_comp_op_type state;
enum varied_buff buff_type;
enum zlib_direction zlib_dir;
unsigned int out_of_space;
unsigned int big_data;
};
static struct comp_testsuite_params testsuite_params = { 0 };
static void
testsuite_teardown(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
if (rte_mempool_in_use_count(ts_params->large_mbuf_pool))
RTE_LOG(ERR, USER1, "Large mbuf pool still has unfreed bufs\n");
if (rte_mempool_in_use_count(ts_params->small_mbuf_pool))
RTE_LOG(ERR, USER1, "Small mbuf pool still has unfreed bufs\n");
if (rte_mempool_in_use_count(ts_params->big_mbuf_pool))
RTE_LOG(ERR, USER1, "Big mbuf pool still has unfreed bufs\n");
if (rte_mempool_in_use_count(ts_params->op_pool))
RTE_LOG(ERR, USER1, "op pool still has unfreed ops\n");
rte_mempool_free(ts_params->large_mbuf_pool);
rte_mempool_free(ts_params->small_mbuf_pool);
rte_mempool_free(ts_params->big_mbuf_pool);
rte_mempool_free(ts_params->op_pool);
rte_free(ts_params->def_comp_xform);
rte_free(ts_params->def_decomp_xform);
}
static int
testsuite_setup(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint32_t max_buf_size = 0;
unsigned int i;
if (rte_compressdev_count() == 0) {
RTE_LOG(ERR, USER1, "Need at least one compress device\n");
return TEST_FAILED;
}
RTE_LOG(NOTICE, USER1, "Running tests on device %s\n",
rte_compressdev_name_get(0));
for (i = 0; i < RTE_DIM(compress_test_bufs); i++)
max_buf_size = RTE_MAX(max_buf_size,
strlen(compress_test_bufs[i]) + 1);
/*
* Buffers to be used in compression and decompression.
* Since decompressed data might be larger than
* compressed data (due to block header),
* buffers should be big enough for both cases.
*/
max_buf_size *= COMPRESS_BUF_SIZE_RATIO;
ts_params->large_mbuf_pool = rte_pktmbuf_pool_create("large_mbuf_pool",
NUM_LARGE_MBUFS,
CACHE_SIZE, 0,
max_buf_size + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (ts_params->large_mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Large mbuf pool could not be created\n");
return TEST_FAILED;
}
/* Create mempool with smaller buffers for SGL testing */
ts_params->small_mbuf_pool = rte_pktmbuf_pool_create("small_mbuf_pool",
NUM_LARGE_MBUFS * MAX_SEGS,
CACHE_SIZE, 0,
SMALL_SEG_SIZE + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (ts_params->small_mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Small mbuf pool could not be created\n");
goto exit;
}
/* Create mempool with big buffers for SGL testing */
ts_params->big_mbuf_pool = rte_pktmbuf_pool_create("big_mbuf_pool",
NUM_BIG_MBUFS + 1,
CACHE_SIZE, 0,
MAX_MBUF_SEGMENT_SIZE,
rte_socket_id());
if (ts_params->big_mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Big mbuf pool could not be created\n");
goto exit;
}
ts_params->op_pool = rte_comp_op_pool_create("op_pool", NUM_OPS,
0, sizeof(struct priv_op_data),
rte_socket_id());
if (ts_params->op_pool == NULL) {
RTE_LOG(ERR, USER1, "Operation pool could not be created\n");
goto exit;
}
ts_params->def_comp_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (ts_params->def_comp_xform == NULL) {
RTE_LOG(ERR, USER1,
"Default compress xform could not be created\n");
goto exit;
}
ts_params->def_decomp_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (ts_params->def_decomp_xform == NULL) {
RTE_LOG(ERR, USER1,
"Default decompress xform could not be created\n");
goto exit;
}
/* Initializes default values for compress/decompress xforms */
ts_params->def_comp_xform->type = RTE_COMP_COMPRESS;
ts_params->def_comp_xform->compress.algo = RTE_COMP_ALGO_DEFLATE,
ts_params->def_comp_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DEFAULT;
ts_params->def_comp_xform->compress.level = RTE_COMP_LEVEL_PMD_DEFAULT;
ts_params->def_comp_xform->compress.chksum = RTE_COMP_CHECKSUM_NONE;
ts_params->def_comp_xform->compress.window_size = DEFAULT_WINDOW_SIZE;
ts_params->def_decomp_xform->type = RTE_COMP_DECOMPRESS;
ts_params->def_decomp_xform->decompress.algo = RTE_COMP_ALGO_DEFLATE,
ts_params->def_decomp_xform->decompress.chksum = RTE_COMP_CHECKSUM_NONE;
ts_params->def_decomp_xform->decompress.window_size = DEFAULT_WINDOW_SIZE;
return TEST_SUCCESS;
exit:
testsuite_teardown();
return TEST_FAILED;
}
static int
generic_ut_setup(void)
{
/* Configure compressdev (one device, one queue pair) */
struct rte_compressdev_config config = {
.socket_id = rte_socket_id(),
.nb_queue_pairs = 1,
.max_nb_priv_xforms = NUM_MAX_XFORMS,
.max_nb_streams = 0
};
if (rte_compressdev_configure(0, &config) < 0) {
RTE_LOG(ERR, USER1, "Device configuration failed\n");
return -1;
}
if (rte_compressdev_queue_pair_setup(0, 0, NUM_MAX_INFLIGHT_OPS,
rte_socket_id()) < 0) {
RTE_LOG(ERR, USER1, "Queue pair setup failed\n");
return -1;
}
if (rte_compressdev_start(0) < 0) {
RTE_LOG(ERR, USER1, "Device could not be started\n");
return -1;
}
return 0;
}
static void
generic_ut_teardown(void)
{
rte_compressdev_stop(0);
if (rte_compressdev_close(0) < 0)
RTE_LOG(ERR, USER1, "Device could not be closed\n");
}
static int
test_compressdev_invalid_configuration(void)
{
struct rte_compressdev_config invalid_config;
struct rte_compressdev_config valid_config = {
.socket_id = rte_socket_id(),
.nb_queue_pairs = 1,
.max_nb_priv_xforms = NUM_MAX_XFORMS,
.max_nb_streams = 0
};
struct rte_compressdev_info dev_info;
/* Invalid configuration with 0 queue pairs */
memcpy(&invalid_config, &valid_config,
sizeof(struct rte_compressdev_config));
invalid_config.nb_queue_pairs = 0;
TEST_ASSERT_FAIL(rte_compressdev_configure(0, &invalid_config),
"Device configuration was successful "
"with no queue pairs (invalid)\n");
/*
* Invalid configuration with too many queue pairs
* (if there is an actual maximum number of queue pairs)
*/
rte_compressdev_info_get(0, &dev_info);
if (dev_info.max_nb_queue_pairs != 0) {
memcpy(&invalid_config, &valid_config,
sizeof(struct rte_compressdev_config));
invalid_config.nb_queue_pairs = dev_info.max_nb_queue_pairs + 1;
TEST_ASSERT_FAIL(rte_compressdev_configure(0, &invalid_config),
"Device configuration was successful "
"with too many queue pairs (invalid)\n");
}
/* Invalid queue pair setup, with no number of queue pairs set */
TEST_ASSERT_FAIL(rte_compressdev_queue_pair_setup(0, 0,
NUM_MAX_INFLIGHT_OPS, rte_socket_id()),
"Queue pair setup was successful "
"with no queue pairs set (invalid)\n");
return TEST_SUCCESS;
}
static int
compare_buffers(const char *buffer1, uint32_t buffer1_len,
const char *buffer2, uint32_t buffer2_len)
{
if (buffer1_len != buffer2_len) {
RTE_LOG(ERR, USER1, "Buffer lengths are different\n");
return -1;
}
if (memcmp(buffer1, buffer2, buffer1_len) != 0) {
RTE_LOG(ERR, USER1, "Buffers are different\n");
return -1;
}
return 0;
}
/*
* Maps compressdev and Zlib flush flags
*/
static int
map_zlib_flush_flag(enum rte_comp_flush_flag flag)
{
switch (flag) {
case RTE_COMP_FLUSH_NONE:
return Z_NO_FLUSH;
case RTE_COMP_FLUSH_SYNC:
return Z_SYNC_FLUSH;
case RTE_COMP_FLUSH_FULL:
return Z_FULL_FLUSH;
case RTE_COMP_FLUSH_FINAL:
return Z_FINISH;
/*
* There should be only the values above,
* so this should never happen
*/
default:
return -1;
}
}
static int
compress_zlib(struct rte_comp_op *op,
const struct rte_comp_xform *xform, int mem_level)
{
z_stream stream;
int zlib_flush;
int strategy, window_bits, comp_level;
int ret = TEST_FAILED;
uint8_t *single_src_buf = NULL;
uint8_t *single_dst_buf = NULL;
/* initialize zlib stream */
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
if (xform->compress.deflate.huffman == RTE_COMP_HUFFMAN_FIXED)
strategy = Z_FIXED;
else
strategy = Z_DEFAULT_STRATEGY;
/*
* Window bits is the base two logarithm of the window size (in bytes).
* When doing raw DEFLATE, this number will be negative.
*/
window_bits = -(xform->compress.window_size);
if (xform->compress.chksum == RTE_COMP_CHECKSUM_ADLER32)
window_bits *= -1;
else if (xform->compress.chksum == RTE_COMP_CHECKSUM_CRC32)
window_bits = ZLIB_CRC_CHECKSUM_WINDOW_BITS;
comp_level = xform->compress.level;
if (comp_level != RTE_COMP_LEVEL_NONE)
ret = deflateInit2(&stream, comp_level, Z_DEFLATED,
window_bits, mem_level, strategy);
else
ret = deflateInit(&stream, Z_NO_COMPRESSION);
if (ret != Z_OK) {
printf("Zlib deflate could not be initialized\n");
goto exit;
}
/* Assuming stateless operation */
/* SGL Input */
if (op->m_src->nb_segs > 1) {
single_src_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_src), 0);
if (single_src_buf == NULL) {
RTE_LOG(ERR, USER1, "Buffer could not be allocated\n");
goto exit;
}
if (rte_pktmbuf_read(op->m_src, op->src.offset,
rte_pktmbuf_pkt_len(op->m_src) -
op->src.offset,
single_src_buf) == NULL) {
RTE_LOG(ERR, USER1,
"Buffer could not be read entirely\n");
goto exit;
}
stream.avail_in = op->src.length;
stream.next_in = single_src_buf;
} else {
stream.avail_in = op->src.length;
stream.next_in = rte_pktmbuf_mtod_offset(op->m_src, uint8_t *,
op->src.offset);
}
/* SGL output */
if (op->m_dst->nb_segs > 1) {
single_dst_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_dst), 0);
if (single_dst_buf == NULL) {
RTE_LOG(ERR, USER1,
"Buffer could not be allocated\n");
goto exit;
}
stream.avail_out = op->m_dst->pkt_len;
stream.next_out = single_dst_buf;
} else {/* linear output */
stream.avail_out = op->m_dst->data_len;
stream.next_out = rte_pktmbuf_mtod_offset(op->m_dst, uint8_t *,
op->dst.offset);
}
/* Stateless operation, all buffer will be compressed in one go */
zlib_flush = map_zlib_flush_flag(op->flush_flag);
ret = deflate(&stream, zlib_flush);
if (stream.avail_in != 0) {
RTE_LOG(ERR, USER1, "Buffer could not be read entirely\n");
goto exit;
}
if (ret != Z_STREAM_END)
goto exit;
/* Copy data to destination SGL */
if (op->m_dst->nb_segs > 1) {
uint32_t remaining_data = stream.total_out;
uint8_t *src_data = single_dst_buf;
struct rte_mbuf *dst_buf = op->m_dst;
while (remaining_data > 0) {
uint8_t *dst_data = rte_pktmbuf_mtod_offset(dst_buf,
uint8_t *, op->dst.offset);
/* Last segment */
if (remaining_data < dst_buf->data_len) {
memcpy(dst_data, src_data, remaining_data);
remaining_data = 0;
} else {
memcpy(dst_data, src_data, dst_buf->data_len);
remaining_data -= dst_buf->data_len;
src_data += dst_buf->data_len;
dst_buf = dst_buf->next;
}
}
}
op->consumed = stream.total_in;
if (xform->compress.chksum == RTE_COMP_CHECKSUM_ADLER32) {
rte_pktmbuf_adj(op->m_dst, ZLIB_HEADER_SIZE);
rte_pktmbuf_trim(op->m_dst, ZLIB_TRAILER_SIZE);
op->produced = stream.total_out - (ZLIB_HEADER_SIZE +
ZLIB_TRAILER_SIZE);
} else if (xform->compress.chksum == RTE_COMP_CHECKSUM_CRC32) {
rte_pktmbuf_adj(op->m_dst, GZIP_HEADER_SIZE);
rte_pktmbuf_trim(op->m_dst, GZIP_TRAILER_SIZE);
op->produced = stream.total_out - (GZIP_HEADER_SIZE +
GZIP_TRAILER_SIZE);
} else
op->produced = stream.total_out;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
op->output_chksum = stream.adler;
deflateReset(&stream);
ret = 0;
exit:
deflateEnd(&stream);
rte_free(single_src_buf);
rte_free(single_dst_buf);
return ret;
}
static int
decompress_zlib(struct rte_comp_op *op,
const struct rte_comp_xform *xform)
{
z_stream stream;
int window_bits;
int zlib_flush;
int ret = TEST_FAILED;
uint8_t *single_src_buf = NULL;
uint8_t *single_dst_buf = NULL;
/* initialize zlib stream */
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
/*
* Window bits is the base two logarithm of the window size (in bytes).
* When doing raw DEFLATE, this number will be negative.
*/
window_bits = -(xform->decompress.window_size);
ret = inflateInit2(&stream, window_bits);
if (ret != Z_OK) {
printf("Zlib deflate could not be initialized\n");
goto exit;
}
/* Assuming stateless operation */
/* SGL */
if (op->m_src->nb_segs > 1) {
single_src_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_src), 0);
if (single_src_buf == NULL) {
RTE_LOG(ERR, USER1, "Buffer could not be allocated\n");
goto exit;
}
single_dst_buf = rte_malloc(NULL,
rte_pktmbuf_pkt_len(op->m_dst), 0);
if (single_dst_buf == NULL) {
RTE_LOG(ERR, USER1, "Buffer could not be allocated\n");
goto exit;
}
if (rte_pktmbuf_read(op->m_src, 0,
rte_pktmbuf_pkt_len(op->m_src),
single_src_buf) == NULL) {
RTE_LOG(ERR, USER1,
"Buffer could not be read entirely\n");
goto exit;
}
stream.avail_in = op->src.length;
stream.next_in = single_src_buf;
stream.avail_out = rte_pktmbuf_pkt_len(op->m_dst);
stream.next_out = single_dst_buf;
} else {
stream.avail_in = op->src.length;
stream.next_in = rte_pktmbuf_mtod(op->m_src, uint8_t *);
stream.avail_out = op->m_dst->data_len;
stream.next_out = rte_pktmbuf_mtod(op->m_dst, uint8_t *);
}
/* Stateless operation, all buffer will be compressed in one go */
zlib_flush = map_zlib_flush_flag(op->flush_flag);
ret = inflate(&stream, zlib_flush);
if (stream.avail_in != 0) {
RTE_LOG(ERR, USER1, "Buffer could not be read entirely\n");
goto exit;
}
if (ret != Z_STREAM_END)
goto exit;
if (op->m_src->nb_segs > 1) {
uint32_t remaining_data = stream.total_out;
uint8_t *src_data = single_dst_buf;
struct rte_mbuf *dst_buf = op->m_dst;
while (remaining_data > 0) {
uint8_t *dst_data = rte_pktmbuf_mtod(dst_buf,
uint8_t *);
/* Last segment */
if (remaining_data < dst_buf->data_len) {
memcpy(dst_data, src_data, remaining_data);
remaining_data = 0;
} else {
memcpy(dst_data, src_data, dst_buf->data_len);
remaining_data -= dst_buf->data_len;
src_data += dst_buf->data_len;
dst_buf = dst_buf->next;
}
}
}
op->consumed = stream.total_in;
op->produced = stream.total_out;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
inflateReset(&stream);
ret = 0;
exit:
inflateEnd(&stream);
return ret;
}
static int
prepare_sgl_bufs(const char *test_buf, struct rte_mbuf *head_buf,
uint32_t total_data_size,
struct rte_mempool *small_mbuf_pool,
struct rte_mempool *large_mbuf_pool,
uint8_t limit_segs_in_sgl,
uint16_t seg_size)
{
uint32_t remaining_data = total_data_size;
uint16_t num_remaining_segs = DIV_CEIL(remaining_data, seg_size);
struct rte_mempool *pool;
struct rte_mbuf *next_seg;
uint32_t data_size;
char *buf_ptr;
const char *data_ptr = test_buf;
uint16_t i;
int ret;
if (limit_segs_in_sgl != 0 && num_remaining_segs > limit_segs_in_sgl)
num_remaining_segs = limit_segs_in_sgl - 1;
/*
* Allocate data in the first segment (header) and
* copy data if test buffer is provided
*/
if (remaining_data < seg_size)
data_size = remaining_data;
else
data_size = seg_size;
buf_ptr = rte_pktmbuf_append(head_buf, data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Not enough space in the 1st buffer\n");
return -1;
}
if (data_ptr != NULL) {
/* Copy characters without NULL terminator */
strncpy(buf_ptr, data_ptr, data_size);
data_ptr += data_size;
}
remaining_data -= data_size;
num_remaining_segs--;
/*
* Allocate the rest of the segments,
* copy the rest of the data and chain the segments.
*/
for (i = 0; i < num_remaining_segs; i++) {
if (i == (num_remaining_segs - 1)) {
/* last segment */
if (remaining_data > seg_size)
pool = large_mbuf_pool;
else
pool = small_mbuf_pool;
data_size = remaining_data;
} else {
data_size = seg_size;
pool = small_mbuf_pool;
}
next_seg = rte_pktmbuf_alloc(pool);
if (next_seg == NULL) {
RTE_LOG(ERR, USER1,
"New segment could not be allocated "
"from the mempool\n");
return -1;
}
buf_ptr = rte_pktmbuf_append(next_seg, data_size);
if (buf_ptr == NULL) {
RTE_LOG(ERR, USER1,
"Not enough space in the buffer\n");
rte_pktmbuf_free(next_seg);
return -1;
}
if (data_ptr != NULL) {
/* Copy characters without NULL terminator */
strncpy(buf_ptr, data_ptr, data_size);
data_ptr += data_size;
}
remaining_data -= data_size;
ret = rte_pktmbuf_chain(head_buf, next_seg);
if (ret != 0) {
rte_pktmbuf_free(next_seg);
RTE_LOG(ERR, USER1,
"Segment could not chained\n");
return -1;
}
}
return 0;
}
/*
* Compresses and decompresses buffer with compressdev API and Zlib API
*/
static int
test_deflate_comp_decomp(const struct interim_data_params *int_data,
const struct test_data_params *test_data)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
const char * const *test_bufs = int_data->test_bufs;
unsigned int num_bufs = int_data->num_bufs;
uint16_t *buf_idx = int_data->buf_idx;
struct rte_comp_xform **compress_xforms = int_data->compress_xforms;
struct rte_comp_xform **decompress_xforms = int_data->decompress_xforms;
unsigned int num_xforms = int_data->num_xforms;
enum rte_comp_op_type state = test_data->state;
unsigned int buff_type = test_data->buff_type;
unsigned int out_of_space = test_data->out_of_space;
unsigned int big_data = test_data->big_data;
enum zlib_direction zlib_dir = test_data->zlib_dir;
int ret_status = -1;
int ret;
struct rte_mbuf *uncomp_bufs[num_bufs];
struct rte_mbuf *comp_bufs[num_bufs];
struct rte_comp_op *ops[num_bufs];
struct rte_comp_op *ops_processed[num_bufs];
void *priv_xforms[num_bufs];
uint16_t num_enqd, num_deqd, num_total_deqd;
uint16_t num_priv_xforms = 0;
unsigned int deqd_retries = 0;
struct priv_op_data *priv_data;
char *buf_ptr;
unsigned int i;
struct rte_mempool *buf_pool;
uint32_t data_size;
/* Compressing with CompressDev */
unsigned int oos_zlib_decompress =
(zlib_dir == ZLIB_NONE || zlib_dir == ZLIB_DECOMPRESS);
/* Decompressing with CompressDev */
unsigned int oos_zlib_compress =
(zlib_dir == ZLIB_NONE || zlib_dir == ZLIB_COMPRESS);
const struct rte_compressdev_capabilities *capa =
rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
char *contig_buf = NULL;
uint64_t compress_checksum[num_bufs];
/* Initialize all arrays to NULL */
memset(uncomp_bufs, 0, sizeof(struct rte_mbuf *) * num_bufs);
memset(comp_bufs, 0, sizeof(struct rte_mbuf *) * num_bufs);
memset(ops, 0, sizeof(struct rte_comp_op *) * num_bufs);
memset(ops_processed, 0, sizeof(struct rte_comp_op *) * num_bufs);
memset(priv_xforms, 0, sizeof(void *) * num_bufs);
if (big_data)
buf_pool = ts_params->big_mbuf_pool;
else if (buff_type == SGL_BOTH)
buf_pool = ts_params->small_mbuf_pool;
else
buf_pool = ts_params->large_mbuf_pool;
/* Prepare the source mbufs with the data */
ret = rte_pktmbuf_alloc_bulk(buf_pool,
uncomp_bufs, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Source mbufs could not be allocated "
"from the mempool\n");
goto exit;
}
if (buff_type == SGL_BOTH || buff_type == SGL_TO_LB) {
for (i = 0; i < num_bufs; i++) {
data_size = strlen(test_bufs[i]) + 1;
if (prepare_sgl_bufs(test_bufs[i], uncomp_bufs[i],
data_size,
big_data ? buf_pool : ts_params->small_mbuf_pool,
big_data ? buf_pool : ts_params->large_mbuf_pool,
big_data ? 0 : MAX_SEGS,
big_data ? MAX_DATA_MBUF_SIZE : SMALL_SEG_SIZE) < 0)
goto exit;
}
} else {
for (i = 0; i < num_bufs; i++) {
data_size = strlen(test_bufs[i]) + 1;
buf_ptr = rte_pktmbuf_append(uncomp_bufs[i], data_size);
strlcpy(buf_ptr, test_bufs[i], data_size);
}
}
/* Prepare the destination mbufs */
ret = rte_pktmbuf_alloc_bulk(buf_pool, comp_bufs, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Destination mbufs could not be allocated "
"from the mempool\n");
goto exit;
}
if (buff_type == SGL_BOTH || buff_type == LB_TO_SGL) {
for (i = 0; i < num_bufs; i++) {
if (out_of_space == 1 && oos_zlib_decompress)
data_size = OUT_OF_SPACE_BUF;
else
(data_size = strlen(test_bufs[i]) *
COMPRESS_BUF_SIZE_RATIO);
if (prepare_sgl_bufs(NULL, comp_bufs[i],
data_size,
big_data ? buf_pool : ts_params->small_mbuf_pool,
big_data ? buf_pool : ts_params->large_mbuf_pool,
big_data ? 0 : MAX_SEGS,
big_data ? MAX_DATA_MBUF_SIZE : SMALL_SEG_SIZE)
< 0)
goto exit;
}
} else {
for (i = 0; i < num_bufs; i++) {
if (out_of_space == 1 && oos_zlib_decompress)
data_size = OUT_OF_SPACE_BUF;
else
(data_size = strlen(test_bufs[i]) *
COMPRESS_BUF_SIZE_RATIO);
rte_pktmbuf_append(comp_bufs[i], data_size);
}
}
/* Build the compression operations */
ret = rte_comp_op_bulk_alloc(ts_params->op_pool, ops, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compress operations could not be allocated "
"from the mempool\n");
goto exit;
}
for (i = 0; i < num_bufs; i++) {
ops[i]->m_src = uncomp_bufs[i];
ops[i]->m_dst = comp_bufs[i];
ops[i]->src.offset = 0;
ops[i]->src.length = rte_pktmbuf_pkt_len(uncomp_bufs[i]);
ops[i]->dst.offset = 0;
if (state == RTE_COMP_OP_STATELESS) {
ops[i]->flush_flag = RTE_COMP_FLUSH_FINAL;
} else {
RTE_LOG(ERR, USER1,
"Stateful operations are not supported "
"in these tests yet\n");
goto exit;
}
ops[i]->input_chksum = 0;
/*
* Store original operation index in private data,
* since ordering does not have to be maintained,
* when dequeueing from compressdev, so a comparison
* at the end of the test can be done.
*/
priv_data = (struct priv_op_data *) (ops[i] + 1);
priv_data->orig_idx = i;
}
/* Compress data (either with Zlib API or compressdev API */
if (zlib_dir == ZLIB_COMPRESS || zlib_dir == ZLIB_ALL) {
for (i = 0; i < num_bufs; i++) {
const struct rte_comp_xform *compress_xform =
compress_xforms[i % num_xforms];
ret = compress_zlib(ops[i], compress_xform,
DEFAULT_MEM_LEVEL);
if (ret < 0)
goto exit;
ops_processed[i] = ops[i];
}
} else {
/* Create compress private xform data */
for (i = 0; i < num_xforms; i++) {
ret = rte_compressdev_private_xform_create(0,
(const struct rte_comp_xform *)compress_xforms[i],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compression private xform "
"could not be created\n");
goto exit;
}
num_priv_xforms++;
}
if (capa->comp_feature_flags & RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
/* Attach shareable private xform data to ops */
for (i = 0; i < num_bufs; i++)
ops[i]->private_xform = priv_xforms[i % num_xforms];
} else {
/* Create rest of the private xforms for the other ops */
for (i = num_xforms; i < num_bufs; i++) {
ret = rte_compressdev_private_xform_create(0,
compress_xforms[i % num_xforms],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Compression private xform "
"could not be created\n");
goto exit;
}
num_priv_xforms++;
}
/* Attach non shareable private xform data to ops */
for (i = 0; i < num_bufs; i++)
ops[i]->private_xform = priv_xforms[i];
}
/* Enqueue and dequeue all operations */
num_enqd = rte_compressdev_enqueue_burst(0, 0, ops, num_bufs);
if (num_enqd < num_bufs) {
RTE_LOG(ERR, USER1,
"The operations could not be enqueued\n");
goto exit;
}
num_total_deqd = 0;
do {
/*
* If retrying a dequeue call, wait for 10 ms to allow
* enough time to the driver to process the operations
*/
if (deqd_retries != 0) {
/*
* Avoid infinite loop if not all the
* operations get out of the device
*/
if (deqd_retries == MAX_DEQD_RETRIES) {
RTE_LOG(ERR, USER1,
"Not all operations could be "
"dequeued\n");
goto exit;
}
usleep(DEQUEUE_WAIT_TIME);
}
num_deqd = rte_compressdev_dequeue_burst(0, 0,
&ops_processed[num_total_deqd], num_bufs);
num_total_deqd += num_deqd;
deqd_retries++;
} while (num_total_deqd < num_enqd);
deqd_retries = 0;
/* Free compress private xforms */
for (i = 0; i < num_priv_xforms; i++) {
rte_compressdev_private_xform_free(0, priv_xforms[i]);
priv_xforms[i] = NULL;
}
num_priv_xforms = 0;
}
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
uint16_t xform_idx = priv_data->orig_idx % num_xforms;
const struct rte_comp_compress_xform *compress_xform =
&compress_xforms[xform_idx]->compress;
enum rte_comp_huffman huffman_type =
compress_xform->deflate.huffman;
char engine[] = "zlib (directly, not PMD)";
if (zlib_dir != ZLIB_COMPRESS || zlib_dir != ZLIB_ALL)
strlcpy(engine, "PMD", sizeof(engine));
RTE_LOG(DEBUG, USER1, "Buffer %u compressed by %s from %u to"
" %u bytes (level = %d, huffman = %s)\n",
buf_idx[priv_data->orig_idx], engine,
ops_processed[i]->consumed, ops_processed[i]->produced,
compress_xform->level,
huffman_type_strings[huffman_type]);
RTE_LOG(DEBUG, USER1, "Compression ratio = %.2f\n",
ops_processed[i]->consumed == 0 ? 0 :
(float)ops_processed[i]->produced /
ops_processed[i]->consumed * 100);
if (compress_xform->chksum != RTE_COMP_CHECKSUM_NONE)
compress_checksum[i] = ops_processed[i]->output_chksum;
ops[i] = NULL;
}
/*
* Check operation status and free source mbufs (destination mbuf and
* compress operation information is needed for the decompression stage)
*/
for (i = 0; i < num_bufs; i++) {
if (out_of_space && oos_zlib_decompress) {
if (ops_processed[i]->status !=
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED) {
ret_status = -1;
RTE_LOG(ERR, USER1,
"Operation without expected out of "
"space status error\n");
goto exit;
} else
continue;
}
if (ops_processed[i]->status != RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto exit;
}
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
rte_pktmbuf_free(uncomp_bufs[priv_data->orig_idx]);
uncomp_bufs[priv_data->orig_idx] = NULL;
}
if (out_of_space && oos_zlib_decompress) {
ret_status = 0;
goto exit;
}
/* Allocate buffers for decompressed data */
ret = rte_pktmbuf_alloc_bulk(buf_pool, uncomp_bufs, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Destination mbufs could not be allocated "
"from the mempool\n");
goto exit;
}
if (buff_type == SGL_BOTH || buff_type == LB_TO_SGL) {
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)
(ops_processed[i] + 1);
if (out_of_space == 1 && oos_zlib_compress)
data_size = OUT_OF_SPACE_BUF;
else
data_size =
strlen(test_bufs[priv_data->orig_idx]) + 1;
if (prepare_sgl_bufs(NULL, uncomp_bufs[i],
data_size,
big_data ? buf_pool : ts_params->small_mbuf_pool,
big_data ? buf_pool : ts_params->large_mbuf_pool,
big_data ? 0 : MAX_SEGS,
big_data ? MAX_DATA_MBUF_SIZE : SMALL_SEG_SIZE)
< 0)
goto exit;
}
} else {
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)
(ops_processed[i] + 1);
if (out_of_space == 1 && oos_zlib_compress)
data_size = OUT_OF_SPACE_BUF;
else
data_size =
strlen(test_bufs[priv_data->orig_idx]) + 1;
rte_pktmbuf_append(uncomp_bufs[i], data_size);
}
}
/* Build the decompression operations */
ret = rte_comp_op_bulk_alloc(ts_params->op_pool, ops, num_bufs);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompress operations could not be allocated "
"from the mempool\n");
goto exit;
}
/* Source buffer is the compressed data from the previous operations */
for (i = 0; i < num_bufs; i++) {
ops[i]->m_src = ops_processed[i]->m_dst;
ops[i]->m_dst = uncomp_bufs[i];
ops[i]->src.offset = 0;
/*
* Set the length of the compressed data to the
* number of bytes that were produced in the previous stage
*/
ops[i]->src.length = ops_processed[i]->produced;
ops[i]->dst.offset = 0;
if (state == RTE_COMP_OP_STATELESS) {
ops[i]->flush_flag = RTE_COMP_FLUSH_FINAL;
} else {
RTE_LOG(ERR, USER1,
"Stateful operations are not supported "
"in these tests yet\n");
goto exit;
}
ops[i]->input_chksum = 0;
/*
* Copy private data from previous operations,
* to keep the pointer to the original buffer
*/
memcpy(ops[i] + 1, ops_processed[i] + 1,
sizeof(struct priv_op_data));
}
/*
* Free the previous compress operations,
* as they are not needed anymore
*/
rte_comp_op_bulk_free(ops_processed, num_bufs);
/* Decompress data (either with Zlib API or compressdev API */
if (zlib_dir == ZLIB_DECOMPRESS || zlib_dir == ZLIB_ALL) {
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops[i] + 1);
uint16_t xform_idx = priv_data->orig_idx % num_xforms;
const struct rte_comp_xform *decompress_xform =
decompress_xforms[xform_idx];
ret = decompress_zlib(ops[i], decompress_xform);
if (ret < 0)
goto exit;
ops_processed[i] = ops[i];
}
} else {
/* Create decompress private xform data */
for (i = 0; i < num_xforms; i++) {
ret = rte_compressdev_private_xform_create(0,
(const struct rte_comp_xform *)decompress_xforms[i],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompression private xform "
"could not be created\n");
goto exit;
}
num_priv_xforms++;
}
if (capa->comp_feature_flags & RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
/* Attach shareable private xform data to ops */
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops[i] + 1);
uint16_t xform_idx = priv_data->orig_idx %
num_xforms;
ops[i]->private_xform = priv_xforms[xform_idx];
}
} else {
/* Create rest of the private xforms for the other ops */
for (i = num_xforms; i < num_bufs; i++) {
ret = rte_compressdev_private_xform_create(0,
decompress_xforms[i % num_xforms],
&priv_xforms[i]);
if (ret < 0) {
RTE_LOG(ERR, USER1,
"Decompression private xform "
"could not be created\n");
goto exit;
}
num_priv_xforms++;
}
/* Attach non shareable private xform data to ops */
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops[i] + 1);
uint16_t xform_idx = priv_data->orig_idx;
ops[i]->private_xform = priv_xforms[xform_idx];
}
}
/* Enqueue and dequeue all operations */
num_enqd = rte_compressdev_enqueue_burst(0, 0, ops, num_bufs);
if (num_enqd < num_bufs) {
RTE_LOG(ERR, USER1,
"The operations could not be enqueued\n");
goto exit;
}
num_total_deqd = 0;
do {
/*
* If retrying a dequeue call, wait for 10 ms to allow
* enough time to the driver to process the operations
*/
if (deqd_retries != 0) {
/*
* Avoid infinite loop if not all the
* operations get out of the device
*/
if (deqd_retries == MAX_DEQD_RETRIES) {
RTE_LOG(ERR, USER1,
"Not all operations could be "
"dequeued\n");
goto exit;
}
usleep(DEQUEUE_WAIT_TIME);
}
num_deqd = rte_compressdev_dequeue_burst(0, 0,
&ops_processed[num_total_deqd], num_bufs);
num_total_deqd += num_deqd;
deqd_retries++;
} while (num_total_deqd < num_enqd);
deqd_retries = 0;
}
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
char engine[] = "zlib, (directly, no PMD)";
if (zlib_dir != ZLIB_DECOMPRESS || zlib_dir != ZLIB_ALL)
strlcpy(engine, "pmd", sizeof(engine));
RTE_LOG(DEBUG, USER1,
"Buffer %u decompressed by %s from %u to %u bytes\n",
buf_idx[priv_data->orig_idx], engine,
ops_processed[i]->consumed, ops_processed[i]->produced);
ops[i] = NULL;
}
/*
* Check operation status and free source mbuf (destination mbuf and
* compress operation information is still needed)
*/
for (i = 0; i < num_bufs; i++) {
if (out_of_space && oos_zlib_compress) {
if (ops_processed[i]->status !=
RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED) {
ret_status = -1;
RTE_LOG(ERR, USER1,
"Operation without expected out of "
"space status error\n");
goto exit;
} else
continue;
}
if (ops_processed[i]->status != RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto exit;
}
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
rte_pktmbuf_free(comp_bufs[priv_data->orig_idx]);
comp_bufs[priv_data->orig_idx] = NULL;
}
if (out_of_space && oos_zlib_compress) {
ret_status = 0;
goto exit;
}
/*
* Compare the original stream with the decompressed stream
* (in size and the data)
*/
for (i = 0; i < num_bufs; i++) {
priv_data = (struct priv_op_data *)(ops_processed[i] + 1);
const char *buf1 = test_bufs[priv_data->orig_idx];
const char *buf2;
contig_buf = rte_malloc(NULL, ops_processed[i]->produced, 0);
if (contig_buf == NULL) {
RTE_LOG(ERR, USER1, "Contiguous buffer could not "
"be allocated\n");
goto exit;
}
buf2 = rte_pktmbuf_read(ops_processed[i]->m_dst, 0,
ops_processed[i]->produced, contig_buf);
if (compare_buffers(buf1, strlen(buf1) + 1,
buf2, ops_processed[i]->produced) < 0)
goto exit;
/* Test checksums */
if (compress_xforms[0]->compress.chksum !=
RTE_COMP_CHECKSUM_NONE) {
if (ops_processed[i]->output_chksum !=
compress_checksum[i]) {
RTE_LOG(ERR, USER1, "The checksums differ\n"
"Compression Checksum: %" PRIu64 "\tDecompression "
"Checksum: %" PRIu64 "\n", compress_checksum[i],
ops_processed[i]->output_chksum);
goto exit;
}
}
rte_free(contig_buf);
contig_buf = NULL;
}
ret_status = 0;
exit:
/* Free resources */
for (i = 0; i < num_bufs; i++) {
rte_pktmbuf_free(uncomp_bufs[i]);
rte_pktmbuf_free(comp_bufs[i]);
rte_comp_op_free(ops[i]);
rte_comp_op_free(ops_processed[i]);
}
for (i = 0; i < num_priv_xforms; i++) {
if (priv_xforms[i] != NULL)
rte_compressdev_private_xform_free(0, priv_xforms[i]);
}
rte_free(contig_buf);
return ret_status;
}
static int
test_compressdev_deflate_stateless_fixed(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_FIXED) == 0)
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_FIXED;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
static int
test_compressdev_deflate_stateless_dynamic(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_DYNAMIC) == 0)
return -ENOTSUP;
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xform->compress.deflate.huffman = RTE_COMP_HUFFMAN_DYNAMIC;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
static int
test_compressdev_deflate_stateless_multi_op(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t num_bufs = RTE_DIM(compress_test_bufs);
uint16_t buf_idx[num_bufs];
uint16_t i;
for (i = 0; i < num_bufs; i++)
buf_idx[i] = i;
struct interim_data_params int_data = {
compress_test_bufs,
num_bufs,
buf_idx,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
return TEST_SUCCESS;
}
static int
test_compressdev_deflate_stateless_multi_level(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
unsigned int level;
uint16_t i;
int ret;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
for (level = RTE_COMP_LEVEL_MIN; level <= RTE_COMP_LEVEL_MAX;
level++) {
compress_xform->compress.level = level;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
#define NUM_XFORMS 3
static int
test_compressdev_deflate_stateless_multi_xform(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t num_bufs = NUM_XFORMS;
struct rte_comp_xform *compress_xforms[NUM_XFORMS] = {NULL};
struct rte_comp_xform *decompress_xforms[NUM_XFORMS] = {NULL};
const char *test_buffers[NUM_XFORMS];
uint16_t i;
unsigned int level = RTE_COMP_LEVEL_MIN;
uint16_t buf_idx[num_bufs];
int ret;
/* Create multiple xforms with various levels */
for (i = 0; i < NUM_XFORMS; i++) {
compress_xforms[i] = rte_malloc(NULL,
sizeof(struct rte_comp_xform), 0);
if (compress_xforms[i] == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(compress_xforms[i], ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
compress_xforms[i]->compress.level = level;
level++;
decompress_xforms[i] = rte_malloc(NULL,
sizeof(struct rte_comp_xform), 0);
if (decompress_xforms[i] == NULL) {
RTE_LOG(ERR, USER1,
"Decompress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
memcpy(decompress_xforms[i], ts_params->def_decomp_xform,
sizeof(struct rte_comp_xform));
}
for (i = 0; i < NUM_XFORMS; i++) {
buf_idx[i] = 0;
/* Use the same buffer in all sessions */
test_buffers[i] = compress_test_bufs[0];
}
struct interim_data_params int_data = {
test_buffers,
num_bufs,
buf_idx,
compress_xforms,
decompress_xforms,
NUM_XFORMS
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
/* Compress with compressdev, decompress with Zlib */
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
ret = TEST_SUCCESS;
exit:
for (i = 0; i < NUM_XFORMS; i++) {
rte_free(compress_xforms[i]);
rte_free(decompress_xforms[i]);
}
return ret;
}
static int
test_compressdev_deflate_stateless_sgl(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) == 0)
return -ENOTSUP;
struct interim_data_params int_data = {
NULL,
1,
NULL,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
SGL_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_LB_OUT) {
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
test_data.buff_type = SGL_TO_LB;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
test_data.buff_type = SGL_TO_LB;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
}
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_LB_IN_SGL_OUT) {
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
test_data.buff_type = LB_TO_SGL;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
test_data.buff_type = LB_TO_SGL;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0)
return TEST_FAILED;
}
}
return TEST_SUCCESS;
}
static int
test_compressdev_deflate_stateless_checksum(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i;
int ret;
const struct rte_compressdev_capabilities *capab;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
/* Check if driver supports any checksum */
if ((capab->comp_feature_flags & RTE_COMP_FF_CRC32_CHECKSUM) == 0 &&
(capab->comp_feature_flags &
RTE_COMP_FF_ADLER32_CHECKSUM) == 0 &&
(capab->comp_feature_flags &
RTE_COMP_FF_CRC32_ADLER32_CHECKSUM) == 0)
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1, "Compress xform could not be created\n");
ret = TEST_FAILED;
return ret;
}
memcpy(compress_xform, ts_params->def_comp_xform,
sizeof(struct rte_comp_xform));
struct rte_comp_xform *decompress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (decompress_xform == NULL) {
RTE_LOG(ERR, USER1, "Decompress xform could not be created\n");
rte_free(compress_xform);
ret = TEST_FAILED;
return ret;
}
memcpy(decompress_xform, ts_params->def_decomp_xform,
sizeof(struct rte_comp_xform));
struct interim_data_params int_data = {
NULL,
1,
NULL,
&compress_xform,
&decompress_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
0,
0
};
/* Check if driver supports crc32 checksum and test */
if ((capab->comp_feature_flags & RTE_COMP_FF_CRC32_CHECKSUM)) {
compress_xform->compress.chksum = RTE_COMP_CHECKSUM_CRC32;
decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_CRC32;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
/* Compress with compressdev, decompress with Zlib */
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Generate zlib checksum and test against selected
* drivers decompression checksum
*/
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
/* Generate compression and decompression
* checksum of selected driver
*/
test_data.zlib_dir = ZLIB_NONE;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
/* Check if driver supports adler32 checksum and test */
if ((capab->comp_feature_flags & RTE_COMP_FF_ADLER32_CHECKSUM)) {
compress_xform->compress.chksum = RTE_COMP_CHECKSUM_ADLER32;
decompress_xform->decompress.chksum = RTE_COMP_CHECKSUM_ADLER32;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Generate zlib checksum and test against selected
* drivers decompression checksum
*/
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
/* Generate compression and decompression
* checksum of selected driver
*/
test_data.zlib_dir = ZLIB_NONE;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
/* Check if driver supports combined crc and adler checksum and test */
if ((capab->comp_feature_flags & RTE_COMP_FF_CRC32_ADLER32_CHECKSUM)) {
compress_xform->compress.chksum =
RTE_COMP_CHECKSUM_CRC32_ADLER32;
decompress_xform->decompress.chksum =
RTE_COMP_CHECKSUM_CRC32_ADLER32;
for (i = 0; i < RTE_DIM(compress_test_bufs); i++) {
int_data.test_bufs = &compress_test_bufs[i];
int_data.buf_idx = &i;
/* Generate compression and decompression
* checksum of selected driver
*/
test_data.zlib_dir = ZLIB_NONE;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
rte_free(decompress_xform);
return ret;
}
static int
test_compressdev_out_of_space_buffer(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
int ret;
uint16_t i;
const struct rte_compressdev_capabilities *capab;
RTE_LOG(INFO, USER1, "This is a negative test errors are expected\n");
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_FIXED) == 0)
return -ENOTSUP;
struct rte_comp_xform *compress_xform =
rte_malloc(NULL, sizeof(struct rte_comp_xform), 0);
if (compress_xform == NULL) {
RTE_LOG(ERR, USER1,
"Compress xform could not be created\n");
ret = TEST_FAILED;
goto exit;
}
struct interim_data_params int_data = {
&compress_test_bufs[0],
1,
&i,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
LB_BOTH,
ZLIB_DECOMPRESS,
1,
0
};
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
if (capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) {
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
test_data.buff_type = SGL_BOTH;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
test_data.buff_type = SGL_BOTH;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto exit;
}
}
ret = TEST_SUCCESS;
exit:
rte_free(compress_xform);
return ret;
}
static int
test_compressdev_deflate_stateless_dynamic_big(void)
{
struct comp_testsuite_params *ts_params = &testsuite_params;
uint16_t i = 0;
int ret = TEST_SUCCESS;
int j;
const struct rte_compressdev_capabilities *capab;
char *test_buffer = NULL;
capab = rte_compressdev_capability_get(0, RTE_COMP_ALGO_DEFLATE);
TEST_ASSERT(capab != NULL, "Failed to retrieve device capabilities");
if ((capab->comp_feature_flags & RTE_COMP_FF_HUFFMAN_DYNAMIC) == 0)
return -ENOTSUP;
if ((capab->comp_feature_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) == 0)
return -ENOTSUP;
test_buffer = rte_malloc(NULL, BIG_DATA_TEST_SIZE, 0);
if (test_buffer == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate buffer for big-data\n");
return TEST_FAILED;
}
struct interim_data_params int_data = {
(const char * const *)&test_buffer,
1,
&i,
&ts_params->def_comp_xform,
&ts_params->def_decomp_xform,
1
};
struct test_data_params test_data = {
RTE_COMP_OP_STATELESS,
SGL_BOTH,
ZLIB_DECOMPRESS,
0,
1
};
ts_params->def_comp_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DYNAMIC;
/* fill the buffer with data based on rand. data */
srand(BIG_DATA_TEST_SIZE);
for (j = 0; j < BIG_DATA_TEST_SIZE - 1; ++j)
test_buffer[j] = (uint8_t)(rand() % ((uint8_t)-1)) | 1;
test_buffer[BIG_DATA_TEST_SIZE-1] = 0;
/* Compress with compressdev, decompress with Zlib */
test_data.zlib_dir = ZLIB_DECOMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto end;
}
/* Compress with Zlib, decompress with compressdev */
test_data.zlib_dir = ZLIB_COMPRESS;
if (test_deflate_comp_decomp(&int_data, &test_data) < 0) {
ret = TEST_FAILED;
goto end;
}
end:
ts_params->def_comp_xform->compress.deflate.huffman =
RTE_COMP_HUFFMAN_DEFAULT;
rte_free(test_buffer);
return ret;
}
static struct unit_test_suite compressdev_testsuite = {
.suite_name = "compressdev unit test suite",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(NULL, NULL,
test_compressdev_invalid_configuration),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_fixed),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_dynamic),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_dynamic_big),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_multi_op),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_multi_level),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_multi_xform),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_sgl),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_deflate_stateless_checksum),
TEST_CASE_ST(generic_ut_setup, generic_ut_teardown,
test_compressdev_out_of_space_buffer),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static int
test_compressdev(void)
{
return unit_test_suite_runner(&compressdev_testsuite);
}
REGISTER_TEST_COMMAND(compressdev_autotest, test_compressdev);