numam-dpdk/examples/l3fwd/l3fwd_neon.h
Olivier Matz a7c528e5d7 net: add rte prefix to IP structure
Add 'rte_' prefix to structures:
- rename struct ipv4_hdr as struct rte_ipv4_hdr.
- rename struct ipv6_hdr as struct rte_ipv6_hdr.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Reviewed-by: Stephen Hemminger <stephen@networkplumber.org>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-24 13:34:46 +02:00

235 lines
5.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Intel Corporation.
* Copyright(c) 2017-2018 Linaro Limited.
*/
#ifndef _L3FWD_NEON_H_
#define _L3FWD_NEON_H_
#include "l3fwd.h"
#include "l3fwd_common.h"
/*
* Update source and destination MAC addresses in the ethernet header.
* Perform RFC1812 checks and updates for IPV4 packets.
*/
static inline void
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
{
uint32x4_t te[FWDSTEP];
uint32x4_t ve[FWDSTEP];
uint32_t *p[FWDSTEP];
p[0] = rte_pktmbuf_mtod(pkt[0], uint32_t *);
p[1] = rte_pktmbuf_mtod(pkt[1], uint32_t *);
p[2] = rte_pktmbuf_mtod(pkt[2], uint32_t *);
p[3] = rte_pktmbuf_mtod(pkt[3], uint32_t *);
ve[0] = vreinterpretq_u32_s32(val_eth[dst_port[0]]);
te[0] = vld1q_u32(p[0]);
ve[1] = vreinterpretq_u32_s32(val_eth[dst_port[1]]);
te[1] = vld1q_u32(p[1]);
ve[2] = vreinterpretq_u32_s32(val_eth[dst_port[2]]);
te[2] = vld1q_u32(p[2]);
ve[3] = vreinterpretq_u32_s32(val_eth[dst_port[3]]);
te[3] = vld1q_u32(p[3]);
/* Update last 4 bytes */
ve[0] = vsetq_lane_u32(vgetq_lane_u32(te[0], 3), ve[0], 3);
ve[1] = vsetq_lane_u32(vgetq_lane_u32(te[1], 3), ve[1], 3);
ve[2] = vsetq_lane_u32(vgetq_lane_u32(te[2], 3), ve[2], 3);
ve[3] = vsetq_lane_u32(vgetq_lane_u32(te[3], 3), ve[3], 3);
vst1q_u32(p[0], ve[0]);
vst1q_u32(p[1], ve[1]);
vst1q_u32(p[2], ve[2]);
vst1q_u32(p[3], ve[3]);
rfc1812_process((struct rte_ipv4_hdr *)
((struct rte_ether_hdr *)p[0] + 1),
&dst_port[0], pkt[0]->packet_type);
rfc1812_process((struct rte_ipv4_hdr *)
((struct rte_ether_hdr *)p[1] + 1),
&dst_port[1], pkt[1]->packet_type);
rfc1812_process((struct rte_ipv4_hdr *)
((struct rte_ether_hdr *)p[2] + 1),
&dst_port[2], pkt[2]->packet_type);
rfc1812_process((struct rte_ipv4_hdr *)
((struct rte_ether_hdr *)p[3] + 1),
&dst_port[3], pkt[3]->packet_type);
}
/*
* Group consecutive packets with the same destination port in bursts of 4.
* Suppose we have array of destionation ports:
* dst_port[] = {a, b, c, d,, e, ... }
* dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
* We doing 4 comparisons at once and the result is 4 bit mask.
* This mask is used as an index into prebuild array of pnum values.
*/
static inline uint16_t *
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, uint16x8_t dp1,
uint16x8_t dp2)
{
union {
uint16_t u16[FWDSTEP + 1];
uint64_t u64;
} *pnum = (void *)pn;
int32_t v;
uint16x8_t mask = {1, 2, 4, 8, 0, 0, 0, 0};
dp1 = vceqq_u16(dp1, dp2);
dp1 = vandq_u16(dp1, mask);
v = vaddvq_u16(dp1);
/* update last port counter. */
lp[0] += gptbl[v].lpv;
rte_compiler_barrier();
/* if dest port value has changed. */
if (v != GRPMSK) {
pnum->u64 = gptbl[v].pnum;
pnum->u16[FWDSTEP] = 1;
lp = pnum->u16 + gptbl[v].idx;
}
return lp;
}
/**
* Process one packet:
* Update source and destination MAC addresses in the ethernet header.
* Perform RFC1812 checks and updates for IPV4 packets.
*/
static inline void
process_packet(struct rte_mbuf *pkt, uint16_t *dst_port)
{
struct rte_ether_hdr *eth_hdr;
uint32x4_t te, ve;
eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
te = vld1q_u32((uint32_t *)eth_hdr);
ve = vreinterpretq_u32_s32(val_eth[dst_port[0]]);
rfc1812_process((struct rte_ipv4_hdr *)(eth_hdr + 1), dst_port,
pkt->packet_type);
ve = vcopyq_laneq_u32(ve, 3, te, 3);
vst1q_u32((uint32_t *)eth_hdr, ve);
}
/**
* Send packets burst from pkts_burst to the ports in dst_port array
*/
static __rte_always_inline void
send_packets_multi(struct lcore_conf *qconf, struct rte_mbuf **pkts_burst,
uint16_t dst_port[MAX_PKT_BURST], int nb_rx)
{
int32_t k;
int j = 0;
uint16_t dlp;
uint16_t *lp;
uint16_t pnum[MAX_PKT_BURST + 1];
/*
* Finish packet processing and group consecutive
* packets with the same destination port.
*/
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
if (k != 0) {
uint16x8_t dp1, dp2;
lp = pnum;
lp[0] = 1;
processx4_step3(pkts_burst, dst_port);
/* dp1: <d[0], d[1], d[2], d[3], ... > */
dp1 = vld1q_u16(dst_port);
for (j = FWDSTEP; j != k; j += FWDSTEP) {
processx4_step3(&pkts_burst[j], &dst_port[j]);
/*
* dp2:
* <d[j-3], d[j-2], d[j-1], d[j], ... >
*/
dp2 = vld1q_u16(&dst_port[j - FWDSTEP + 1]);
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
/*
* dp1:
* <d[j], d[j+1], d[j+2], d[j+3], ... >
*/
dp1 = vextq_u16(dp2, dp1, FWDSTEP - 1);
}
/*
* dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
*/
dp2 = vextq_u16(dp1, dp1, 1);
dp2 = vsetq_lane_u16(vgetq_lane_u16(dp2, 2), dp2, 3);
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
/*
* remove values added by the last repeated
* dst port.
*/
lp[0]--;
dlp = dst_port[j - 1];
} else {
/* set dlp and lp to the never used values. */
dlp = BAD_PORT - 1;
lp = pnum + MAX_PKT_BURST;
}
/* Process up to last 3 packets one by one. */
switch (nb_rx % FWDSTEP) {
case 3:
process_packet(pkts_burst[j], dst_port + j);
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
j++;
/* fallthrough */
case 2:
process_packet(pkts_burst[j], dst_port + j);
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
j++;
/* fallthrough */
case 1:
process_packet(pkts_burst[j], dst_port + j);
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
j++;
}
/*
* Send packets out, through destination port.
* Consecutive packets with the same destination port
* are already grouped together.
* If destination port for the packet equals BAD_PORT,
* then free the packet without sending it out.
*/
for (j = 0; j < nb_rx; j += k) {
int32_t m;
uint16_t pn;
pn = dst_port[j];
k = pnum[j];
if (likely(pn != BAD_PORT))
send_packetsx4(qconf, pn, pkts_burst + j, k);
else
for (m = j; m != j + k; m++)
rte_pktmbuf_free(pkts_burst[m]);
}
}
#endif /* _L3FWD_NEON_H_ */