numam-dpdk/drivers/net/ice/ice_rxtx.c
Olivier Matz daa02b5cdd mbuf: add namespace to offload flags
Fix the mbuf offload flags namespace by adding an RTE_ prefix to the
name. The old flags remain usable, but a deprecation warning is issued
at compilation.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
Acked-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Acked-by: Somnath Kotur <somnath.kotur@broadcom.com>
2021-10-24 13:37:43 +02:00

4278 lines
123 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <ethdev_driver.h>
#include <rte_net.h>
#include <rte_vect.h>
#include "rte_pmd_ice.h"
#include "ice_rxtx.h"
#include "ice_rxtx_vec_common.h"
#define ICE_TX_CKSUM_OFFLOAD_MASK (RTE_MBUF_F_TX_IP_CKSUM | \
RTE_MBUF_F_TX_L4_MASK | \
RTE_MBUF_F_TX_TCP_SEG | \
RTE_MBUF_F_TX_OUTER_IP_CKSUM)
/* Offset of mbuf dynamic field for protocol extraction data */
int rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
/* Mask of mbuf dynamic flags for protocol extraction type */
uint64_t rte_net_ice_dynflag_proto_xtr_vlan_mask;
uint64_t rte_net_ice_dynflag_proto_xtr_ipv4_mask;
uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_mask;
uint64_t rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
uint64_t rte_net_ice_dynflag_proto_xtr_tcp_mask;
uint64_t rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
static int
ice_monitor_callback(const uint64_t value,
const uint64_t arg[RTE_POWER_MONITOR_OPAQUE_SZ] __rte_unused)
{
const uint64_t m = rte_cpu_to_le_16(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
/*
* we expect the DD bit to be set to 1 if this descriptor was already
* written to.
*/
return (value & m) == m ? -1 : 0;
}
int
ice_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc)
{
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_queue *rxq = rx_queue;
uint16_t desc;
desc = rxq->rx_tail;
rxdp = &rxq->rx_ring[desc];
/* watch for changes in status bit */
pmc->addr = &rxdp->wb.status_error0;
/* comparison callback */
pmc->fn = ice_monitor_callback;
/* register is 16-bit */
pmc->size = sizeof(uint16_t);
return 0;
}
static inline uint8_t
ice_proto_xtr_type_to_rxdid(uint8_t xtr_type)
{
static uint8_t rxdid_map[] = {
[PROTO_XTR_NONE] = ICE_RXDID_COMMS_OVS,
[PROTO_XTR_VLAN] = ICE_RXDID_COMMS_AUX_VLAN,
[PROTO_XTR_IPV4] = ICE_RXDID_COMMS_AUX_IPV4,
[PROTO_XTR_IPV6] = ICE_RXDID_COMMS_AUX_IPV6,
[PROTO_XTR_IPV6_FLOW] = ICE_RXDID_COMMS_AUX_IPV6_FLOW,
[PROTO_XTR_TCP] = ICE_RXDID_COMMS_AUX_TCP,
[PROTO_XTR_IP_OFFSET] = ICE_RXDID_COMMS_AUX_IP_OFFSET,
};
return xtr_type < RTE_DIM(rxdid_map) ?
rxdid_map[xtr_type] : ICE_RXDID_COMMS_OVS;
}
static inline void
ice_rxd_to_pkt_fields_by_comms_generic(__rte_unused struct ice_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union ice_rx_flex_desc *rxdp)
{
volatile struct ice_32b_rx_flex_desc_comms *desc =
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
#endif
}
static inline void
ice_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct ice_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union ice_rx_flex_desc *rxdp)
{
volatile struct ice_32b_rx_flex_desc_comms_ovs *desc =
(volatile struct ice_32b_rx_flex_desc_comms_ovs *)rxdp;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
uint16_t stat_err;
#endif
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#endif
}
static inline void
ice_rxd_to_pkt_fields_by_comms_aux_v1(struct ice_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union ice_rx_flex_desc *rxdp)
{
volatile struct ice_32b_rx_flex_desc_comms *desc =
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
if (rxq->xtr_ol_flag) {
uint32_t metadata = 0;
stat_err = rte_le_to_cpu_16(desc->status_error1);
if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
if (stat_err & (1 << ICE_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
metadata |=
rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
if (metadata) {
mb->ol_flags |= rxq->xtr_ol_flag;
*RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
}
}
#endif
}
static inline void
ice_rxd_to_pkt_fields_by_comms_aux_v2(struct ice_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union ice_rx_flex_desc *rxdp)
{
volatile struct ice_32b_rx_flex_desc_comms *desc =
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
if (rxq->xtr_ol_flag) {
uint32_t metadata = 0;
if (desc->flex_ts.flex.aux0 != 0xFFFF)
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
else if (desc->flex_ts.flex.aux1 != 0xFFFF)
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
if (metadata) {
mb->ol_flags |= rxq->xtr_ol_flag;
*RTE_NET_ICE_DYNF_PROTO_XTR_METADATA(mb) = metadata;
}
}
#endif
}
void
ice_select_rxd_to_pkt_fields_handler(struct ice_rx_queue *rxq, uint32_t rxdid)
{
switch (rxdid) {
case ICE_RXDID_COMMS_AUX_VLAN:
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_vlan_mask;
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case ICE_RXDID_COMMS_AUX_IPV4:
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv4_mask;
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case ICE_RXDID_COMMS_AUX_IPV6:
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_mask;
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case ICE_RXDID_COMMS_AUX_IPV6_FLOW:
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask;
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case ICE_RXDID_COMMS_AUX_TCP:
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_tcp_mask;
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case ICE_RXDID_COMMS_AUX_IP_OFFSET:
rxq->xtr_ol_flag = rte_net_ice_dynflag_proto_xtr_ip_offset_mask;
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_aux_v2;
break;
case ICE_RXDID_COMMS_GENERIC:
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_generic;
break;
case ICE_RXDID_COMMS_OVS:
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
break;
default:
/* update this according to the RXDID for PROTO_XTR_NONE */
rxq->rxd_to_pkt_fields = ice_rxd_to_pkt_fields_by_comms_ovs;
break;
}
if (!rte_net_ice_dynf_proto_xtr_metadata_avail())
rxq->xtr_ol_flag = 0;
}
static enum ice_status
ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
{
struct ice_vsi *vsi = rxq->vsi;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
struct rte_eth_dev_data *dev_data = rxq->vsi->adapter->pf.dev_data;
struct ice_rlan_ctx rx_ctx;
enum ice_status err;
uint16_t buf_size;
uint32_t rxdid = ICE_RXDID_COMMS_OVS;
uint32_t regval;
struct ice_adapter *ad = rxq->vsi->adapter;
uint32_t frame_size = dev_data->mtu + ICE_ETH_OVERHEAD;
/* Set buffer size as the head split is disabled. */
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
rxq->max_pkt_len =
RTE_MIN((uint32_t)ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len,
frame_size);
if (rxq->max_pkt_len <= RTE_ETHER_MIN_LEN ||
rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must "
"be larger than %u and smaller than %u",
(uint32_t)RTE_ETHER_MIN_LEN,
(uint32_t)ICE_FRAME_SIZE_MAX);
return -EINVAL;
}
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
/* Register mbuf field and flag for Rx timestamp */
err = rte_mbuf_dyn_rx_timestamp_register(
&ice_timestamp_dynfield_offset,
&ice_timestamp_dynflag);
if (err) {
PMD_DRV_LOG(ERR,
"Cannot register mbuf field/flag for timestamp");
return -EINVAL;
}
}
memset(&rx_ctx, 0, sizeof(rx_ctx));
rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
rx_ctx.qlen = rxq->nb_rx_desc;
rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
rx_ctx.dtype = 0; /* No Header Split mode */
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
rx_ctx.dsize = 1; /* 32B descriptors */
#endif
rx_ctx.rxmax = rxq->max_pkt_len;
/* TPH: Transaction Layer Packet (TLP) processing hints */
rx_ctx.tphrdesc_ena = 1;
rx_ctx.tphwdesc_ena = 1;
rx_ctx.tphdata_ena = 1;
rx_ctx.tphhead_ena = 1;
/* Low Receive Queue Threshold defined in 64 descriptors units.
* When the number of free descriptors goes below the lrxqthresh,
* an immediate interrupt is triggered.
*/
rx_ctx.lrxqthresh = 2;
/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
rx_ctx.l2tsel = 1;
rx_ctx.showiv = 0;
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
rxdid = ice_proto_xtr_type_to_rxdid(rxq->proto_xtr);
PMD_DRV_LOG(DEBUG, "Port (%u) - Rx queue (%u) is set with RXDID : %u",
rxq->port_id, rxq->queue_id, rxdid);
if (!(pf->supported_rxdid & BIT(rxdid))) {
PMD_DRV_LOG(ERR, "currently package doesn't support RXDID (%u)",
rxdid);
return -EINVAL;
}
ice_select_rxd_to_pkt_fields_handler(rxq, rxdid);
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile ID;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
if (ad->ptp_ena || rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP)
regval |= QRXFLXP_CNTXT_TS_M;
ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
if (err) {
PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
rxq->queue_id);
return -EINVAL;
}
err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
if (err) {
PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
rxq->queue_id);
return -EINVAL;
}
/* Check if scattered RX needs to be used. */
if (frame_size > buf_size)
dev_data->scattered_rx = 1;
rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
/* Init the Rx tail register*/
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
return 0;
}
/* Allocate mbufs for all descriptors in rx queue */
static int
ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
{
struct ice_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union ice_rx_flex_desc *rxd;
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = 0;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif
rxe[i].mbuf = mbuf;
}
return 0;
}
/* Free all mbufs for descriptors in rx queue */
static void
_ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
{
uint16_t i;
if (!rxq || !rxq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
return;
}
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
if (rxq->rx_nb_avail == 0)
return;
for (i = 0; i < rxq->rx_nb_avail; i++)
rte_pktmbuf_free_seg(rxq->rx_stage[rxq->rx_next_avail + i]);
rxq->rx_nb_avail = 0;
}
/* turn on or off rx queue
* @q_idx: queue index in pf scope
* @on: turn on or off the queue
*/
static int
ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
{
uint32_t reg;
uint16_t j;
/* QRX_CTRL = QRX_ENA */
reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
if (on) {
if (reg & QRX_CTRL_QENA_STAT_M)
return 0; /* Already on, skip */
reg |= QRX_CTRL_QENA_REQ_M;
} else {
if (!(reg & QRX_CTRL_QENA_STAT_M))
return 0; /* Already off, skip */
reg &= ~QRX_CTRL_QENA_REQ_M;
}
/* Write the register */
ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
/* Check the result. It is said that QENA_STAT
* follows the QENA_REQ not more than 10 use.
* TODO: need to change the wait counter later
*/
for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
if (on) {
if ((reg & QRX_CTRL_QENA_REQ_M) &&
(reg & QRX_CTRL_QENA_STAT_M))
break;
} else {
if (!(reg & QRX_CTRL_QENA_REQ_M) &&
!(reg & QRX_CTRL_QENA_STAT_M))
break;
}
}
/* Check if it is timeout */
if (j >= ICE_CHK_Q_ENA_COUNT) {
PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
(on ? "enable" : "disable"), q_idx);
return -ETIMEDOUT;
}
return 0;
}
static inline int
ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
{
int ret = 0;
if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"ICE_RX_MAX_BURST=%d",
rxq->rx_free_thresh, ICE_RX_MAX_BURST);
ret = -EINVAL;
} else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->rx_free_thresh=%d, "
"rxq->nb_rx_desc=%d",
rxq->rx_free_thresh, rxq->nb_rx_desc);
ret = -EINVAL;
} else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
"rxq->nb_rx_desc=%d, "
"rxq->rx_free_thresh=%d",
rxq->nb_rx_desc, rxq->rx_free_thresh);
ret = -EINVAL;
}
return ret;
}
/* reset fields in ice_rx_queue back to default */
static void
ice_reset_rx_queue(struct ice_rx_queue *rxq)
{
unsigned int i;
uint16_t len;
if (!rxq) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
return;
}
len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
for (i = 0; i < len * sizeof(union ice_rx_flex_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < ICE_RX_MAX_BURST; ++i)
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
rxq->rxrearm_start = 0;
rxq->rxrearm_nb = 0;
}
int
ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_rx_queue *rxq;
int err;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (rx_queue_id >= dev->data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
rx_queue_id, dev->data->nb_rx_queues);
return -EINVAL;
}
rxq = dev->data->rx_queues[rx_queue_id];
if (!rxq || !rxq->q_set) {
PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
rx_queue_id);
return -EINVAL;
}
err = ice_program_hw_rx_queue(rxq);
if (err) {
PMD_DRV_LOG(ERR, "fail to program RX queue %u",
rx_queue_id);
return -EIO;
}
err = ice_alloc_rx_queue_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return -ENOMEM;
}
/* Init the RX tail register. */
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
rxq->rx_rel_mbufs(rxq);
ice_reset_rx_queue(rxq);
return -EINVAL;
}
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
int
ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_rx_queue *rxq;
int err;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return -EINVAL;
}
rxq->rx_rel_mbufs(rxq);
ice_reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] =
RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
int
ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_tx_queue *txq;
int err;
struct ice_vsi *vsi;
struct ice_hw *hw;
struct ice_aqc_add_tx_qgrp *txq_elem;
struct ice_tlan_ctx tx_ctx;
int buf_len;
PMD_INIT_FUNC_TRACE();
if (tx_queue_id >= dev->data->nb_tx_queues) {
PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
tx_queue_id, dev->data->nb_tx_queues);
return -EINVAL;
}
txq = dev->data->tx_queues[tx_queue_id];
if (!txq || !txq->q_set) {
PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
tx_queue_id);
return -EINVAL;
}
buf_len = ice_struct_size(txq_elem, txqs, 1);
txq_elem = ice_malloc(hw, buf_len);
if (!txq_elem)
return -ENOMEM;
vsi = txq->vsi;
hw = ICE_VSI_TO_HW(vsi);
memset(&tx_ctx, 0, sizeof(tx_ctx));
txq_elem->num_txqs = 1;
txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
tx_ctx.qlen = txq->nb_tx_desc;
tx_ctx.pf_num = hw->pf_id;
tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
tx_ctx.src_vsi = vsi->vsi_id;
tx_ctx.port_num = hw->port_info->lport;
tx_ctx.tso_ena = 1; /* tso enable */
tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
tx_ctx.tsyn_ena = 1;
ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
ice_tlan_ctx_info);
txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
/* Init the Tx tail register*/
ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
/* Fix me, we assume TC always 0 here */
err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
txq_elem, buf_len, NULL);
if (err) {
PMD_DRV_LOG(ERR, "Failed to add lan txq");
rte_free(txq_elem);
return -EIO;
}
/* store the schedule node id */
txq->q_teid = txq_elem->txqs[0].q_teid;
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
rte_free(txq_elem);
return 0;
}
static enum ice_status
ice_fdir_program_hw_rx_queue(struct ice_rx_queue *rxq)
{
struct ice_vsi *vsi = rxq->vsi;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint32_t rxdid = ICE_RXDID_LEGACY_1;
struct ice_rlan_ctx rx_ctx;
enum ice_status err;
uint32_t regval;
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = 1024;
memset(&rx_ctx, 0, sizeof(rx_ctx));
rx_ctx.base = rxq->rx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
rx_ctx.qlen = rxq->nb_rx_desc;
rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
rx_ctx.dtype = 0; /* No Header Split mode */
rx_ctx.dsize = 1; /* 32B descriptors */
rx_ctx.rxmax = ICE_ETH_MAX_LEN;
/* TPH: Transaction Layer Packet (TLP) processing hints */
rx_ctx.tphrdesc_ena = 1;
rx_ctx.tphwdesc_ena = 1;
rx_ctx.tphdata_ena = 1;
rx_ctx.tphhead_ena = 1;
/* Low Receive Queue Threshold defined in 64 descriptors units.
* When the number of free descriptors goes below the lrxqthresh,
* an immediate interrupt is triggered.
*/
rx_ctx.lrxqthresh = 2;
/*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
rx_ctx.l2tsel = 1;
rx_ctx.showiv = 0;
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile ID;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
if (err) {
PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
rxq->queue_id);
return -EINVAL;
}
err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
if (err) {
PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
rxq->queue_id);
return -EINVAL;
}
rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
/* Init the Rx tail register*/
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
return 0;
}
int
ice_fdir_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_rx_queue *rxq;
int err;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
rxq = pf->fdir.rxq;
if (!rxq || !rxq->q_set) {
PMD_DRV_LOG(ERR, "FDIR RX queue %u not available or setup",
rx_queue_id);
return -EINVAL;
}
err = ice_fdir_program_hw_rx_queue(rxq);
if (err) {
PMD_DRV_LOG(ERR, "fail to program FDIR RX queue %u",
rx_queue_id);
return -EIO;
}
/* Init the RX tail register. */
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
err = ice_switch_rx_queue(hw, rxq->reg_idx, true);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u on",
rx_queue_id);
ice_reset_rx_queue(rxq);
return -EINVAL;
}
return 0;
}
int
ice_fdir_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_tx_queue *txq;
int err;
struct ice_vsi *vsi;
struct ice_hw *hw;
struct ice_aqc_add_tx_qgrp *txq_elem;
struct ice_tlan_ctx tx_ctx;
int buf_len;
PMD_INIT_FUNC_TRACE();
txq = pf->fdir.txq;
if (!txq || !txq->q_set) {
PMD_DRV_LOG(ERR, "FDIR TX queue %u is not available or setup",
tx_queue_id);
return -EINVAL;
}
buf_len = ice_struct_size(txq_elem, txqs, 1);
txq_elem = ice_malloc(hw, buf_len);
if (!txq_elem)
return -ENOMEM;
vsi = txq->vsi;
hw = ICE_VSI_TO_HW(vsi);
memset(&tx_ctx, 0, sizeof(tx_ctx));
txq_elem->num_txqs = 1;
txq_elem->txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
tx_ctx.base = txq->tx_ring_dma / ICE_QUEUE_BASE_ADDR_UNIT;
tx_ctx.qlen = txq->nb_tx_desc;
tx_ctx.pf_num = hw->pf_id;
tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
tx_ctx.src_vsi = vsi->vsi_id;
tx_ctx.port_num = hw->port_info->lport;
tx_ctx.tso_ena = 1; /* tso enable */
tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
ice_set_ctx(hw, (uint8_t *)&tx_ctx, txq_elem->txqs[0].txq_ctx,
ice_tlan_ctx_info);
txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
/* Init the Tx tail register*/
ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
/* Fix me, we assume TC always 0 here */
err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
txq_elem, buf_len, NULL);
if (err) {
PMD_DRV_LOG(ERR, "Failed to add FDIR txq");
rte_free(txq_elem);
return -EIO;
}
/* store the schedule node id */
txq->q_teid = txq_elem->txqs[0].q_teid;
rte_free(txq_elem);
return 0;
}
/* Free all mbufs for descriptors in tx queue */
static void
_ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
{
uint16_t i;
if (!txq || !txq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
return;
}
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
static void
ice_reset_tx_queue(struct ice_tx_queue *txq)
{
struct ice_tx_entry *txe;
uint16_t i, prev, size;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
return;
}
txe = txq->sw_ring;
size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
txd->cmd_type_offset_bsz =
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
txq->nb_tx_used = 0;
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
}
int
ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_tx_queue *txq;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
enum ice_status status;
uint16_t q_ids[1];
uint32_t q_teids[1];
uint16_t q_handle = tx_queue_id;
if (tx_queue_id >= dev->data->nb_tx_queues) {
PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
tx_queue_id, dev->data->nb_tx_queues);
return -EINVAL;
}
txq = dev->data->tx_queues[tx_queue_id];
if (!txq) {
PMD_DRV_LOG(ERR, "TX queue %u is not available",
tx_queue_id);
return -EINVAL;
}
q_ids[0] = txq->reg_idx;
q_teids[0] = txq->q_teid;
/* Fix me, we assume TC always 0 here */
status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
q_ids, q_teids, ICE_NO_RESET, 0, NULL);
if (status != ICE_SUCCESS) {
PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
return -EINVAL;
}
txq->tx_rel_mbufs(txq);
ice_reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
int
ice_fdir_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct ice_rx_queue *rxq;
int err;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
rxq = pf->fdir.rxq;
err = ice_switch_rx_queue(hw, rxq->reg_idx, false);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch FDIR RX queue %u off",
rx_queue_id);
return -EINVAL;
}
rxq->rx_rel_mbufs(rxq);
return 0;
}
int
ice_fdir_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct ice_tx_queue *txq;
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
enum ice_status status;
uint16_t q_ids[1];
uint32_t q_teids[1];
uint16_t q_handle = tx_queue_id;
txq = pf->fdir.txq;
if (!txq) {
PMD_DRV_LOG(ERR, "TX queue %u is not available",
tx_queue_id);
return -EINVAL;
}
vsi = txq->vsi;
q_ids[0] = txq->reg_idx;
q_teids[0] = txq->q_teid;
/* Fix me, we assume TC always 0 here */
status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
q_ids, q_teids, ICE_NO_RESET, 0, NULL);
if (status != ICE_SUCCESS) {
PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
return -EINVAL;
}
txq->tx_rel_mbufs(txq);
return 0;
}
int
ice_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct ice_rx_queue *rxq;
const struct rte_memzone *rz;
uint32_t ring_size;
uint16_t len;
int use_def_burst_func = 1;
uint64_t offloads;
if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
nb_desc > ICE_MAX_RING_DESC ||
nb_desc < ICE_MIN_RING_DESC) {
PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx]) {
ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocate the rx queue data structure */
rxq = rte_zmalloc_socket(NULL,
sizeof(struct ice_rx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
"rx queue data structure");
return -ENOMEM;
}
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->offloads = offloads;
rxq->reg_idx = vsi->base_queue + queue_idx;
rxq->port_id = dev->data->port_id;
if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC)
rxq->crc_len = RTE_ETHER_CRC_LEN;
else
rxq->crc_len = 0;
rxq->drop_en = rx_conf->rx_drop_en;
rxq->vsi = vsi;
rxq->rx_deferred_start = rx_conf->rx_deferred_start;
rxq->proto_xtr = pf->proto_xtr != NULL ?
pf->proto_xtr[queue_idx] : PROTO_XTR_NONE;
/* Allocate the maximun number of RX ring hardware descriptor. */
len = ICE_MAX_RING_DESC;
/**
* Allocating a little more memory because vectorized/bulk_alloc Rx
* functions doesn't check boundaries each time.
*/
len += ICE_RX_MAX_BURST;
/* Allocate the maximum number of RX ring hardware descriptor. */
ring_size = sizeof(union ice_rx_flex_desc) * len;
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
ring_size, ICE_RING_BASE_ALIGN,
socket_id);
if (!rz) {
ice_rx_queue_release(rxq);
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
return -ENOMEM;
}
rxq->mz = rz;
/* Zero all the descriptors in the ring. */
memset(rz->addr, 0, ring_size);
rxq->rx_ring_dma = rz->iova;
rxq->rx_ring = rz->addr;
/* always reserve more for bulk alloc */
len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
/* Allocate the software ring. */
rxq->sw_ring = rte_zmalloc_socket(NULL,
sizeof(struct ice_rx_entry) * len,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!rxq->sw_ring) {
ice_rx_queue_release(rxq);
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
return -ENOMEM;
}
ice_reset_rx_queue(rxq);
rxq->q_set = true;
dev->data->rx_queues[queue_idx] = rxq;
rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
if (!use_def_burst_func) {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function will be "
"used on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"not satisfied, Scattered Rx is requested. "
"on port=%d, queue=%d.",
rxq->port_id, rxq->queue_id);
ad->rx_bulk_alloc_allowed = false;
}
return 0;
}
void
ice_rx_queue_release(void *rxq)
{
struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
if (!q) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
return;
}
q->rx_rel_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
int
ice_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_vsi *vsi = pf->main_vsi;
struct ice_tx_queue *txq;
const struct rte_memzone *tz;
uint32_t ring_size;
uint16_t tx_rs_thresh, tx_free_thresh;
uint64_t offloads;
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
nb_desc > ICE_MAX_RING_DESC ||
nb_desc < ICE_MIN_RING_DESC) {
PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
"invalid", nb_desc);
return -EINVAL;
}
/**
* The following two parameters control the setting of the RS bit on
* transmit descriptors. TX descriptors will have their RS bit set
* after txq->tx_rs_thresh descriptors have been used. The TX
* descriptor ring will be cleaned after txq->tx_free_thresh
* descriptors are used or if the number of descriptors required to
* transmit a packet is greater than the number of free TX descriptors.
*
* The following constraints must be satisfied:
* - tx_rs_thresh must be greater than 0.
* - tx_rs_thresh must be less than the size of the ring minus 2.
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
* - tx_rs_thresh must be a divisor of the ring size.
* - tx_free_thresh must be greater than 0.
* - tx_free_thresh must be less than the size of the ring minus 3.
* - tx_free_thresh + tx_rs_thresh must not exceed nb_desc.
*
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
* race condition, hence the maximum threshold constraints. When set
* to zero use default values.
*/
tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
tx_conf->tx_free_thresh :
ICE_DEFAULT_TX_FREE_THRESH);
/* force tx_rs_thresh to adapt an aggresive tx_free_thresh */
tx_rs_thresh =
(ICE_DEFAULT_TX_RSBIT_THRESH + tx_free_thresh > nb_desc) ?
nb_desc - tx_free_thresh : ICE_DEFAULT_TX_RSBIT_THRESH;
if (tx_conf->tx_rs_thresh)
tx_rs_thresh = tx_conf->tx_rs_thresh;
if (tx_rs_thresh + tx_free_thresh > nb_desc) {
PMD_INIT_LOG(ERR, "tx_rs_thresh + tx_free_thresh must not "
"exceed nb_desc. (tx_rs_thresh=%u "
"tx_free_thresh=%u nb_desc=%u port = %d queue=%d)",
(unsigned int)tx_rs_thresh,
(unsigned int)tx_free_thresh,
(unsigned int)nb_desc,
(int)dev->data->port_id,
(int)queue_idx);
return -EINVAL;
}
if (tx_rs_thresh >= (nb_desc - 2)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
"number of TX descriptors minus 2. "
"(tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -EINVAL;
}
if (tx_free_thresh >= (nb_desc - 3)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
"tx_free_thresh must be less than the "
"number of TX descriptors minus 3. "
"(tx_free_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -EINVAL;
}
if (tx_rs_thresh > tx_free_thresh) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
"equal to tx_free_thresh. (tx_free_thresh=%u"
" tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_free_thresh,
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -EINVAL;
}
if ((nb_desc % tx_rs_thresh) != 0) {
PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
"number of TX descriptors. (tx_rs_thresh=%u"
" port=%d queue=%d)",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -EINVAL;
}
if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
"tx_rs_thresh is greater than 1. "
"(tx_rs_thresh=%u port=%d queue=%d)",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return -EINVAL;
}
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx]) {
ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket(NULL,
sizeof(struct ice_tx_queue),
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq) {
PMD_INIT_LOG(ERR, "Failed to allocate memory for "
"tx queue structure");
return -ENOMEM;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
ring_size, ICE_RING_BASE_ALIGN,
socket_id);
if (!tz) {
ice_tx_queue_release(txq);
PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
return -ENOMEM;
}
txq->mz = tz;
txq->nb_tx_desc = nb_desc;
txq->tx_rs_thresh = tx_rs_thresh;
txq->tx_free_thresh = tx_free_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = vsi->base_queue + queue_idx;
txq->port_id = dev->data->port_id;
txq->offloads = offloads;
txq->vsi = vsi;
txq->tx_deferred_start = tx_conf->tx_deferred_start;
txq->tx_ring_dma = tz->iova;
txq->tx_ring = tz->addr;
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket(NULL,
sizeof(struct ice_tx_entry) * nb_desc,
RTE_CACHE_LINE_SIZE,
socket_id);
if (!txq->sw_ring) {
ice_tx_queue_release(txq);
PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
return -ENOMEM;
}
ice_reset_tx_queue(txq);
txq->q_set = true;
dev->data->tx_queues[queue_idx] = txq;
txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
ice_set_tx_function_flag(dev, txq);
return 0;
}
void
ice_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
ice_rx_queue_release(dev->data->rx_queues[qid]);
}
void
ice_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
{
ice_tx_queue_release(dev->data->tx_queues[qid]);
}
void
ice_tx_queue_release(void *txq)
{
struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
if (!q) {
PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
return;
}
q->tx_rel_mbufs(q);
rte_free(q->sw_ring);
rte_memzone_free(q->mz);
rte_free(q);
}
void
ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct ice_rx_queue *rxq;
rxq = dev->data->rx_queues[queue_id];
qinfo->mp = rxq->mp;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = rxq->nb_rx_desc;
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
qinfo->conf.rx_drop_en = rxq->drop_en;
qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
}
void
ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo)
{
struct ice_tx_queue *txq;
txq = dev->data->tx_queues[queue_id];
qinfo->nb_desc = txq->nb_tx_desc;
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
qinfo->conf.offloads = txq->offloads;
qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
}
uint32_t
ice_rx_queue_count(void *rx_queue)
{
#define ICE_RXQ_SCAN_INTERVAL 4
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_queue *rxq;
uint16_t desc = 0;
rxq = rx_queue;
rxdp = &rxq->rx_ring[rxq->rx_tail];
while ((desc < rxq->nb_rx_desc) &&
rte_le_to_cpu_16(rxdp->wb.status_error0) &
(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
/**
* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
* too much.
*/
desc += ICE_RXQ_SCAN_INTERVAL;
rxdp += ICE_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
#define ICE_RX_FLEX_ERR0_BITS \
((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
/* Rx L3/L4 checksum */
static inline uint64_t
ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
{
uint64_t flags = 0;
/* check if HW has decoded the packet and checksum */
if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
return 0;
if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
flags |= (RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
flags |= RTE_MBUF_F_RX_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_L4_CKSUM_GOOD;
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
else
flags |= RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD;
return flags;
}
static inline void
ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
{
if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
(1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
mb->ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
mb->vlan_tci =
rte_le_to_cpu_16(rxdp->wb.l2tag1);
PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
rte_le_to_cpu_16(rxdp->wb.l2tag1));
} else {
mb->vlan_tci = 0;
}
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
(1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
mb->ol_flags |= RTE_MBUF_F_RX_QINQ_STRIPPED | RTE_MBUF_F_RX_QINQ |
RTE_MBUF_F_RX_VLAN_STRIPPED | RTE_MBUF_F_RX_VLAN;
mb->vlan_tci_outer = mb->vlan_tci;
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
} else {
mb->vlan_tci_outer = 0;
}
#endif
PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
mb->vlan_tci, mb->vlan_tci_outer);
}
#define ICE_LOOK_AHEAD 8
#if (ICE_LOOK_AHEAD != 8)
#error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
#endif
static inline int
ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
{
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t stat_err0;
uint16_t pkt_len;
int32_t s[ICE_LOOK_AHEAD], nb_dd;
int32_t i, j, nb_rx = 0;
uint64_t pkt_flags = 0;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
struct ice_vsi *vsi = rxq->vsi;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint64_t ts_ns;
struct ice_adapter *ad = rxq->vsi->adapter;
#endif
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Make sure there is at least 1 packet to receive */
if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/**
* Scan LOOK_AHEAD descriptors at a time to determine which
* descriptors reference packets that are ready to be received.
*/
for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
rte_smp_rmb();
/* Compute how many status bits were set */
for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
mb = rxep[j].mbuf;
pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->ol_flags = 0;
stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
ice_rxd_to_vlan_tci(mb, &rxdp[j]);
rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
ts_ns = ice_tstamp_convert_32b_64b(hw,
rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high));
if (ice_timestamp_dynflag > 0) {
*RTE_MBUF_DYNFIELD(mb,
ice_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
mb->ol_flags |= ice_timestamp_dynflag;
}
}
if (ad->ptp_ena && ((mb->packet_type &
RTE_PTYPE_L2_MASK) == RTE_PTYPE_L2_ETHER_TIMESYNC)) {
rxq->time_high =
rte_le_to_cpu_32(rxdp[j].wb.flex_ts.ts_high);
mb->timesync = rxq->queue_id;
pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
}
#endif
mb->ol_flags |= pkt_flags;
}
for (j = 0; j < ICE_LOOK_AHEAD; j++)
rxq->rx_stage[i + j] = rxep[j].mbuf;
if (nb_dd != ICE_LOOK_AHEAD)
break;
}
/* Clear software ring entries */
for (i = 0; i < nb_rx; i++)
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
"port_id=%u, queue_id=%u, nb_rx=%d",
rxq->port_id, rxq->queue_id, nb_rx);
return nb_rx;
}
static inline uint16_t
ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t i;
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
for (i = 0; i < nb_pkts; i++)
rx_pkts[i] = stage[i];
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline int
ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
{
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx, i;
uint64_t dma_addr;
int diag;
/* Allocate buffers in bulk */
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
(rxq->rx_free_thresh - 1));
rxep = &rxq->sw_ring[alloc_idx];
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0)) {
PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
return -ENOMEM;
}
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; i++) {
if (likely(i < (rxq->rx_free_thresh - 1)))
/* Prefetch next mbuf */
rte_prefetch0(rxep[i + 1].mbuf);
mb = rxep[i].mbuf;
rte_mbuf_refcnt_set(mb, 1);
mb->next = NULL;
mb->data_off = RTE_PKTMBUF_HEADROOM;
mb->nb_segs = 1;
mb->port = rxq->port_id;
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
rxdp[i].read.hdr_addr = 0;
rxdp[i].read.pkt_addr = dma_addr;
}
/* Update rx tail regsiter */
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
rxq->rx_free_trigger =
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
return 0;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
uint16_t nb_rx = 0;
if (!nb_pkts)
return 0;
if (rxq->rx_nb_avail)
return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
if (rxq->rx_tail > rxq->rx_free_trigger) {
if (ice_rx_alloc_bufs(rxq) != 0) {
uint16_t i, j;
rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed +=
rxq->rx_free_thresh;
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
"port_id=%u, queue_id=%u",
rxq->port_id, rxq->queue_id);
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
return 0;
}
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
if (rxq->rx_nb_avail)
return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
static uint16_t
ice_recv_pkts_bulk_alloc(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx = 0;
uint16_t n;
uint16_t count;
if (unlikely(nb_pkts == 0))
return nb_rx;
if (likely(nb_pkts <= ICE_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
while (nb_pkts) {
n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + count);
nb_pkts = (uint16_t)(nb_pkts - count);
if (count < n)
break;
}
return nb_rx;
}
static uint16_t
ice_recv_scattered_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = rx_queue;
volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
volatile union ice_rx_flex_desc *rxdp;
union ice_rx_flex_desc rxd;
struct ice_rx_entry *sw_ring = rxq->sw_ring;
struct ice_rx_entry *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
struct rte_mbuf *nmb; /* new allocated mbuf */
struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
uint16_t rx_packet_len;
uint16_t rx_stat_err0;
uint64_t dma_addr;
uint64_t pkt_flags;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
struct ice_vsi *vsi = rxq->vsi;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint64_t ts_ns;
struct ice_adapter *ad = rxq->vsi->adapter;
#endif
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Check the DD bit first */
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
break;
/* allocate mbuf */
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp; /* copy descriptor in ring to temp variable*/
nb_hold++;
rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(sw_ring[rx_id].mbuf);
/**
* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/**
* If this is the first buffer of the received packet, set the
* pointer to the first mbuf of the packet and initialize its
* context. Otherwise, update the total length and the number
* of segments of the current scattered packet, and update the
* pointer to the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = rxm;
first_seg->nb_segs = 1;
first_seg->pkt_len = rx_packet_len;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rx_packet_len);
first_seg->nb_segs++;
last_seg->next = rxm;
}
/**
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
last_seg = rxm;
continue;
}
/**
* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
if (rx_packet_len <= RTE_ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len =
(uint16_t)(last_seg->data_len -
(RTE_ETHER_CRC_LEN - rx_packet_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(rx_packet_len -
RTE_ETHER_CRC_LEN);
}
first_seg->port = rxq->port_id;
first_seg->ol_flags = 0;
first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
ice_rxd_to_vlan_tci(first_seg, &rxd);
rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
ts_ns = ice_tstamp_convert_32b_64b(hw,
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
if (ice_timestamp_dynflag > 0) {
*RTE_MBUF_DYNFIELD(first_seg,
ice_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
first_seg->ol_flags |= ice_timestamp_dynflag;
}
}
if (ad->ptp_ena && ((first_seg->packet_type & RTE_PTYPE_L2_MASK)
== RTE_PTYPE_L2_ETHER_TIMESYNC)) {
rxq->time_high =
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
first_seg->timesync = rxq->queue_id;
pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
}
#endif
first_seg->ol_flags |= pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
first_seg->data_off));
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
}
/* Record index of the next RX descriptor to probe. */
rxq->rx_tail = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/**
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register. Update the RDT with the value of the last processed RX
* descriptor minus 1, to guarantee that the RDT register is never
* equal to the RDH register, which creates a "full" ring situtation
* from the hardware point of view.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
rx_id = (uint16_t)(rx_id == 0 ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
/* write TAIL register */
ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
/* return received packet in the burst */
return nb_rx;
}
const uint32_t *
ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
const uint32_t *ptypes;
static const uint32_t ptypes_os[] = {
/* refers to ice_get_default_pkt_type() */
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_LLDP,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_GRENAT,
RTE_PTYPE_TUNNEL_IP,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_INNER_L4_ICMP,
RTE_PTYPE_INNER_L4_NONFRAG,
RTE_PTYPE_INNER_L4_SCTP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_UNKNOWN
};
static const uint32_t ptypes_comms[] = {
/* refers to ice_get_default_pkt_type() */
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_LLDP,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_ICMP,
RTE_PTYPE_L4_NONFRAG,
RTE_PTYPE_L4_SCTP,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_GRENAT,
RTE_PTYPE_TUNNEL_IP,
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_INNER_L4_ICMP,
RTE_PTYPE_INNER_L4_NONFRAG,
RTE_PTYPE_INNER_L4_SCTP,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_TUNNEL_GTPC,
RTE_PTYPE_TUNNEL_GTPU,
RTE_PTYPE_L2_ETHER_PPPOE,
RTE_PTYPE_UNKNOWN
};
if (ad->active_pkg_type == ICE_PKG_TYPE_COMMS)
ptypes = ptypes_comms;
else
ptypes = ptypes_os;
if (dev->rx_pkt_burst == ice_recv_pkts ||
dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
dev->rx_pkt_burst == ice_recv_scattered_pkts)
return ptypes;
#ifdef RTE_ARCH_X86
if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
#ifdef CC_AVX512_SUPPORT
dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
dev->rx_pkt_burst == ice_recv_pkts_vec_avx512_offload ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512_offload ||
#endif
dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
dev->rx_pkt_burst == ice_recv_pkts_vec_avx2_offload ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2 ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2_offload)
return ptypes;
#endif
return NULL;
}
int
ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_queue *rxq = rx_queue;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
return -EINVAL;
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
return RTE_ETH_RX_DESC_UNAVAIL;
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &rxq->rx_ring[desc];
if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
int
ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct ice_tx_queue *txq = tx_queue;
volatile uint64_t *status;
uint64_t mask, expect;
uint32_t desc;
if (unlikely(offset >= txq->nb_tx_desc))
return -EINVAL;
desc = txq->tx_tail + offset;
/* go to next desc that has the RS bit */
desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
txq->tx_rs_thresh;
if (desc >= txq->nb_tx_desc) {
desc -= txq->nb_tx_desc;
if (desc >= txq->nb_tx_desc)
desc -= txq->nb_tx_desc;
}
status = &txq->tx_ring[desc].cmd_type_offset_bsz;
mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
ICE_TXD_QW1_DTYPE_S);
if ((*status & mask) == expect)
return RTE_ETH_TX_DESC_DONE;
return RTE_ETH_TX_DESC_FULL;
}
void
ice_free_queues(struct rte_eth_dev *dev)
{
uint16_t i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!dev->data->rx_queues[i])
continue;
ice_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (!dev->data->tx_queues[i])
continue;
ice_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
}
#define ICE_FDIR_NUM_TX_DESC ICE_MIN_RING_DESC
#define ICE_FDIR_NUM_RX_DESC ICE_MIN_RING_DESC
int
ice_fdir_setup_tx_resources(struct ice_pf *pf)
{
struct ice_tx_queue *txq;
const struct rte_memzone *tz = NULL;
uint32_t ring_size;
struct rte_eth_dev *dev;
if (!pf) {
PMD_DRV_LOG(ERR, "PF is not available");
return -EINVAL;
}
dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("ice fdir tx queue",
sizeof(struct ice_tx_queue),
RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY);
if (!txq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"tx queue structure.");
return -ENOMEM;
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct ice_tx_desc) * ICE_FDIR_NUM_TX_DESC;
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
ICE_FDIR_QUEUE_ID, ring_size,
ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
if (!tz) {
ice_tx_queue_release(txq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
return -ENOMEM;
}
txq->mz = tz;
txq->nb_tx_desc = ICE_FDIR_NUM_TX_DESC;
txq->queue_id = ICE_FDIR_QUEUE_ID;
txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
txq->vsi = pf->fdir.fdir_vsi;
txq->tx_ring_dma = tz->iova;
txq->tx_ring = (struct ice_tx_desc *)tz->addr;
/*
* don't need to allocate software ring and reset for the fdir
* program queue just set the queue has been configured.
*/
txq->q_set = true;
pf->fdir.txq = txq;
txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
return ICE_SUCCESS;
}
int
ice_fdir_setup_rx_resources(struct ice_pf *pf)
{
struct ice_rx_queue *rxq;
const struct rte_memzone *rz = NULL;
uint32_t ring_size;
struct rte_eth_dev *dev;
if (!pf) {
PMD_DRV_LOG(ERR, "PF is not available");
return -EINVAL;
}
dev = &rte_eth_devices[pf->adapter->pf.dev_data->port_id];
/* Allocate the RX queue data structure. */
rxq = rte_zmalloc_socket("ice fdir rx queue",
sizeof(struct ice_rx_queue),
RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY);
if (!rxq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"rx queue structure.");
return -ENOMEM;
}
/* Allocate RX hardware ring descriptors. */
ring_size = sizeof(union ice_32byte_rx_desc) * ICE_FDIR_NUM_RX_DESC;
ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
ICE_FDIR_QUEUE_ID, ring_size,
ICE_RING_BASE_ALIGN, SOCKET_ID_ANY);
if (!rz) {
ice_rx_queue_release(rxq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
return -ENOMEM;
}
rxq->mz = rz;
rxq->nb_rx_desc = ICE_FDIR_NUM_RX_DESC;
rxq->queue_id = ICE_FDIR_QUEUE_ID;
rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
rxq->vsi = pf->fdir.fdir_vsi;
rxq->rx_ring_dma = rz->iova;
memset(rz->addr, 0, ICE_FDIR_NUM_RX_DESC *
sizeof(union ice_32byte_rx_desc));
rxq->rx_ring = (union ice_rx_flex_desc *)rz->addr;
/*
* Don't need to allocate software ring and reset for the fdir
* rx queue, just set the queue has been configured.
*/
rxq->q_set = true;
pf->fdir.rxq = rxq;
rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
return ICE_SUCCESS;
}
uint16_t
ice_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = rx_queue;
volatile union ice_rx_flex_desc *rx_ring = rxq->rx_ring;
volatile union ice_rx_flex_desc *rxdp;
union ice_rx_flex_desc rxd;
struct ice_rx_entry *sw_ring = rxq->sw_ring;
struct ice_rx_entry *rxe;
struct rte_mbuf *nmb; /* new allocated mbuf */
struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
uint16_t rx_packet_len;
uint16_t rx_stat_err0;
uint64_t dma_addr;
uint64_t pkt_flags;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
struct ice_vsi *vsi = rxq->vsi;
struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
uint64_t ts_ns;
struct ice_adapter *ad = rxq->vsi->adapter;
#endif
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Check the DD bit first */
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
break;
/* allocate mbuf */
nmb = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(!nmb)) {
rxq->vsi->adapter->pf.dev_data->rx_mbuf_alloc_failed++;
break;
}
rxd = *rxdp; /* copy descriptor in ring to temp variable*/
nb_hold++;
rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
/**
* fill the read format of descriptor with physic address in
* new allocated mbuf: nmb
*/
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
/* calculate rx_packet_len of the received pkt */
rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
/* fill old mbuf with received descriptor: rxd */
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
ice_rxd_to_vlan_tci(rxm, &rxd);
rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (rxq->offloads & RTE_ETH_RX_OFFLOAD_TIMESTAMP) {
ts_ns = ice_tstamp_convert_32b_64b(hw,
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high));
if (ice_timestamp_dynflag > 0) {
*RTE_MBUF_DYNFIELD(rxm,
ice_timestamp_dynfield_offset,
rte_mbuf_timestamp_t *) = ts_ns;
rxm->ol_flags |= ice_timestamp_dynflag;
}
}
if (ad->ptp_ena && ((rxm->packet_type & RTE_PTYPE_L2_MASK) ==
RTE_PTYPE_L2_ETHER_TIMESYNC)) {
rxq->time_high =
rte_le_to_cpu_32(rxd.wb.flex_ts.ts_high);
rxm->timesync = rxq->queue_id;
pkt_flags |= RTE_MBUF_F_RX_IEEE1588_PTP;
}
#endif
rxm->ol_flags |= pkt_flags;
/* copy old mbuf to rx_pkts */
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/**
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the receive tail register of queue.
* Update that register with the value of the last processed RX
* descriptor minus 1.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
rx_id = (uint16_t)(rx_id == 0 ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
/* write TAIL register */
ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
/* return received packet in the burst */
return nb_rx;
}
static inline void
ice_parse_tunneling_params(uint64_t ol_flags,
union ice_tx_offload tx_offload,
uint32_t *cd_tunneling)
{
/* EIPT: External (outer) IP header type */
if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM)
*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4;
else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV4)
*cd_tunneling |= ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
else if (ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)
*cd_tunneling |= ICE_TX_CTX_EIPT_IPV6;
/* EIPLEN: External (outer) IP header length, in DWords */
*cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
ICE_TXD_CTX_QW0_EIPLEN_S;
/* L4TUNT: L4 Tunneling Type */
switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) {
case RTE_MBUF_F_TX_TUNNEL_IPIP:
/* for non UDP / GRE tunneling, set to 00b */
break;
case RTE_MBUF_F_TX_TUNNEL_VXLAN:
case RTE_MBUF_F_TX_TUNNEL_GTP:
case RTE_MBUF_F_TX_TUNNEL_GENEVE:
*cd_tunneling |= ICE_TXD_CTX_UDP_TUNNELING;
break;
case RTE_MBUF_F_TX_TUNNEL_GRE:
*cd_tunneling |= ICE_TXD_CTX_GRE_TUNNELING;
break;
default:
PMD_TX_LOG(ERR, "Tunnel type not supported");
return;
}
/* L4TUNLEN: L4 Tunneling Length, in Words
*
* We depend on app to set rte_mbuf.l2_len correctly.
* For IP in GRE it should be set to the length of the GRE
* header;
* For MAC in GRE or MAC in UDP it should be set to the length
* of the GRE or UDP headers plus the inner MAC up to including
* its last Ethertype.
* If MPLS labels exists, it should include them as well.
*/
*cd_tunneling |= (tx_offload.l2_len >> 1) <<
ICE_TXD_CTX_QW0_NATLEN_S;
/**
* Calculate the tunneling UDP checksum.
* Shall be set only if L4TUNT = 01b and EIPT is not zero
*/
if (!(*cd_tunneling & ICE_TX_CTX_EIPT_NONE) &&
(*cd_tunneling & ICE_TXD_CTX_UDP_TUNNELING))
*cd_tunneling |= ICE_TXD_CTX_QW0_L4T_CS_M;
}
static inline void
ice_txd_enable_checksum(uint64_t ol_flags,
uint32_t *td_cmd,
uint32_t *td_offset,
union ice_tx_offload tx_offload)
{
/* Set MACLEN */
if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
*td_offset |= (tx_offload.outer_l2_len >> 1)
<< ICE_TX_DESC_LEN_MACLEN_S;
else
*td_offset |= (tx_offload.l2_len >> 1)
<< ICE_TX_DESC_LEN_MACLEN_S;
/* Enable L3 checksum offloads */
if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) {
*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
*td_offset |= (tx_offload.l3_len >> 2) <<
ICE_TX_DESC_LEN_IPLEN_S;
} else if (ol_flags & RTE_MBUF_F_TX_IPV4) {
*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
*td_offset |= (tx_offload.l3_len >> 2) <<
ICE_TX_DESC_LEN_IPLEN_S;
} else if (ol_flags & RTE_MBUF_F_TX_IPV6) {
*td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
*td_offset |= (tx_offload.l3_len >> 2) <<
ICE_TX_DESC_LEN_IPLEN_S;
}
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) {
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (tx_offload.l4_len >> 2) <<
ICE_TX_DESC_LEN_L4_LEN_S;
return;
}
/* Enable L4 checksum offloads */
switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
case RTE_MBUF_F_TX_TCP_CKSUM:
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
ICE_TX_DESC_LEN_L4_LEN_S;
break;
case RTE_MBUF_F_TX_SCTP_CKSUM:
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
*td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
ICE_TX_DESC_LEN_L4_LEN_S;
break;
case RTE_MBUF_F_TX_UDP_CKSUM:
*td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
*td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
ICE_TX_DESC_LEN_L4_LEN_S;
break;
default:
break;
}
}
static inline int
ice_xmit_cleanup(struct ice_tx_queue *txq)
{
struct ice_tx_entry *sw_ring = txq->sw_ring;
volatile struct ice_tx_desc *txd = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
/* Determine the last descriptor needing to be cleaned */
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
/* Check to make sure the last descriptor to clean is done */
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
PMD_TX_LOG(DEBUG, "TX descriptor %4u is not done "
"(port=%d queue=%d) value=0x%"PRIx64"\n",
desc_to_clean_to,
txq->port_id, txq->queue_id,
txd[desc_to_clean_to].cmd_type_offset_bsz);
/* Failed to clean any descriptors */
return -1;
}
/* Figure out how many descriptors will be cleaned */
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
/* The last descriptor to clean is done, so that means all the
* descriptors from the last descriptor that was cleaned
* up to the last descriptor with the RS bit set
* are done. Only reset the threshold descriptor.
*/
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
/* Update the txq to reflect the last descriptor that was cleaned */
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
return 0;
}
/* Construct the tx flags */
static inline uint64_t
ice_build_ctob(uint32_t td_cmd,
uint32_t td_offset,
uint16_t size,
uint32_t td_tag)
{
return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
}
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
ice_calc_context_desc(uint64_t flags)
{
static uint64_t mask = RTE_MBUF_F_TX_TCP_SEG |
RTE_MBUF_F_TX_QINQ |
RTE_MBUF_F_TX_OUTER_IP_CKSUM |
RTE_MBUF_F_TX_TUNNEL_MASK |
RTE_MBUF_F_TX_IEEE1588_TMST;
return (flags & mask) ? 1 : 0;
}
/* set ice TSO context descriptor */
static inline uint64_t
ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
{
uint64_t ctx_desc = 0;
uint32_t cd_cmd, hdr_len, cd_tso_len;
if (!tx_offload.l4_len) {
PMD_TX_LOG(DEBUG, "L4 length set to 0");
return ctx_desc;
}
hdr_len = tx_offload.l2_len + tx_offload.l3_len + tx_offload.l4_len;
hdr_len += (mbuf->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) ?
tx_offload.outer_l2_len + tx_offload.outer_l3_len : 0;
cd_cmd = ICE_TX_CTX_DESC_TSO;
cd_tso_len = mbuf->pkt_len - hdr_len;
ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
return ctx_desc;
}
/* HW requires that TX buffer size ranges from 1B up to (16K-1)B. */
#define ICE_MAX_DATA_PER_TXD \
(ICE_TXD_QW1_TX_BUF_SZ_M >> ICE_TXD_QW1_TX_BUF_SZ_S)
/* Calculate the number of TX descriptors needed for each pkt */
static inline uint16_t
ice_calc_pkt_desc(struct rte_mbuf *tx_pkt)
{
struct rte_mbuf *txd = tx_pkt;
uint16_t count = 0;
while (txd != NULL) {
count += DIV_ROUND_UP(txd->data_len, ICE_MAX_DATA_PER_TXD);
txd = txd->next;
}
return count;
}
uint16_t
ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct ice_tx_queue *txq;
volatile struct ice_tx_desc *tx_ring;
volatile struct ice_tx_desc *txd;
struct ice_tx_entry *sw_ring;
struct ice_tx_entry *txe, *txn;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint32_t cd_tunneling_params;
uint16_t tx_id;
uint16_t nb_tx;
uint16_t nb_used;
uint16_t nb_ctx;
uint32_t td_cmd = 0;
uint32_t td_offset = 0;
uint32_t td_tag = 0;
uint16_t tx_last;
uint16_t slen;
uint64_t buf_dma_addr;
uint64_t ol_flags;
union ice_tx_offload tx_offload = {0};
txq = tx_queue;
sw_ring = txq->sw_ring;
tx_ring = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Check if the descriptor ring needs to be cleaned. */
if (txq->nb_tx_free < txq->tx_free_thresh)
(void)ice_xmit_cleanup(txq);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
tx_pkt = *tx_pkts++;
td_cmd = 0;
td_tag = 0;
td_offset = 0;
ol_flags = tx_pkt->ol_flags;
tx_offload.l2_len = tx_pkt->l2_len;
tx_offload.l3_len = tx_pkt->l3_len;
tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
tx_offload.l4_len = tx_pkt->l4_len;
tx_offload.tso_segsz = tx_pkt->tso_segsz;
/* Calculate the number of context descriptors needed. */
nb_ctx = ice_calc_context_desc(ol_flags);
/* The number of descriptors that must be allocated for
* a packet equals to the number of the segments of that
* packet plus the number of context descriptor if needed.
* Recalculate the needed tx descs when TSO enabled in case
* the mbuf data size exceeds max data size that hw allows
* per tx desc.
*/
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
nb_used = (uint16_t)(ice_calc_pkt_desc(tx_pkt) +
nb_ctx);
else
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
tx_last = (uint16_t)(tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
if (nb_used > txq->nb_tx_free) {
if (ice_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
if (unlikely(nb_used > txq->tx_rs_thresh)) {
while (nb_used > txq->nb_tx_free) {
if (ice_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
/* Descriptor based VLAN insertion */
if (ol_flags & (RTE_MBUF_F_TX_VLAN | RTE_MBUF_F_TX_QINQ)) {
td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
td_tag = tx_pkt->vlan_tci;
}
/* Fill in tunneling parameters if necessary */
cd_tunneling_params = 0;
if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK)
ice_parse_tunneling_params(ol_flags, tx_offload,
&cd_tunneling_params);
/* Enable checksum offloading */
if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK)
ice_txd_enable_checksum(ol_flags, &td_cmd,
&td_offset, tx_offload);
if (nb_ctx) {
/* Setup TX context descriptor if required */
volatile struct ice_tx_ctx_desc *ctx_txd =
(volatile struct ice_tx_ctx_desc *)
&tx_ring[tx_id];
uint16_t cd_l2tag2 = 0;
uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
cd_type_cmd_tso_mss |=
ice_set_tso_ctx(tx_pkt, tx_offload);
else if (ol_flags & RTE_MBUF_F_TX_IEEE1588_TMST)
cd_type_cmd_tso_mss |=
((uint64_t)ICE_TX_CTX_DESC_TSYN <<
ICE_TXD_CTX_QW1_CMD_S);
ctx_txd->tunneling_params =
rte_cpu_to_le_32(cd_tunneling_params);
/* TX context descriptor based double VLAN insert */
if (ol_flags & RTE_MBUF_F_TX_QINQ) {
cd_l2tag2 = tx_pkt->vlan_tci_outer;
cd_type_cmd_tso_mss |=
((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
ICE_TXD_CTX_QW1_CMD_S);
}
ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
ctx_txd->qw1 =
rte_cpu_to_le_64(cd_type_cmd_tso_mss);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
m_seg = tx_pkt;
do {
txd = &tx_ring[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/* Setup TX Descriptor */
slen = m_seg->data_len;
buf_dma_addr = rte_mbuf_data_iova(m_seg);
while ((ol_flags & RTE_MBUF_F_TX_TCP_SEG) &&
unlikely(slen > ICE_MAX_DATA_PER_TXD)) {
txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->cmd_type_offset_bsz =
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
((uint64_t)ICE_MAX_DATA_PER_TXD <<
ICE_TXD_QW1_TX_BUF_SZ_S) |
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
buf_dma_addr += ICE_MAX_DATA_PER_TXD;
slen -= ICE_MAX_DATA_PER_TXD;
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
txd = &tx_ring[tx_id];
txn = &sw_ring[txe->next_id];
}
txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->cmd_type_offset_bsz =
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
((uint64_t)slen << ICE_TXD_QW1_TX_BUF_SZ_S) |
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg);
/* fill the last descriptor with End of Packet (EOP) bit */
td_cmd |= ICE_TX_DESC_CMD_EOP;
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
/* set RS bit on the last descriptor of one packet */
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
PMD_TX_LOG(DEBUG,
"Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
td_cmd |= ICE_TX_DESC_CMD_RS;
/* Update txq RS bit counters */
txq->nb_tx_used = 0;
}
txd->cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
ICE_TXD_QW1_CMD_S);
}
end_of_tx:
/* update Tail register */
ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
static __rte_always_inline int
ice_tx_free_bufs(struct ice_tx_queue *txq)
{
struct ice_tx_entry *txep;
uint16_t i;
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
return 0;
txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
for (i = 0; i < txq->tx_rs_thresh; i++)
rte_prefetch0((txep + i)->mbuf);
if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
txep->mbuf = NULL;
}
} else {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_pktmbuf_free_seg(txep->mbuf);
txep->mbuf = NULL;
}
}
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
return txq->tx_rs_thresh;
}
static int
ice_tx_done_cleanup_full(struct ice_tx_queue *txq,
uint32_t free_cnt)
{
struct ice_tx_entry *swr_ring = txq->sw_ring;
uint16_t i, tx_last, tx_id;
uint16_t nb_tx_free_last;
uint16_t nb_tx_to_clean;
uint32_t pkt_cnt;
/* Start free mbuf from the next of tx_tail */
tx_last = txq->tx_tail;
tx_id = swr_ring[tx_last].next_id;
if (txq->nb_tx_free == 0 && ice_xmit_cleanup(txq))
return 0;
nb_tx_to_clean = txq->nb_tx_free;
nb_tx_free_last = txq->nb_tx_free;
if (!free_cnt)
free_cnt = txq->nb_tx_desc;
/* Loop through swr_ring to count the amount of
* freeable mubfs and packets.
*/
for (pkt_cnt = 0; pkt_cnt < free_cnt; ) {
for (i = 0; i < nb_tx_to_clean &&
pkt_cnt < free_cnt &&
tx_id != tx_last; i++) {
if (swr_ring[tx_id].mbuf != NULL) {
rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf);
swr_ring[tx_id].mbuf = NULL;
/*
* last segment in the packet,
* increment packet count
*/
pkt_cnt += (swr_ring[tx_id].last_id == tx_id);
}
tx_id = swr_ring[tx_id].next_id;
}
if (txq->tx_rs_thresh > txq->nb_tx_desc -
txq->nb_tx_free || tx_id == tx_last)
break;
if (pkt_cnt < free_cnt) {
if (ice_xmit_cleanup(txq))
break;
nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last;
nb_tx_free_last = txq->nb_tx_free;
}
}
return (int)pkt_cnt;
}
#ifdef RTE_ARCH_X86
static int
ice_tx_done_cleanup_vec(struct ice_tx_queue *txq __rte_unused,
uint32_t free_cnt __rte_unused)
{
return -ENOTSUP;
}
#endif
static int
ice_tx_done_cleanup_simple(struct ice_tx_queue *txq,
uint32_t free_cnt)
{
int i, n, cnt;
if (free_cnt == 0 || free_cnt > txq->nb_tx_desc)
free_cnt = txq->nb_tx_desc;
cnt = free_cnt - free_cnt % txq->tx_rs_thresh;
for (i = 0; i < cnt; i += n) {
if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_rs_thresh)
break;
n = ice_tx_free_bufs(txq);
if (n == 0)
break;
}
return i;
}
int
ice_tx_done_cleanup(void *txq, uint32_t free_cnt)
{
struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
struct rte_eth_dev *dev = &rte_eth_devices[q->port_id];
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
#ifdef RTE_ARCH_X86
if (ad->tx_vec_allowed)
return ice_tx_done_cleanup_vec(q, free_cnt);
#endif
if (ad->tx_simple_allowed)
return ice_tx_done_cleanup_simple(q, free_cnt);
else
return ice_tx_done_cleanup_full(q, free_cnt);
}
/* Populate 4 descriptors with data from 4 mbufs */
static inline void
tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t dma_addr;
uint32_t i;
for (i = 0; i < 4; i++, txdp++, pkts++) {
dma_addr = rte_mbuf_data_iova(*pkts);
txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
txdp->cmd_type_offset_bsz =
ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
(*pkts)->data_len, 0);
}
}
/* Populate 1 descriptor with data from 1 mbuf */
static inline void
tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t dma_addr;
dma_addr = rte_mbuf_data_iova(*pkts);
txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
txdp->cmd_type_offset_bsz =
ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
(*pkts)->data_len, 0);
}
static inline void
ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
const int N_PER_LOOP = 4;
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
int mainpart, leftover;
int i, j;
/**
* Process most of the packets in chunks of N pkts. Any
* leftover packets will get processed one at a time.
*/
mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
for (i = 0; i < mainpart; i += N_PER_LOOP) {
/* Copy N mbuf pointers to the S/W ring */
for (j = 0; j < N_PER_LOOP; ++j)
(txep + i + j)->mbuf = *(pkts + i + j);
tx4(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; ++i) {
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
tx1(txdp + mainpart + i, pkts + mainpart + i);
}
}
}
static inline uint16_t
tx_xmit_pkts(struct ice_tx_queue *txq,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
volatile struct ice_tx_desc *txr = txq->tx_ring;
uint16_t n = 0;
/**
* Begin scanning the H/W ring for done descriptors when the number
* of available descriptors drops below tx_free_thresh. For each done
* descriptor, free the associated buffer.
*/
if (txq->nb_tx_free < txq->tx_free_thresh)
ice_tx_free_bufs(txq);
/* Use available descriptor only */
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(!nb_pkts))
return 0;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
ice_tx_fill_hw_ring(txq, tx_pkts, n);
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
}
/* Fill hardware descriptor ring with mbuf data */
ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
/* Determin if RS bit needs to be set */
if (txq->tx_tail > txq->tx_next_rs) {
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
if (txq->tx_next_rs >= txq->nb_tx_desc)
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
}
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
/* Update the tx tail register */
ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static uint16_t
ice_xmit_pkts_simple(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
if (likely(nb_pkts <= ICE_TX_MAX_BURST))
return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
tx_pkts, nb_pkts);
while (nb_pkts) {
uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
ICE_TX_MAX_BURST);
ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
&tx_pkts[nb_tx], num);
nb_tx = (uint16_t)(nb_tx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < num)
break;
}
return nb_tx;
}
void __rte_cold
ice_set_rx_function(struct rte_eth_dev *dev)
{
PMD_INIT_FUNC_TRACE();
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
#ifdef RTE_ARCH_X86
struct ice_rx_queue *rxq;
int i;
int rx_check_ret = -1;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
ad->rx_use_avx512 = false;
ad->rx_use_avx2 = false;
rx_check_ret = ice_rx_vec_dev_check(dev);
if (ad->ptp_ena)
rx_check_ret = -1;
if (rx_check_ret >= 0 && ad->rx_bulk_alloc_allowed &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
ad->rx_vec_allowed = true;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (rxq && ice_rxq_vec_setup(rxq)) {
ad->rx_vec_allowed = false;
break;
}
}
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
#ifdef CC_AVX512_SUPPORT
ad->rx_use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
#endif
if (!ad->rx_use_avx512 &&
(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
ad->rx_use_avx2 = true;
} else {
ad->rx_vec_allowed = false;
}
}
if (ad->rx_vec_allowed) {
if (dev->data->scattered_rx) {
if (ad->rx_use_avx512) {
#ifdef CC_AVX512_SUPPORT
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
PMD_DRV_LOG(NOTICE,
"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_scattered_pkts_vec_avx512_offload;
} else {
PMD_DRV_LOG(NOTICE,
"Using AVX512 Vector Scattered Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_scattered_pkts_vec_avx512;
}
#endif
} else if (ad->rx_use_avx2) {
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
PMD_DRV_LOG(NOTICE,
"Using AVX2 OFFLOAD Vector Scattered Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_scattered_pkts_vec_avx2_offload;
} else {
PMD_DRV_LOG(NOTICE,
"Using AVX2 Vector Scattered Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_scattered_pkts_vec_avx2;
}
} else {
PMD_DRV_LOG(DEBUG,
"Using Vector Scattered Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
}
} else {
if (ad->rx_use_avx512) {
#ifdef CC_AVX512_SUPPORT
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
PMD_DRV_LOG(NOTICE,
"Using AVX512 OFFLOAD Vector Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_pkts_vec_avx512_offload;
} else {
PMD_DRV_LOG(NOTICE,
"Using AVX512 Vector Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_pkts_vec_avx512;
}
#endif
} else if (ad->rx_use_avx2) {
if (rx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
PMD_DRV_LOG(NOTICE,
"Using AVX2 OFFLOAD Vector Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_pkts_vec_avx2_offload;
} else {
PMD_DRV_LOG(NOTICE,
"Using AVX2 Vector Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_pkts_vec_avx2;
}
} else {
PMD_DRV_LOG(DEBUG,
"Using Vector Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst = ice_recv_pkts_vec;
}
}
return;
}
#endif
if (dev->data->scattered_rx) {
/* Set the non-LRO scattered function */
PMD_INIT_LOG(DEBUG,
"Using a Scattered function on port %d.",
dev->data->port_id);
dev->rx_pkt_burst = ice_recv_scattered_pkts;
} else if (ad->rx_bulk_alloc_allowed) {
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function "
"will be used on port %d.",
dev->data->port_id);
dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
} else {
PMD_INIT_LOG(DEBUG,
"Rx Burst Bulk Alloc Preconditions are not "
"satisfied, Normal Rx will be used on port %d.",
dev->data->port_id);
dev->rx_pkt_burst = ice_recv_pkts;
}
}
static const struct {
eth_rx_burst_t pkt_burst;
const char *info;
} ice_rx_burst_infos[] = {
{ ice_recv_scattered_pkts, "Scalar Scattered" },
{ ice_recv_pkts_bulk_alloc, "Scalar Bulk Alloc" },
{ ice_recv_pkts, "Scalar" },
#ifdef RTE_ARCH_X86
#ifdef CC_AVX512_SUPPORT
{ ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
{ ice_recv_scattered_pkts_vec_avx512_offload, "Offload Vector AVX512 Scattered" },
{ ice_recv_pkts_vec_avx512, "Vector AVX512" },
{ ice_recv_pkts_vec_avx512_offload, "Offload Vector AVX512" },
#endif
{ ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
{ ice_recv_scattered_pkts_vec_avx2_offload, "Offload Vector AVX2 Scattered" },
{ ice_recv_pkts_vec_avx2, "Vector AVX2" },
{ ice_recv_pkts_vec_avx2_offload, "Offload Vector AVX2" },
{ ice_recv_scattered_pkts_vec, "Vector SSE Scattered" },
{ ice_recv_pkts_vec, "Vector SSE" },
#endif
};
int
ice_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
int ret = -EINVAL;
unsigned int i;
for (i = 0; i < RTE_DIM(ice_rx_burst_infos); ++i) {
if (pkt_burst == ice_rx_burst_infos[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
ice_rx_burst_infos[i].info);
ret = 0;
break;
}
}
return ret;
}
void __rte_cold
ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
/* Use a simple Tx queue if possible (only fast free is allowed) */
ad->tx_simple_allowed =
(txq->offloads ==
(txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE) &&
txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
if (ad->tx_simple_allowed)
PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
txq->queue_id);
else
PMD_INIT_LOG(DEBUG,
"Simple Tx can NOT be enabled on Tx queue %u.",
txq->queue_id);
}
/*********************************************************************
*
* TX prep functions
*
**********************************************************************/
/* The default values of TSO MSS */
#define ICE_MIN_TSO_MSS 64
#define ICE_MAX_TSO_MSS 9728
#define ICE_MAX_TSO_FRAME_SIZE 262144
uint16_t
ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int i, ret;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG &&
(m->tso_segsz < ICE_MIN_TSO_MSS ||
m->tso_segsz > ICE_MAX_TSO_MSS ||
m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
/**
* MSS outside the range are considered malicious
*/
rte_errno = EINVAL;
return i;
}
#ifdef RTE_ETHDEV_DEBUG_TX
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = -ret;
return i;
}
}
return i;
}
void __rte_cold
ice_set_tx_function(struct rte_eth_dev *dev)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
#ifdef RTE_ARCH_X86
struct ice_tx_queue *txq;
int i;
int tx_check_ret = -1;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
ad->tx_use_avx2 = false;
ad->tx_use_avx512 = false;
tx_check_ret = ice_tx_vec_dev_check(dev);
if (tx_check_ret >= 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
ad->tx_vec_allowed = true;
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
#ifdef CC_AVX512_SUPPORT
ad->tx_use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
#endif
if (!ad->tx_use_avx512 &&
(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
ad->tx_use_avx2 = true;
if (!ad->tx_use_avx2 && !ad->tx_use_avx512 &&
tx_check_ret == ICE_VECTOR_OFFLOAD_PATH)
ad->tx_vec_allowed = false;
if (ad->tx_vec_allowed) {
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev->data->tx_queues[i];
if (txq && ice_txq_vec_setup(txq)) {
ad->tx_vec_allowed = false;
break;
}
}
}
} else {
ad->tx_vec_allowed = false;
}
}
if (ad->tx_vec_allowed) {
dev->tx_pkt_prepare = NULL;
if (ad->tx_use_avx512) {
#ifdef CC_AVX512_SUPPORT
if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
PMD_DRV_LOG(NOTICE,
"Using AVX512 OFFLOAD Vector Tx (port %d).",
dev->data->port_id);
dev->tx_pkt_burst =
ice_xmit_pkts_vec_avx512_offload;
dev->tx_pkt_prepare = ice_prep_pkts;
} else {
PMD_DRV_LOG(NOTICE,
"Using AVX512 Vector Tx (port %d).",
dev->data->port_id);
dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
}
#endif
} else {
if (tx_check_ret == ICE_VECTOR_OFFLOAD_PATH) {
PMD_DRV_LOG(NOTICE,
"Using AVX2 OFFLOAD Vector Tx (port %d).",
dev->data->port_id);
dev->tx_pkt_burst =
ice_xmit_pkts_vec_avx2_offload;
dev->tx_pkt_prepare = ice_prep_pkts;
} else {
PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
ad->tx_use_avx2 ? "avx2 " : "",
dev->data->port_id);
dev->tx_pkt_burst = ad->tx_use_avx2 ?
ice_xmit_pkts_vec_avx2 :
ice_xmit_pkts_vec;
}
}
return;
}
#endif
if (ad->tx_simple_allowed) {
PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
dev->tx_pkt_burst = ice_xmit_pkts_simple;
dev->tx_pkt_prepare = NULL;
} else {
PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
dev->tx_pkt_burst = ice_xmit_pkts;
dev->tx_pkt_prepare = ice_prep_pkts;
}
}
static const struct {
eth_tx_burst_t pkt_burst;
const char *info;
} ice_tx_burst_infos[] = {
{ ice_xmit_pkts_simple, "Scalar Simple" },
{ ice_xmit_pkts, "Scalar" },
#ifdef RTE_ARCH_X86
#ifdef CC_AVX512_SUPPORT
{ ice_xmit_pkts_vec_avx512, "Vector AVX512" },
{ ice_xmit_pkts_vec_avx512_offload, "Offload Vector AVX512" },
#endif
{ ice_xmit_pkts_vec_avx2, "Vector AVX2" },
{ ice_xmit_pkts_vec, "Vector SSE" },
#endif
};
int
ice_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
{
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
int ret = -EINVAL;
unsigned int i;
for (i = 0; i < RTE_DIM(ice_tx_burst_infos); ++i) {
if (pkt_burst == ice_tx_burst_infos[i].pkt_burst) {
snprintf(mode->info, sizeof(mode->info), "%s",
ice_tx_burst_infos[i].info);
ret = 0;
break;
}
}
return ret;
}
/* For each value it means, datasheet of hardware can tell more details
*
* @note: fix ice_dev_supported_ptypes_get() if any change here.
*/
static inline uint32_t
ice_get_default_pkt_type(uint16_t ptype)
{
static const uint32_t type_table[ICE_MAX_PKT_TYPE]
__rte_cache_aligned = {
/* L2 types */
/* [0] reserved */
[1] = RTE_PTYPE_L2_ETHER,
[2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
/* [3] - [5] reserved */
[6] = RTE_PTYPE_L2_ETHER_LLDP,
/* [7] - [10] reserved */
[11] = RTE_PTYPE_L2_ETHER_ARP,
/* [12] - [21] reserved */
/* Non tunneled IPv4 */
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [25] reserved */
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* IPv4 --> IPv4 */
[29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [32] reserved */
[33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> IPv6 */
[36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [39] reserved */
[40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN */
[43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT,
/* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
[44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [47] reserved */
[48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
[51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [54] reserved */
[55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN --> MAC */
[58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
[59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [62] reserved */
[63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
[66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [69] reserved */
[70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* [73] - [87] reserved */
/* Non tunneled IPv6 */
[88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* [91] reserved */
[92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* IPv6 --> IPv4 */
[95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [98] reserved */
[99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> IPv6 */
[102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [105] reserved */
[106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_IP |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN */
[109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT,
/* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
[110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [113] reserved */
[114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
[117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [120] reserved */
[121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN --> MAC */
[124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
[125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [128] reserved */
[129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
[132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
/* [135] reserved */
[136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_SCTP,
[138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* [139] - [299] reserved */
/* PPPoE */
[300] = RTE_PTYPE_L2_ETHER_PPPOE,
[301] = RTE_PTYPE_L2_ETHER_PPPOE,
/* PPPoE --> IPv4 */
[302] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[303] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[304] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[305] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[306] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[307] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* PPPoE --> IPv6 */
[308] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG,
[309] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG,
[310] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[311] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP,
[312] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_SCTP,
[313] = RTE_PTYPE_L2_ETHER_PPPOE |
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_ICMP,
/* [314] - [324] reserved */
/* IPv4/IPv6 --> GTPC/GTPU */
[325] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[326] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[327] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[328] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPC,
[329] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU,
[330] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU,
/* IPv4 --> GTPU --> IPv4 */
[331] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[332] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[333] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[334] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[335] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GTPU --> IPv4 */
[336] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[337] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[338] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[339] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[340] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> GTPU --> IPv6 */
[341] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[342] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[343] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[344] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[345] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv6 --> GTPU --> IPv6 */
[346] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG,
[347] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG,
[348] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP,
[349] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP,
[350] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_TUNNEL_GTPU |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_ICMP,
/* IPv4 --> UDP ECPRI */
[372] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[373] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[374] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[375] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[376] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[377] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[378] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[379] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[380] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[381] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* IPV6 --> UDP ECPRI */
[382] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[383] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[384] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[385] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[386] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[387] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[388] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[389] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[390] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
[391] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP,
/* All others reserved */
};
return type_table[ptype];
}
void __rte_cold
ice_set_default_ptype_table(struct rte_eth_dev *dev)
{
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int i;
for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
}
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S 1
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M \
(0x3UL << ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S)
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD 0
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL 0x1
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S 4
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M \
(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S)
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S 5
#define ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M \
(1 << ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S)
/*
* check the programming status descriptor in rx queue.
* done after Programming Flow Director is programmed on
* tx queue
*/
static inline int
ice_check_fdir_programming_status(struct ice_rx_queue *rxq)
{
volatile union ice_32byte_rx_desc *rxdp;
uint64_t qword1;
uint32_t rx_status;
uint32_t error;
uint32_t id;
int ret = -EAGAIN;
rxdp = (volatile union ice_32byte_rx_desc *)
(&rxq->rx_ring[rxq->rx_tail]);
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M)
>> ICE_RXD_QW1_STATUS_S;
if (rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)) {
ret = 0;
error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_M) >>
ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_S;
id = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_M) >>
ICE_RX_PROG_STATUS_DESC_WB_QW1_PROGID_S;
if (error) {
if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_ADD)
PMD_DRV_LOG(ERR, "Failed to add FDIR rule.");
else if (id == ICE_RX_PROG_STATUS_DESC_WB_QW1_PROG_DEL)
PMD_DRV_LOG(ERR, "Failed to remove FDIR rule.");
ret = -EINVAL;
goto err;
}
error = (qword1 & ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_M) >>
ICE_RX_PROG_STATUS_DESC_WB_QW1_FAIL_PROF_S;
if (error) {
PMD_DRV_LOG(ERR, "Failed to create FDIR profile.");
ret = -EINVAL;
}
err:
rxdp->wb.qword1.status_error_len = 0;
rxq->rx_tail++;
if (unlikely(rxq->rx_tail == rxq->nb_rx_desc))
rxq->rx_tail = 0;
if (rxq->rx_tail == 0)
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
else
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_tail - 1);
}
return ret;
}
#define ICE_FDIR_MAX_WAIT_US 10000
int
ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc)
{
struct ice_tx_queue *txq = pf->fdir.txq;
struct ice_rx_queue *rxq = pf->fdir.rxq;
volatile struct ice_fltr_desc *fdirdp;
volatile struct ice_tx_desc *txdp;
uint32_t td_cmd;
uint16_t i;
fdirdp = (volatile struct ice_fltr_desc *)
(&txq->tx_ring[txq->tx_tail]);
fdirdp->qidx_compq_space_stat = fdir_desc->qidx_compq_space_stat;
fdirdp->dtype_cmd_vsi_fdid = fdir_desc->dtype_cmd_vsi_fdid;
txdp = &txq->tx_ring[txq->tx_tail + 1];
txdp->buf_addr = rte_cpu_to_le_64(pf->fdir.dma_addr);
td_cmd = ICE_TX_DESC_CMD_EOP |
ICE_TX_DESC_CMD_RS |
ICE_TX_DESC_CMD_DUMMY;
txdp->cmd_type_offset_bsz =
ice_build_ctob(td_cmd, 0, ICE_FDIR_PKT_LEN, 0);
txq->tx_tail += 2;
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
/* Update the tx tail register */
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
for (i = 0; i < ICE_FDIR_MAX_WAIT_US; i++) {
if ((txdp->cmd_type_offset_bsz &
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) ==
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
break;
rte_delay_us(1);
}
if (i >= ICE_FDIR_MAX_WAIT_US) {
PMD_DRV_LOG(ERR,
"Failed to program FDIR filter: time out to get DD on tx queue.");
return -ETIMEDOUT;
}
for (; i < ICE_FDIR_MAX_WAIT_US; i++) {
int ret;
ret = ice_check_fdir_programming_status(rxq);
if (ret == -EAGAIN)
rte_delay_us(1);
else
return ret;
}
PMD_DRV_LOG(ERR,
"Failed to program FDIR filter: programming status reported.");
return -ETIMEDOUT;
}