Anatoly Burakov 1403f87d4f malloc: enable memory hotplug support
This set of changes enables rte_malloc to allocate and free memory
as needed. Currently, it is disabled because legacy mem mode is
enabled unconditionally.

The way it works is, first malloc checks if there is enough memory
already allocated to satisfy user's request. If there isn't, we try
and allocate more memory. The reverse happens with free - we free
an element, check its size (including free element merging due to
adjacency) and see if it's bigger than hugepage size and that its
start and end span a hugepage or more. Then we remove the area from
malloc heap (adjusting element lengths where appropriate), and
deallocate the page.

For legacy mode, runtime alloc/free of pages is disabled.

It is worth noting that memseg lists are being sorted by page size,
and that we try our best to satisfy user's request. That is, if
the user requests an element from a 2MB page memory, we will check
if we can satisfy that request from existing memory, if not we try
and allocate more 2MB pages. If that fails and user also specified
a "size is hint" flag, we then check other page sizes and try to
allocate from there. If that fails too, then, depending on flags,
we may try allocating from other sockets. In other words, we try
our best to give the user what they asked for, but going to other
sockets is last resort - first we try to allocate more memory on
the same socket.

Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com>
Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
2018-04-11 21:45:55 +02:00

238 lines
5.5 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdint.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <sys/queue.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_branch_prediction.h>
#include <rte_debug.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_spinlock.h>
#include <rte_malloc.h>
#include "malloc_elem.h"
#include "malloc_heap.h"
/* Free the memory space back to heap */
void rte_free(void *addr)
{
if (addr == NULL) return;
if (malloc_heap_free(malloc_elem_from_data(addr)) < 0)
RTE_LOG(ERR, EAL, "Error: Invalid memory\n");
}
/*
* Allocate memory on specified heap.
*/
void *
rte_malloc_socket(const char *type, size_t size, unsigned int align,
int socket_arg)
{
/* return NULL if size is 0 or alignment is not power-of-2 */
if (size == 0 || (align && !rte_is_power_of_2(align)))
return NULL;
if (!rte_eal_has_hugepages())
socket_arg = SOCKET_ID_ANY;
/* Check socket parameter */
if (socket_arg >= RTE_MAX_NUMA_NODES)
return NULL;
return malloc_heap_alloc(type, size, socket_arg, 0,
align == 0 ? 1 : align, 0, false);
}
/*
* Allocate memory on default heap.
*/
void *
rte_malloc(const char *type, size_t size, unsigned align)
{
return rte_malloc_socket(type, size, align, SOCKET_ID_ANY);
}
/*
* Allocate zero'd memory on specified heap.
*/
void *
rte_zmalloc_socket(const char *type, size_t size, unsigned align, int socket)
{
return rte_malloc_socket(type, size, align, socket);
}
/*
* Allocate zero'd memory on default heap.
*/
void *
rte_zmalloc(const char *type, size_t size, unsigned align)
{
return rte_zmalloc_socket(type, size, align, SOCKET_ID_ANY);
}
/*
* Allocate zero'd memory on specified heap.
*/
void *
rte_calloc_socket(const char *type, size_t num, size_t size, unsigned align, int socket)
{
return rte_zmalloc_socket(type, num * size, align, socket);
}
/*
* Allocate zero'd memory on default heap.
*/
void *
rte_calloc(const char *type, size_t num, size_t size, unsigned align)
{
return rte_zmalloc(type, num * size, align);
}
/*
* Resize allocated memory.
*/
void *
rte_realloc(void *ptr, size_t size, unsigned align)
{
if (ptr == NULL)
return rte_malloc(NULL, size, align);
struct malloc_elem *elem = malloc_elem_from_data(ptr);
if (elem == NULL) {
RTE_LOG(ERR, EAL, "Error: memory corruption detected\n");
return NULL;
}
size = RTE_CACHE_LINE_ROUNDUP(size), align = RTE_CACHE_LINE_ROUNDUP(align);
/* check alignment matches first, and if ok, see if we can resize block */
if (RTE_PTR_ALIGN(ptr,align) == ptr &&
malloc_heap_resize(elem, size) == 0)
return ptr;
/* either alignment is off, or we have no room to expand,
* so move data. */
void *new_ptr = rte_malloc(NULL, size, align);
if (new_ptr == NULL)
return NULL;
const unsigned old_size = elem->size - MALLOC_ELEM_OVERHEAD;
rte_memcpy(new_ptr, ptr, old_size < size ? old_size : size);
rte_free(ptr);
return new_ptr;
}
int
rte_malloc_validate(const void *ptr, size_t *size)
{
const struct malloc_elem *elem = malloc_elem_from_data(ptr);
if (!malloc_elem_cookies_ok(elem))
return -1;
if (size != NULL)
*size = elem->size - elem->pad - MALLOC_ELEM_OVERHEAD;
return 0;
}
/*
* Function to retrieve data for heap on given socket
*/
int
rte_malloc_get_socket_stats(int socket,
struct rte_malloc_socket_stats *socket_stats)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
if (socket >= RTE_MAX_NUMA_NODES || socket < 0)
return -1;
return malloc_heap_get_stats(&mcfg->malloc_heaps[socket], socket_stats);
}
/*
* Function to dump contents of all heaps
*/
void __rte_experimental
rte_malloc_dump_heaps(FILE *f)
{
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned int idx;
for (idx = 0; idx < rte_socket_count(); idx++) {
unsigned int socket = rte_socket_id_by_idx(idx);
fprintf(f, "Heap on socket %i:\n", socket);
malloc_heap_dump(&mcfg->malloc_heaps[socket], f);
}
}
/*
* Print stats on memory type. If type is NULL, info on all types is printed
*/
void
rte_malloc_dump_stats(FILE *f, __rte_unused const char *type)
{
unsigned int socket;
struct rte_malloc_socket_stats sock_stats;
/* Iterate through all initialised heaps */
for (socket=0; socket< RTE_MAX_NUMA_NODES; socket++) {
if ((rte_malloc_get_socket_stats(socket, &sock_stats) < 0))
continue;
fprintf(f, "Socket:%u\n", socket);
fprintf(f, "\tHeap_size:%zu,\n", sock_stats.heap_totalsz_bytes);
fprintf(f, "\tFree_size:%zu,\n", sock_stats.heap_freesz_bytes);
fprintf(f, "\tAlloc_size:%zu,\n", sock_stats.heap_allocsz_bytes);
fprintf(f, "\tGreatest_free_size:%zu,\n",
sock_stats.greatest_free_size);
fprintf(f, "\tAlloc_count:%u,\n",sock_stats.alloc_count);
fprintf(f, "\tFree_count:%u,\n", sock_stats.free_count);
}
return;
}
/*
* TODO: Set limit to memory that can be allocated to memory type
*/
int
rte_malloc_set_limit(__rte_unused const char *type,
__rte_unused size_t max)
{
return 0;
}
/*
* Return the IO address of a virtual address obtained through rte_malloc
*/
rte_iova_t
rte_malloc_virt2iova(const void *addr)
{
const struct rte_memseg *ms;
struct malloc_elem *elem = malloc_elem_from_data(addr);
if (elem == NULL)
return RTE_BAD_IOVA;
if (rte_eal_iova_mode() == RTE_IOVA_VA)
return (uintptr_t) addr;
ms = rte_mem_virt2memseg(addr, elem->msl);
if (ms == NULL)
return RTE_BAD_IOVA;
if (ms->iova == RTE_BAD_IOVA)
return RTE_BAD_IOVA;
return ms->iova + RTE_PTR_DIFF(addr, ms->addr);
}