numam-dpdk/lib/mbuf/rte_mbuf.h
Sean Morrissey 30a1de105a lib: remove unneeded header includes
These header includes have been flagged by the iwyu_tool
and removed.

Signed-off-by: Sean Morrissey <sean.morrissey@intel.com>
2022-02-22 13:10:39 +01:00

1975 lines
55 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2014 6WIND S.A.
*/
#ifndef _RTE_MBUF_H_
#define _RTE_MBUF_H_
/**
* @file
* RTE Mbuf
*
* The mbuf library provides the ability to create and destroy buffers
* that may be used by the RTE application to store message
* buffers. The message buffers are stored in a mempool, using the
* RTE mempool library.
*
* The preferred way to create a mbuf pool is to use
* rte_pktmbuf_pool_create(). However, in some situations, an
* application may want to have more control (ex: populate the pool with
* specific memory), in this case it is possible to use functions from
* rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
* details.
*
* This library provides an API to allocate/free packet mbufs, which are
* used to carry network packets.
*
* To understand the concepts of packet buffers or mbufs, you
* should read "TCP/IP Illustrated, Volume 2: The Implementation,
* Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
* http://www.kohala.com/start/tcpipiv2.html
*/
#include <stdint.h>
#include <rte_compat.h>
#include <rte_common.h>
#include <rte_config.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_mbuf_ptype.h>
#include <rte_mbuf_core.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* Get the name of a RX offload flag
*
* @param mask
* The mask describing the flag.
* @return
* The name of this flag, or NULL if it's not a valid RX flag.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask);
/**
* Dump the list of RX offload flags in a buffer
*
* @param mask
* The mask describing the RX flags.
* @param buf
* The output buffer.
* @param buflen
* The length of the buffer.
* @return
* 0 on success, (-1) on error.
*/
int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
/**
* Get the name of a TX offload flag
*
* @param mask
* The mask describing the flag. Usually only one bit must be set.
* Several bits can be given if they belong to the same mask.
* Ex: RTE_MBUF_F_TX_L4_MASK.
* @return
* The name of this flag, or NULL if it's not a valid TX flag.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask);
/**
* Dump the list of TX offload flags in a buffer
*
* @param mask
* The mask describing the TX flags.
* @param buf
* The output buffer.
* @param buflen
* The length of the buffer.
* @return
* 0 on success, (-1) on error.
*/
int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
/**
* Prefetch the first part of the mbuf
*
* The first 64 bytes of the mbuf corresponds to fields that are used early
* in the receive path. If the cache line of the architecture is higher than
* 64B, the second part will also be prefetched.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part1(struct rte_mbuf *m)
{
rte_prefetch0(&m->cacheline0);
}
/**
* Prefetch the second part of the mbuf
*
* The next 64 bytes of the mbuf corresponds to fields that are used in the
* transmit path. If the cache line of the architecture is higher than 64B,
* this function does nothing as it is expected that the full mbuf is
* already in cache.
*
* @param m
* The pointer to the mbuf.
*/
static inline void
rte_mbuf_prefetch_part2(struct rte_mbuf *m)
{
#if RTE_CACHE_LINE_SIZE == 64
rte_prefetch0(&m->cacheline1);
#else
RTE_SET_USED(m);
#endif
}
static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
/**
* Return the IO address of the beginning of the mbuf data
*
* @param mb
* The pointer to the mbuf.
* @return
* The IO address of the beginning of the mbuf data
*/
static inline rte_iova_t
rte_mbuf_data_iova(const struct rte_mbuf *mb)
{
return mb->buf_iova + mb->data_off;
}
/**
* Return the default IO address of the beginning of the mbuf data
*
* This function is used by drivers in their receive function, as it
* returns the location where data should be written by the NIC, taking
* the default headroom in account.
*
* @param mb
* The pointer to the mbuf.
* @return
* The IO address of the beginning of the mbuf data
*/
static inline rte_iova_t
rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
{
return mb->buf_iova + RTE_PKTMBUF_HEADROOM;
}
/**
* Return the mbuf owning the data buffer address of an indirect mbuf.
*
* @param mi
* The pointer to the indirect mbuf.
* @return
* The address of the direct mbuf corresponding to buffer_addr.
*/
static inline struct rte_mbuf *
rte_mbuf_from_indirect(struct rte_mbuf *mi)
{
return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
}
/**
* Return address of buffer embedded in the given mbuf.
*
* The return value shall be same as mb->buf_addr if the mbuf is already
* initialized and direct. However, this API is useful if mempool of the
* mbuf is already known because it doesn't need to access mbuf contents in
* order to get the mempool pointer.
*
* @param mb
* The pointer to the mbuf.
* @param mp
* The pointer to the mempool of the mbuf.
* @return
* The pointer of the mbuf buffer.
*/
static inline char *
rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
{
return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
}
/**
* Return the default address of the beginning of the mbuf data.
*
* @param mb
* The pointer to the mbuf.
* @return
* The pointer of the beginning of the mbuf data.
*/
static inline char *
rte_mbuf_data_addr_default(struct rte_mbuf *mb)
{
return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
}
/**
* Return address of buffer embedded in the given mbuf.
*
* @note: Accessing mempool pointer of a mbuf is expensive because the
* pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
* is better not to reference the mempool pointer in mbuf but calling
* rte_mbuf_buf_addr() would be more efficient.
*
* @param md
* The pointer to the mbuf.
* @return
* The address of the data buffer owned by the mbuf.
*/
static inline char *
rte_mbuf_to_baddr(struct rte_mbuf *md)
{
return rte_mbuf_buf_addr(md, md->pool);
}
/**
* Return the starting address of the private data area embedded in
* the given mbuf.
*
* Note that no check is made to ensure that a private data area
* actually exists in the supplied mbuf.
*
* @param m
* The pointer to the mbuf.
* @return
* The starting address of the private data area of the given mbuf.
*/
static inline void *
rte_mbuf_to_priv(struct rte_mbuf *m)
{
return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
}
/**
* Private data in case of pktmbuf pool.
*
* A structure that contains some pktmbuf_pool-specific data that are
* appended after the mempool structure (in private data).
*/
struct rte_pktmbuf_pool_private {
uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
uint16_t mbuf_priv_size; /**< Size of private area in each mbuf. */
uint32_t flags; /**< reserved for future use. */
};
/**
* Return the flags from private data in an mempool structure.
*
* @param mp
* A pointer to the mempool structure.
* @return
* The flags from the private data structure.
*/
static inline uint32_t
rte_pktmbuf_priv_flags(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->flags;
}
/**
* When set, pktmbuf mempool will hold only mbufs with pinned external
* buffer. The external buffer will be attached to the mbuf at the
* memory pool creation and will never be detached by the mbuf free calls.
* mbuf should not contain any room for data after the mbuf structure.
*/
#define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0)
/**
* Returns non zero if given mbuf has a pinned external buffer, or zero
* otherwise. The pinned external buffer is allocated at pool creation
* time and should not be freed on mbuf freeing.
*
* External buffer is a user-provided anonymous buffer.
*/
#define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \
(rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
#ifdef RTE_LIBRTE_MBUF_DEBUG
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
#else /* RTE_LIBRTE_MBUF_DEBUG */
/** check mbuf type in debug mode */
#define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
#endif /* RTE_LIBRTE_MBUF_DEBUG */
#ifdef RTE_MBUF_REFCNT_ATOMIC
/**
* Reads the value of an mbuf's refcnt.
* @param m
* Mbuf to read
* @return
* Reference count number.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return __atomic_load_n(&m->refcnt, __ATOMIC_RELAXED);
}
/**
* Sets an mbuf's refcnt to a defined value.
* @param m
* Mbuf to update
* @param new_value
* Value set
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
__atomic_store_n(&m->refcnt, new_value, __ATOMIC_RELAXED);
}
/* internal */
static inline uint16_t
__rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
return __atomic_add_fetch(&m->refcnt, (uint16_t)value,
__ATOMIC_ACQ_REL);
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
* @param m
* Mbuf to update
* @param value
* Value to add/subtract
* @return
* Updated value
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
/*
* The atomic_add is an expensive operation, so we don't want to
* call it in the case where we know we are the unique holder of
* this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
* operation has to be used because concurrent accesses on the
* reference counter can occur.
*/
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
++value;
rte_mbuf_refcnt_set(m, (uint16_t)value);
return (uint16_t)value;
}
return __rte_mbuf_refcnt_update(m, value);
}
#else /* ! RTE_MBUF_REFCNT_ATOMIC */
/* internal */
static inline uint16_t
__rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
m->refcnt = (uint16_t)(m->refcnt + value);
return m->refcnt;
}
/**
* Adds given value to an mbuf's refcnt and returns its new value.
*/
static inline uint16_t
rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
{
return __rte_mbuf_refcnt_update(m, value);
}
/**
* Reads the value of an mbuf's refcnt.
*/
static inline uint16_t
rte_mbuf_refcnt_read(const struct rte_mbuf *m)
{
return m->refcnt;
}
/**
* Sets an mbuf's refcnt to the defined value.
*/
static inline void
rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
{
m->refcnt = new_value;
}
#endif /* RTE_MBUF_REFCNT_ATOMIC */
/**
* Reads the refcnt of an external buffer.
*
* @param shinfo
* Shared data of the external buffer.
* @return
* Reference count number.
*/
static inline uint16_t
rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
{
return __atomic_load_n(&shinfo->refcnt, __ATOMIC_RELAXED);
}
/**
* Set refcnt of an external buffer.
*
* @param shinfo
* Shared data of the external buffer.
* @param new_value
* Value set
*/
static inline void
rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
uint16_t new_value)
{
__atomic_store_n(&shinfo->refcnt, new_value, __ATOMIC_RELAXED);
}
/**
* Add given value to refcnt of an external buffer and return its new
* value.
*
* @param shinfo
* Shared data of the external buffer.
* @param value
* Value to add/subtract
* @return
* Updated value
*/
static inline uint16_t
rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
int16_t value)
{
if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
++value;
rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
return (uint16_t)value;
}
return __atomic_add_fetch(&shinfo->refcnt, (uint16_t)value,
__ATOMIC_ACQ_REL);
}
/** Mbuf prefetch */
#define RTE_MBUF_PREFETCH_TO_FREE(m) do { \
if ((m) != NULL) \
rte_prefetch0(m); \
} while (0)
/**
* Sanity checks on an mbuf.
*
* Check the consistency of the given mbuf. The function will cause a
* panic if corruption is detected.
*
* @param m
* The mbuf to be checked.
* @param is_header
* True if the mbuf is a packet header, false if it is a sub-segment
* of a packet (in this case, some fields like nb_segs are not checked)
*/
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
/**
* Sanity checks on a mbuf.
*
* Almost like rte_mbuf_sanity_check(), but this function gives the reason
* if corruption is detected rather than panic.
*
* @param m
* The mbuf to be checked.
* @param is_header
* True if the mbuf is a packet header, false if it is a sub-segment
* of a packet (in this case, some fields like nb_segs are not checked)
* @param reason
* A reference to a string pointer where to store the reason why a mbuf is
* considered invalid.
* @return
* - 0 if no issue has been found, reason is left untouched.
* - -1 if a problem is detected, reason then points to a string describing
* the reason why the mbuf is deemed invalid.
*/
int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
const char **reason);
/**
* Sanity checks on a reinitialized mbuf in debug mode.
*
* Check the consistency of the given reinitialized mbuf.
* The function will cause a panic if corruption is detected.
*
* Check that the mbuf is properly reinitialized (refcnt=1, next=NULL,
* nb_segs=1), as done by rte_pktmbuf_prefree_seg().
*
* @param m
* The mbuf to be checked.
*/
static __rte_always_inline void
__rte_mbuf_raw_sanity_check(__rte_unused const struct rte_mbuf *m)
{
RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
RTE_ASSERT(m->next == NULL);
RTE_ASSERT(m->nb_segs == 1);
__rte_mbuf_sanity_check(m, 0);
}
/** For backwards compatibility. */
#define MBUF_RAW_ALLOC_CHECK(m) __rte_mbuf_raw_sanity_check(m)
/**
* Allocate an uninitialized mbuf from mempool *mp*.
*
* This function can be used by PMDs (especially in RX functions) to
* allocate an uninitialized mbuf. The driver is responsible of
* initializing all the required fields. See rte_pktmbuf_reset().
* For standard needs, prefer rte_pktmbuf_alloc().
*
* The caller can expect that the following fields of the mbuf structure
* are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
* next=NULL, pool, priv_size. The other fields must be initialized
* by the caller.
*
* @param mp
* The mempool from which mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if (rte_mempool_get(mp, (void **)&m) < 0)
return NULL;
__rte_mbuf_raw_sanity_check(m);
return m;
}
/**
* Put mbuf back into its original mempool.
*
* The caller must ensure that the mbuf is direct and properly
* reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
* rte_pktmbuf_prefree_seg().
*
* This function should be used with care, when optimization is
* required. For standard needs, prefer rte_pktmbuf_free() or
* rte_pktmbuf_free_seg().
*
* @param m
* The mbuf to be freed.
*/
static __rte_always_inline void
rte_mbuf_raw_free(struct rte_mbuf *m)
{
RTE_ASSERT(!RTE_MBUF_CLONED(m) &&
(!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m)));
__rte_mbuf_raw_sanity_check(m);
rte_mempool_put(m->pool, m);
}
/**
* The packet mbuf constructor.
*
* This function initializes some fields in the mbuf structure that are
* not modified by the user once created (origin pool, buffer start
* address, and so on). This function is given as a callback function to
* rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
*
* This function expects that the mempool private area was previously
* initialized with rte_pktmbuf_pool_init().
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer is the opaque argument passed to
* rte_mempool_obj_iter() or rte_mempool_create().
* @param m
* The mbuf to initialize.
* @param i
* The index of the mbuf in the pool table.
*/
void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
void *m, unsigned i);
/**
* A packet mbuf pool constructor.
*
* This function initializes the mempool private data in the case of a
* pktmbuf pool. This private data is needed by the driver. The
* function must be called on the mempool before it is used, or it
* can be given as a callback function to rte_mempool_create() at
* pool creation. It can be extended by the user, for example, to
* provide another packet size.
*
* The mempool private area size must be at least equal to
* sizeof(struct rte_pktmbuf_pool_private).
*
* @param mp
* The mempool from which mbufs originate.
* @param opaque_arg
* A pointer that can be used by the user to retrieve useful information
* for mbuf initialization. This pointer is the opaque argument passed to
* rte_mempool_create().
*/
void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
/**
* Create a mbuf pool.
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool functions.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned n,
unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id);
/**
* Create a mbuf pool with a given mempool ops name
*
* This function creates and initializes a packet mbuf pool. It is
* a wrapper to rte_mempool functions.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @param ops_name
* The mempool ops name to be used for this mempool instead of
* default mempool. The value can be *NULL* to use default mempool.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
struct rte_mempool *
rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id, const char *ops_name);
/** A structure that describes the pinned external buffer segment. */
struct rte_pktmbuf_extmem {
void *buf_ptr; /**< The virtual address of data buffer. */
rte_iova_t buf_iova; /**< The IO address of the data buffer. */
size_t buf_len; /**< External buffer length in bytes. */
uint16_t elt_size; /**< mbuf element size in bytes. */
};
/**
* Create a mbuf pool with external pinned data buffers.
*
* This function creates and initializes a packet mbuf pool that contains
* only mbufs with external buffer. It is a wrapper to rte_mempool functions.
*
* @param name
* The name of the mbuf pool.
* @param n
* The number of elements in the mbuf pool. The optimum size (in terms
* of memory usage) for a mempool is when n is a power of two minus one:
* n = (2^q - 1).
* @param cache_size
* Size of the per-core object cache. See rte_mempool_create() for
* details.
* @param priv_size
* Size of application private are between the rte_mbuf structure
* and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
* @param data_room_size
* Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
* @param socket_id
* The socket identifier where the memory should be allocated. The
* value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
* reserved zone.
* @param ext_mem
* Pointer to the array of structures describing the external memory
* for data buffers. It is caller responsibility to register this memory
* with rte_extmem_register() (if needed), map this memory to appropriate
* physical device, etc.
* @param ext_num
* Number of elements in the ext_mem array.
* @return
* The pointer to the new allocated mempool, on success. NULL on error
* with rte_errno set appropriately. Possible rte_errno values include:
* - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
* - E_RTE_SECONDARY - function was called from a secondary process instance
* - EINVAL - cache size provided is too large, or priv_size is not aligned.
* - ENOSPC - the maximum number of memzones has already been allocated
* - EEXIST - a memzone with the same name already exists
* - ENOMEM - no appropriate memory area found in which to create memzone
*/
__rte_experimental
struct rte_mempool *
rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size,
uint16_t data_room_size, int socket_id,
const struct rte_pktmbuf_extmem *ext_mem,
unsigned int ext_num);
/**
* Get the data room size of mbufs stored in a pktmbuf_pool
*
* The data room size is the amount of data that can be stored in a
* mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
*
* @param mp
* The packet mbuf pool.
* @return
* The data room size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_data_room_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_data_room_size;
}
/**
* Get the application private size of mbufs stored in a pktmbuf_pool
*
* The private size of mbuf is a zone located between the rte_mbuf
* structure and the data buffer where an application can store data
* associated to a packet.
*
* @param mp
* The packet mbuf pool.
* @return
* The private size of mbufs stored in this mempool.
*/
static inline uint16_t
rte_pktmbuf_priv_size(struct rte_mempool *mp)
{
struct rte_pktmbuf_pool_private *mbp_priv;
mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
return mbp_priv->mbuf_priv_size;
}
/**
* Reset the data_off field of a packet mbuf to its default value.
*
* The given mbuf must have only one segment, which should be empty.
*
* @param m
* The packet mbuf's data_off field has to be reset.
*/
static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
{
m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
(uint16_t)m->buf_len);
}
/**
* Reset the fields of a packet mbuf to their default values.
*
* The given mbuf must have only one segment.
*
* @param m
* The packet mbuf to be reset.
*/
static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
{
m->next = NULL;
m->pkt_len = 0;
m->tx_offload = 0;
m->vlan_tci = 0;
m->vlan_tci_outer = 0;
m->nb_segs = 1;
m->port = RTE_MBUF_PORT_INVALID;
m->ol_flags &= RTE_MBUF_F_EXTERNAL;
m->packet_type = 0;
rte_pktmbuf_reset_headroom(m);
m->data_len = 0;
__rte_mbuf_sanity_check(m, 1);
}
/**
* Allocate a new mbuf from a mempool.
*
* This new mbuf contains one segment, which has a length of 0. The pointer
* to data is initialized to have some bytes of headroom in the buffer
* (if buffer size allows).
*
* @param mp
* The mempool from which the mbuf is allocated.
* @return
* - The pointer to the new mbuf on success.
* - NULL if allocation failed.
*/
static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
rte_pktmbuf_reset(m);
return m;
}
/**
* Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
* values.
*
* @param pool
* The mempool from which mbufs are allocated.
* @param mbufs
* Array of pointers to mbufs
* @param count
* Array size
* @return
* - 0: Success
* - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
*/
static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
struct rte_mbuf **mbufs, unsigned count)
{
unsigned idx = 0;
int rc;
rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
if (unlikely(rc))
return rc;
/* To understand duff's device on loop unwinding optimization, see
* https://en.wikipedia.org/wiki/Duff's_device.
* Here while() loop is used rather than do() while{} to avoid extra
* check if count is zero.
*/
switch (count % 4) {
case 0:
while (idx != count) {
__rte_mbuf_raw_sanity_check(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
case 3:
__rte_mbuf_raw_sanity_check(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
case 2:
__rte_mbuf_raw_sanity_check(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
case 1:
__rte_mbuf_raw_sanity_check(mbufs[idx]);
rte_pktmbuf_reset(mbufs[idx]);
idx++;
/* fall-through */
}
}
return 0;
}
/**
* Initialize shared data at the end of an external buffer before attaching
* to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
* initialization but a helper function to simply spare a few bytes at the
* end of the buffer for shared data. If shared data is allocated
* separately, this should not be called but application has to properly
* initialize the shared data according to its need.
*
* Free callback and its argument is saved and the refcnt is set to 1.
*
* @warning
* The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
* after this initialization. This shall be used for
* ``rte_pktmbuf_attach_extbuf()``
*
* @param buf_addr
* The pointer to the external buffer.
* @param [in,out] buf_len
* The pointer to length of the external buffer. Input value must be
* larger than the size of ``struct rte_mbuf_ext_shared_info`` and
* padding for alignment. If not enough, this function will return NULL.
* Adjusted buffer length will be returned through this pointer.
* @param free_cb
* Free callback function to call when the external buffer needs to be
* freed.
* @param fcb_opaque
* Argument for the free callback function.
*
* @return
* A pointer to the initialized shared data on success, return NULL
* otherwise.
*/
static inline struct rte_mbuf_ext_shared_info *
rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
{
struct rte_mbuf_ext_shared_info *shinfo;
void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
void *addr;
addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
sizeof(uintptr_t));
if (addr <= buf_addr)
return NULL;
shinfo = (struct rte_mbuf_ext_shared_info *)addr;
shinfo->free_cb = free_cb;
shinfo->fcb_opaque = fcb_opaque;
rte_mbuf_ext_refcnt_set(shinfo, 1);
*buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
return shinfo;
}
/**
* Attach an external buffer to a mbuf.
*
* User-managed anonymous buffer can be attached to an mbuf. When attaching
* it, corresponding free callback function and its argument should be
* provided via shinfo. This callback function will be called once all the
* mbufs are detached from the buffer (refcnt becomes zero).
*
* The headroom length of the attaching mbuf will be set to zero and this
* can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
* or ``rte_pktmbuf_reset_headroom()`` might be used.
*
* Similarly, the packet length is initialized to 0. If the buffer contains
* data, the user has to adjust ``data_len`` and the ``pkt_len`` field of
* the mbuf accordingly.
*
* More mbufs can be attached to the same external buffer by
* ``rte_pktmbuf_attach()`` once the external buffer has been attached by
* this API.
*
* Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
* ``rte_pktmbuf_detach()``.
*
* Memory for shared data must be provided and user must initialize all of
* the content properly, especially free callback and refcnt. The pointer
* of shared data will be stored in m->shinfo.
* ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
* bytes at the end of buffer for the shared data, store free callback and
* its argument and set the refcnt to 1. The following is an example:
*
* struct rte_mbuf_ext_shared_info *shinfo =
* rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
* free_cb, fcb_arg);
* rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
* rte_pktmbuf_reset_headroom(m);
* rte_pktmbuf_adj(m, data_len);
*
* Attaching an external buffer is quite similar to mbuf indirection in
* replacing buffer addresses and length of a mbuf, but a few differences:
* - When an indirect mbuf is attached, refcnt of the direct mbuf would be
* 2 as long as the direct mbuf itself isn't freed after the attachment.
* In such cases, the buffer area of a direct mbuf must be read-only. But
* external buffer has its own refcnt and it starts from 1. Unless
* multiple mbufs are attached to a mbuf having an external buffer, the
* external buffer is writable.
* - There's no need to allocate buffer from a mempool. Any buffer can be
* attached with appropriate free callback and its IO address.
* - Smaller metadata is required to maintain shared data such as refcnt.
*
* @param m
* The pointer to the mbuf.
* @param buf_addr
* The pointer to the external buffer.
* @param buf_iova
* IO address of the external buffer.
* @param buf_len
* The size of the external buffer.
* @param shinfo
* User-provided memory for shared data of the external buffer.
*/
static inline void
rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
rte_iova_t buf_iova, uint16_t buf_len,
struct rte_mbuf_ext_shared_info *shinfo)
{
/* mbuf should not be read-only */
RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
RTE_ASSERT(shinfo->free_cb != NULL);
m->buf_addr = buf_addr;
m->buf_iova = buf_iova;
m->buf_len = buf_len;
m->data_len = 0;
m->data_off = 0;
m->ol_flags |= RTE_MBUF_F_EXTERNAL;
m->shinfo = shinfo;
}
/**
* Detach the external buffer attached to a mbuf, same as
* ``rte_pktmbuf_detach()``
*
* @param m
* The mbuf having external buffer.
*/
#define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
/**
* Copy dynamic fields from msrc to mdst.
*
* @param mdst
* The destination mbuf.
* @param msrc
* The source mbuf.
*/
static inline void
rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
{
memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1));
}
/* internal */
static inline void
__rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
{
mdst->port = msrc->port;
mdst->vlan_tci = msrc->vlan_tci;
mdst->vlan_tci_outer = msrc->vlan_tci_outer;
mdst->tx_offload = msrc->tx_offload;
mdst->hash = msrc->hash;
mdst->packet_type = msrc->packet_type;
rte_mbuf_dynfield_copy(mdst, msrc);
}
/**
* Attach packet mbuf to another packet mbuf.
*
* If the mbuf we are attaching to isn't a direct buffer and is attached to
* an external buffer, the mbuf being attached will be attached to the
* external buffer instead of mbuf indirection.
*
* Otherwise, the mbuf will be indirectly attached. After attachment we
* refer the mbuf we attached as 'indirect', while mbuf we attached to as
* 'direct'. The direct mbuf's reference counter is incremented.
*
* Right now, not supported:
* - attachment for already indirect mbuf (e.g. - mi has to be direct).
* - mbuf we trying to attach (mi) is used by someone else
* e.g. it's reference counter is greater then 1.
*
* @param mi
* The indirect packet mbuf.
* @param m
* The packet mbuf we're attaching to.
*/
static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
{
RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
rte_mbuf_refcnt_read(mi) == 1);
if (RTE_MBUF_HAS_EXTBUF(m)) {
rte_mbuf_ext_refcnt_update(m->shinfo, 1);
mi->ol_flags = m->ol_flags;
mi->shinfo = m->shinfo;
} else {
/* if m is not direct, get the mbuf that embeds the data */
rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
mi->priv_size = m->priv_size;
mi->ol_flags = m->ol_flags | RTE_MBUF_F_INDIRECT;
}
__rte_pktmbuf_copy_hdr(mi, m);
mi->data_off = m->data_off;
mi->data_len = m->data_len;
mi->buf_iova = m->buf_iova;
mi->buf_addr = m->buf_addr;
mi->buf_len = m->buf_len;
mi->next = NULL;
mi->pkt_len = mi->data_len;
mi->nb_segs = 1;
__rte_mbuf_sanity_check(mi, 1);
__rte_mbuf_sanity_check(m, 0);
}
/**
* @internal used by rte_pktmbuf_detach().
*
* Decrement the reference counter of the external buffer. When the
* reference counter becomes 0, the buffer is freed by pre-registered
* callback.
*/
static inline void
__rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
{
RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
RTE_ASSERT(m->shinfo != NULL);
if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
}
/**
* @internal used by rte_pktmbuf_detach().
*
* Decrement the direct mbuf's reference counter. When the reference
* counter becomes 0, the direct mbuf is freed.
*/
static inline void
__rte_pktmbuf_free_direct(struct rte_mbuf *m)
{
struct rte_mbuf *md;
RTE_ASSERT(RTE_MBUF_CLONED(m));
md = rte_mbuf_from_indirect(m);
if (rte_mbuf_refcnt_update(md, -1) == 0) {
md->next = NULL;
md->nb_segs = 1;
rte_mbuf_refcnt_set(md, 1);
rte_mbuf_raw_free(md);
}
}
/**
* Detach a packet mbuf from external buffer or direct buffer.
*
* - decrement refcnt and free the external/direct buffer if refcnt
* becomes zero.
* - restore original mbuf address and length values.
* - reset pktmbuf data and data_len to their default values.
*
* All other fields of the given packet mbuf will be left intact.
*
* If the packet mbuf was allocated from the pool with pinned
* external buffers the rte_pktmbuf_detach does nothing with the
* mbuf of this kind, because the pinned buffers are not supposed
* to be detached.
*
* @param m
* The indirect attached packet mbuf.
*/
static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
{
struct rte_mempool *mp = m->pool;
uint32_t mbuf_size, buf_len;
uint16_t priv_size;
if (RTE_MBUF_HAS_EXTBUF(m)) {
/*
* The mbuf has the external attached buffer,
* we should check the type of the memory pool where
* the mbuf was allocated from to detect the pinned
* external buffer.
*/
uint32_t flags = rte_pktmbuf_priv_flags(mp);
if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) {
/*
* The pinned external buffer should not be
* detached from its backing mbuf, just exit.
*/
return;
}
__rte_pktmbuf_free_extbuf(m);
} else {
__rte_pktmbuf_free_direct(m);
}
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
buf_len = rte_pktmbuf_data_room_size(mp);
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
rte_pktmbuf_reset_headroom(m);
m->data_len = 0;
m->ol_flags = 0;
}
/**
* @internal Handle the packet mbufs with attached pinned external buffer
* on the mbuf freeing:
*
* - return zero if reference counter in shinfo is one. It means there is
* no more reference to this pinned buffer and mbuf can be returned to
* the pool
*
* - otherwise (if reference counter is not one), decrement reference
* counter and return non-zero value to prevent freeing the backing mbuf.
*
* Returns non zero if mbuf should not be freed.
*/
static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m)
{
struct rte_mbuf_ext_shared_info *shinfo;
/* Clear flags, mbuf is being freed. */
m->ol_flags = RTE_MBUF_F_EXTERNAL;
shinfo = m->shinfo;
/* Optimize for performance - do not dec/reinit */
if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1))
return 0;
/*
* Direct usage of add primitive to avoid
* duplication of comparing with one.
*/
if (likely(__atomic_add_fetch(&shinfo->refcnt, (uint16_t)-1,
__ATOMIC_ACQ_REL)))
return 1;
/* Reinitialize counter before mbuf freeing. */
rte_mbuf_ext_refcnt_set(shinfo, 1);
return 0;
}
/**
* Decrease reference counter and unlink a mbuf segment
*
* This function does the same than a free, except that it does not
* return the segment to its pool.
* It decreases the reference counter, and if it reaches 0, it is
* detached from its parent for an indirect mbuf.
*
* @param m
* The mbuf to be unlinked
* @return
* - (m) if it is the last reference. It can be recycled or freed.
* - (NULL) if the mbuf still has remaining references on it.
*/
static __rte_always_inline struct rte_mbuf *
rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
if (likely(rte_mbuf_refcnt_read(m) == 1)) {
if (!RTE_MBUF_DIRECT(m)) {
rte_pktmbuf_detach(m);
if (RTE_MBUF_HAS_EXTBUF(m) &&
RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
__rte_pktmbuf_pinned_extbuf_decref(m))
return NULL;
}
if (m->next != NULL)
m->next = NULL;
if (m->nb_segs != 1)
m->nb_segs = 1;
return m;
} else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
if (!RTE_MBUF_DIRECT(m)) {
rte_pktmbuf_detach(m);
if (RTE_MBUF_HAS_EXTBUF(m) &&
RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
__rte_pktmbuf_pinned_extbuf_decref(m))
return NULL;
}
if (m->next != NULL)
m->next = NULL;
if (m->nb_segs != 1)
m->nb_segs = 1;
rte_mbuf_refcnt_set(m, 1);
return m;
}
return NULL;
}
/**
* Free a segment of a packet mbuf into its original mempool.
*
* Free an mbuf, without parsing other segments in case of chained
* buffers.
*
* @param m
* The packet mbuf segment to be freed.
*/
static __rte_always_inline void
rte_pktmbuf_free_seg(struct rte_mbuf *m)
{
m = rte_pktmbuf_prefree_seg(m);
if (likely(m != NULL))
rte_mbuf_raw_free(m);
}
/**
* Free a packet mbuf back into its original mempool.
*
* Free an mbuf, and all its segments in case of chained buffers. Each
* segment is added back into its original mempool.
*
* @param m
* The packet mbuf to be freed. If NULL, the function does nothing.
*/
static inline void rte_pktmbuf_free(struct rte_mbuf *m)
{
struct rte_mbuf *m_next;
if (m != NULL)
__rte_mbuf_sanity_check(m, 1);
while (m != NULL) {
m_next = m->next;
rte_pktmbuf_free_seg(m);
m = m_next;
}
}
/**
* Free a bulk of packet mbufs back into their original mempools.
*
* Free a bulk of mbufs, and all their segments in case of chained buffers.
* Each segment is added back into its original mempool.
*
* @param mbufs
* Array of pointers to packet mbufs.
* The array may contain NULL pointers.
* @param count
* Array size.
*/
void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count);
/**
* Create a "clone" of the given packet mbuf.
*
* Walks through all segments of the given packet mbuf, and for each of them:
* - Creates a new packet mbuf from the given pool.
* - Attaches newly created mbuf to the segment.
* Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
* from the original packet mbuf.
*
* @param md
* The packet mbuf to be cloned.
* @param mp
* The mempool from which the "clone" mbufs are allocated.
* @return
* - The pointer to the new "clone" mbuf on success.
* - NULL if allocation fails.
*/
struct rte_mbuf *
rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp);
/**
* Create a full copy of a given packet mbuf.
*
* Copies all the data from a given packet mbuf to a newly allocated
* set of mbufs. The private data are is not copied.
*
* @param m
* The packet mbuf to be copied.
* @param mp
* The mempool from which the "clone" mbufs are allocated.
* @param offset
* The number of bytes to skip before copying.
* If the mbuf does not have that many bytes, it is an error
* and NULL is returned.
* @param length
* The upper limit on bytes to copy. Passing UINT32_MAX
* means all data (after offset).
* @return
* - The pointer to the new "clone" mbuf on success.
* - NULL if allocation fails.
*/
struct rte_mbuf *
rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
uint32_t offset, uint32_t length);
/**
* Adds given value to the refcnt of all packet mbuf segments.
*
* Walks through all segments of given packet mbuf and for each of them
* invokes rte_mbuf_refcnt_update().
*
* @param m
* The packet mbuf whose refcnt to be updated.
* @param v
* The value to add to the mbuf's segments refcnt.
*/
static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
{
__rte_mbuf_sanity_check(m, 1);
do {
rte_mbuf_refcnt_update(m, v);
} while ((m = m->next) != NULL);
}
/**
* Get the headroom in a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the headroom.
*/
static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
return m->data_off;
}
/**
* Get the tailroom of a packet mbuf.
*
* @param m
* The packet mbuf.
* @return
* The length of the tailroom.
*/
static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 0);
return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
m->data_len);
}
/**
* Get the last segment of the packet.
*
* @param m
* The packet mbuf.
* @return
* The last segment of the given mbuf.
*/
static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
while (m->next != NULL)
m = m->next;
return m;
}
/**
* A macro that returns the length of the packet.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
/**
* A macro that returns the length of the segment.
*
* The value can be read or assigned.
*
* @param m
* The packet mbuf.
*/
#define rte_pktmbuf_data_len(m) ((m)->data_len)
/**
* Prepend len bytes to an mbuf data area.
*
* Returns a pointer to the new
* data start address. If there is not enough headroom in the first
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The pkt mbuf.
* @param len
* The amount of data to prepend (in bytes).
* @return
* A pointer to the start of the newly prepended data, or
* NULL if there is not enough headroom space in the first segment
*/
static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > rte_pktmbuf_headroom(m)))
return NULL;
/* NB: elaborating the subtraction like this instead of using
* -= allows us to ensure the result type is uint16_t
* avoiding compiler warnings on gcc 8.1 at least */
m->data_off = (uint16_t)(m->data_off - len);
m->data_len = (uint16_t)(m->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Append len bytes to an mbuf.
*
* Append len bytes to an mbuf and return a pointer to the start address
* of the added data. If there is not enough tailroom in the last
* segment, the function will return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to append (in bytes).
* @return
* A pointer to the start of the newly appended data, or
* NULL if there is not enough tailroom space in the last segment
*/
static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
{
void *tail;
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
return NULL;
tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
m_last->data_len = (uint16_t)(m_last->data_len + len);
m->pkt_len = (m->pkt_len + len);
return (char*) tail;
}
/**
* Remove len bytes at the beginning of an mbuf.
*
* Returns a pointer to the start address of the new data area. If the
* length is greater than the length of the first segment, then the
* function will fail and return NULL, without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* A pointer to the new start of the data.
*/
static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
{
__rte_mbuf_sanity_check(m, 1);
if (unlikely(len > m->data_len))
return NULL;
/* NB: elaborating the addition like this instead of using
* += allows us to ensure the result type is uint16_t
* avoiding compiler warnings on gcc 8.1 at least */
m->data_len = (uint16_t)(m->data_len - len);
m->data_off = (uint16_t)(m->data_off + len);
m->pkt_len = (m->pkt_len - len);
return (char *)m->buf_addr + m->data_off;
}
/**
* Remove len bytes of data at the end of the mbuf.
*
* If the length is greater than the length of the last segment, the
* function will fail and return -1 without modifying the mbuf.
*
* @param m
* The packet mbuf.
* @param len
* The amount of data to remove (in bytes).
* @return
* - 0: On success.
* - -1: On error.
*/
static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
{
struct rte_mbuf *m_last;
__rte_mbuf_sanity_check(m, 1);
m_last = rte_pktmbuf_lastseg(m);
if (unlikely(len > m_last->data_len))
return -1;
m_last->data_len = (uint16_t)(m_last->data_len - len);
m->pkt_len = (m->pkt_len - len);
return 0;
}
/**
* Test if mbuf data is contiguous.
*
* @param m
* The packet mbuf.
* @return
* - 1, if all data is contiguous (one segment).
* - 0, if there is several segments.
*/
static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
{
__rte_mbuf_sanity_check(m, 1);
return m->nb_segs == 1;
}
/**
* @internal used by rte_pktmbuf_read().
*/
const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
uint32_t len, void *buf);
/**
* Read len data bytes in a mbuf at specified offset.
*
* If the data is contiguous, return the pointer in the mbuf data, else
* copy the data in the buffer provided by the user and return its
* pointer.
*
* @param m
* The pointer to the mbuf.
* @param off
* The offset of the data in the mbuf.
* @param len
* The amount of bytes to read.
* @param buf
* The buffer where data is copied if it is not contiguous in mbuf
* data. Its length should be at least equal to the len parameter.
* @return
* The pointer to the data, either in the mbuf if it is contiguous,
* or in the user buffer. If mbuf is too small, NULL is returned.
*/
static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
uint32_t off, uint32_t len, void *buf)
{
if (likely(off + len <= rte_pktmbuf_data_len(m)))
return rte_pktmbuf_mtod_offset(m, char *, off);
else
return __rte_pktmbuf_read(m, off, len, buf);
}
/**
* Chain an mbuf to another, thereby creating a segmented packet.
*
* Note: The implementation will do a linear walk over the segments to find
* the tail entry. For cases when there are many segments, it's better to
* chain the entries manually.
*
* @param head
* The head of the mbuf chain (the first packet)
* @param tail
* The mbuf to put last in the chain
*
* @return
* - 0, on success.
* - -EOVERFLOW, if the chain segment limit exceeded
*/
static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
{
struct rte_mbuf *cur_tail;
/* Check for number-of-segments-overflow */
if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
return -EOVERFLOW;
/* Chain 'tail' onto the old tail */
cur_tail = rte_pktmbuf_lastseg(head);
cur_tail->next = tail;
/* accumulate number of segments and total length.
* NB: elaborating the addition like this instead of using
* -= allows us to ensure the result type is uint16_t
* avoiding compiler warnings on gcc 8.1 at least */
head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
head->pkt_len += tail->pkt_len;
/* pkt_len is only set in the head */
tail->pkt_len = tail->data_len;
return 0;
}
/**
* For given input values generate raw tx_offload value.
* Note that it is caller responsibility to make sure that input parameters
* don't exceed maximum bit-field values.
* @param il2
* l2_len value.
* @param il3
* l3_len value.
* @param il4
* l4_len value.
* @param tso
* tso_segsz value.
* @param ol3
* outer_l3_len value.
* @param ol2
* outer_l2_len value.
* @param unused
* unused value.
* @return
* raw tx_offload value.
*/
static __rte_always_inline uint64_t
rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
uint64_t ol3, uint64_t ol2, uint64_t unused)
{
return il2 << RTE_MBUF_L2_LEN_OFS |
il3 << RTE_MBUF_L3_LEN_OFS |
il4 << RTE_MBUF_L4_LEN_OFS |
tso << RTE_MBUF_TSO_SEGSZ_OFS |
ol3 << RTE_MBUF_OUTL3_LEN_OFS |
ol2 << RTE_MBUF_OUTL2_LEN_OFS |
unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
}
/**
* Validate general requirements for Tx offload in mbuf.
*
* This function checks correctness and completeness of Tx offload settings.
*
* @param m
* The packet mbuf to be validated.
* @return
* 0 if packet is valid
*/
static inline int
rte_validate_tx_offload(const struct rte_mbuf *m)
{
uint64_t ol_flags = m->ol_flags;
/* Does packet set any of available offloads? */
if (!(ol_flags & RTE_MBUF_F_TX_OFFLOAD_MASK))
return 0;
/* IP checksum can be counted only for IPv4 packet */
if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM) && (ol_flags & RTE_MBUF_F_TX_IPV6))
return -EINVAL;
/* IP type not set when required */
if (ol_flags & (RTE_MBUF_F_TX_L4_MASK | RTE_MBUF_F_TX_TCP_SEG))
if (!(ol_flags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IPV6)))
return -EINVAL;
/* Check requirements for TSO packet */
if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
if ((m->tso_segsz == 0) ||
((ol_flags & RTE_MBUF_F_TX_IPV4) &&
!(ol_flags & RTE_MBUF_F_TX_IP_CKSUM)))
return -EINVAL;
/* RTE_MBUF_F_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
if ((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) &&
!(ol_flags & RTE_MBUF_F_TX_OUTER_IPV4))
return -EINVAL;
return 0;
}
/**
* @internal used by rte_pktmbuf_linearize().
*/
int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf);
/**
* Linearize data in mbuf.
*
* This function moves the mbuf data in the first segment if there is enough
* tailroom. The subsequent segments are unchained and freed.
*
* @param mbuf
* mbuf to linearize
* @return
* - 0, on success
* - -1, on error
*/
static inline int
rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
{
if (rte_pktmbuf_is_contiguous(mbuf))
return 0;
return __rte_pktmbuf_linearize(mbuf);
}
/**
* Dump an mbuf structure to a file.
*
* Dump all fields for the given packet mbuf and all its associated
* segments (in the case of a chained buffer).
*
* @param f
* A pointer to a file for output
* @param m
* The packet mbuf.
* @param dump_len
* If dump_len != 0, also dump the "dump_len" first data bytes of
* the packet.
*/
void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
/**
* Get the value of mbuf sched queue_id field.
*/
static inline uint32_t
rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
{
return m->hash.sched.queue_id;
}
/**
* Get the value of mbuf sched traffic_class field.
*/
static inline uint8_t
rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
{
return m->hash.sched.traffic_class;
}
/**
* Get the value of mbuf sched color field.
*/
static inline uint8_t
rte_mbuf_sched_color_get(const struct rte_mbuf *m)
{
return m->hash.sched.color;
}
/**
* Get the values of mbuf sched queue_id, traffic_class and color.
*
* @param m
* Mbuf to read
* @param queue_id
* Returns the queue id
* @param traffic_class
* Returns the traffic class id
* @param color
* Returns the colour id
*/
static inline void
rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
uint8_t *traffic_class,
uint8_t *color)
{
struct rte_mbuf_sched sched = m->hash.sched;
*queue_id = sched.queue_id;
*traffic_class = sched.traffic_class;
*color = sched.color;
}
/**
* Set the mbuf sched queue_id to the defined value.
*/
static inline void
rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
{
m->hash.sched.queue_id = queue_id;
}
/**
* Set the mbuf sched traffic_class id to the defined value.
*/
static inline void
rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
{
m->hash.sched.traffic_class = traffic_class;
}
/**
* Set the mbuf sched color id to the defined value.
*/
static inline void
rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
{
m->hash.sched.color = color;
}
/**
* Set the mbuf sched queue_id, traffic_class and color.
*
* @param m
* Mbuf to set
* @param queue_id
* Queue id value to be set
* @param traffic_class
* Traffic class id value to be set
* @param color
* Color id to be set
*/
static inline void
rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
uint8_t traffic_class,
uint8_t color)
{
m->hash.sched = (struct rte_mbuf_sched){
.queue_id = queue_id,
.traffic_class = traffic_class,
.color = color,
.reserved = 0,
};
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_MBUF_H_ */