5dec95e36d
The change is required to support datapath-dependent device operations for secondary process. It is just a step in the direction. Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
1075 lines
26 KiB
C
1075 lines
26 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (c) 2016-2018 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*/
|
|
|
|
#include "sfc.h"
|
|
#include "sfc_debug.h"
|
|
#include "sfc_log.h"
|
|
#include "sfc_ev.h"
|
|
#include "sfc_tx.h"
|
|
#include "sfc_tweak.h"
|
|
#include "sfc_kvargs.h"
|
|
|
|
/*
|
|
* Maximum number of TX queue flush attempts in case of
|
|
* failure or flush timeout
|
|
*/
|
|
#define SFC_TX_QFLUSH_ATTEMPTS (3)
|
|
|
|
/*
|
|
* Time to wait between event queue polling attempts when waiting for TX
|
|
* queue flush done or flush failed events
|
|
*/
|
|
#define SFC_TX_QFLUSH_POLL_WAIT_MS (1)
|
|
|
|
/*
|
|
* Maximum number of event queue polling attempts when waiting for TX queue
|
|
* flush done or flush failed events; it defines TX queue flush attempt timeout
|
|
* together with SFC_TX_QFLUSH_POLL_WAIT_MS
|
|
*/
|
|
#define SFC_TX_QFLUSH_POLL_ATTEMPTS (2000)
|
|
|
|
uint64_t
|
|
sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
uint64_t caps = 0;
|
|
|
|
if ((sa->priv.dp_tx->features & SFC_DP_TX_FEAT_VLAN_INSERT) &&
|
|
encp->enc_hw_tx_insert_vlan_enabled)
|
|
caps |= DEV_TX_OFFLOAD_VLAN_INSERT;
|
|
|
|
if (sa->priv.dp_tx->features & SFC_DP_TX_FEAT_MULTI_SEG)
|
|
caps |= DEV_TX_OFFLOAD_MULTI_SEGS;
|
|
|
|
if ((~sa->priv.dp_tx->features & SFC_DP_TX_FEAT_MULTI_POOL) &&
|
|
(~sa->priv.dp_tx->features & SFC_DP_TX_FEAT_REFCNT))
|
|
caps |= DEV_TX_OFFLOAD_MBUF_FAST_FREE;
|
|
|
|
return caps;
|
|
}
|
|
|
|
uint64_t
|
|
sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
uint64_t caps = 0;
|
|
|
|
caps |= DEV_TX_OFFLOAD_IPV4_CKSUM;
|
|
caps |= DEV_TX_OFFLOAD_UDP_CKSUM;
|
|
caps |= DEV_TX_OFFLOAD_TCP_CKSUM;
|
|
|
|
if (encp->enc_tunnel_encapsulations_supported)
|
|
caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
|
|
|
|
if (sa->tso)
|
|
caps |= DEV_TX_OFFLOAD_TCP_TSO;
|
|
|
|
return caps;
|
|
}
|
|
|
|
static int
|
|
sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level,
|
|
const struct rte_eth_txconf *tx_conf,
|
|
uint64_t offloads)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (tx_conf->tx_rs_thresh != 0) {
|
|
sfc_err(sa, "RS bit in transmit descriptor is not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (tx_conf->tx_free_thresh > txq_max_fill_level) {
|
|
sfc_err(sa,
|
|
"TxQ free threshold too large: %u vs maximum %u",
|
|
tx_conf->tx_free_thresh, txq_max_fill_level);
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (tx_conf->tx_thresh.pthresh != 0 ||
|
|
tx_conf->tx_thresh.hthresh != 0 ||
|
|
tx_conf->tx_thresh.wthresh != 0) {
|
|
sfc_warn(sa,
|
|
"prefetch/host/writeback thresholds are not supported");
|
|
}
|
|
|
|
/* We either perform both TCP and UDP offload, or no offload at all */
|
|
if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) !=
|
|
((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) {
|
|
sfc_err(sa, "TCP and UDP offloads can't be set independently");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_tx_qflush_done(struct sfc_txq *txq)
|
|
{
|
|
txq->state |= SFC_TXQ_FLUSHED;
|
|
txq->state &= ~SFC_TXQ_FLUSHING;
|
|
}
|
|
|
|
int
|
|
sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
|
|
uint16_t nb_tx_desc, unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
unsigned int txq_entries;
|
|
unsigned int evq_entries;
|
|
unsigned int txq_max_fill_level;
|
|
struct sfc_txq_info *txq_info;
|
|
struct sfc_evq *evq;
|
|
struct sfc_txq *txq;
|
|
int rc = 0;
|
|
struct sfc_dp_tx_qcreate_info info;
|
|
uint64_t offloads;
|
|
|
|
sfc_log_init(sa, "TxQ = %u", sw_index);
|
|
|
|
rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &txq_entries,
|
|
&evq_entries, &txq_max_fill_level);
|
|
if (rc != 0)
|
|
goto fail_size_up_rings;
|
|
SFC_ASSERT(txq_entries >= EFX_TXQ_MINNDESCS);
|
|
SFC_ASSERT(txq_entries <= sa->txq_max_entries);
|
|
SFC_ASSERT(txq_entries >= nb_tx_desc);
|
|
SFC_ASSERT(txq_max_fill_level <= nb_tx_desc);
|
|
|
|
offloads = tx_conf->offloads |
|
|
sa->eth_dev->data->dev_conf.txmode.offloads;
|
|
rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads);
|
|
if (rc != 0)
|
|
goto fail_bad_conf;
|
|
|
|
SFC_ASSERT(sw_index < sa->txq_count);
|
|
txq_info = &sa->txq_info[sw_index];
|
|
|
|
txq_info->entries = txq_entries;
|
|
|
|
rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
|
|
evq_entries, socket_id, &evq);
|
|
if (rc != 0)
|
|
goto fail_ev_qinit;
|
|
|
|
rc = ENOMEM;
|
|
txq = rte_zmalloc_socket("sfc-txq", sizeof(*txq), 0, socket_id);
|
|
if (txq == NULL)
|
|
goto fail_txq_alloc;
|
|
|
|
txq_info->txq = txq;
|
|
|
|
txq->hw_index = sw_index;
|
|
txq->evq = evq;
|
|
txq_info->free_thresh =
|
|
(tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
|
|
SFC_TX_DEFAULT_FREE_THRESH;
|
|
txq_info->offloads = offloads;
|
|
|
|
rc = sfc_dma_alloc(sa, "txq", sw_index, EFX_TXQ_SIZE(txq_info->entries),
|
|
socket_id, &txq->mem);
|
|
if (rc != 0)
|
|
goto fail_dma_alloc;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
info.max_fill_level = txq_max_fill_level;
|
|
info.free_thresh = txq_info->free_thresh;
|
|
info.offloads = offloads;
|
|
info.txq_entries = txq_info->entries;
|
|
info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
|
|
info.txq_hw_ring = txq->mem.esm_base;
|
|
info.evq_entries = evq_entries;
|
|
info.evq_hw_ring = evq->mem.esm_base;
|
|
info.hw_index = txq->hw_index;
|
|
info.mem_bar = sa->mem_bar.esb_base;
|
|
info.vi_window_shift = encp->enc_vi_window_shift;
|
|
info.tso_tcp_header_offset_limit =
|
|
encp->enc_tx_tso_tcp_header_offset_limit;
|
|
|
|
rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
|
|
&RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
|
|
socket_id, &info, &txq->dp);
|
|
if (rc != 0)
|
|
goto fail_dp_tx_qinit;
|
|
|
|
evq->dp_txq = txq->dp;
|
|
|
|
txq->state = SFC_TXQ_INITIALIZED;
|
|
|
|
txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
|
|
|
|
return 0;
|
|
|
|
fail_dp_tx_qinit:
|
|
sfc_dma_free(sa, &txq->mem);
|
|
|
|
fail_dma_alloc:
|
|
txq_info->txq = NULL;
|
|
rte_free(txq);
|
|
|
|
fail_txq_alloc:
|
|
sfc_ev_qfini(evq);
|
|
|
|
fail_ev_qinit:
|
|
txq_info->entries = 0;
|
|
|
|
fail_bad_conf:
|
|
fail_size_up_rings:
|
|
sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
|
|
{
|
|
struct sfc_txq_info *txq_info;
|
|
struct sfc_txq *txq;
|
|
|
|
sfc_log_init(sa, "TxQ = %u", sw_index);
|
|
|
|
SFC_ASSERT(sw_index < sa->txq_count);
|
|
sa->eth_dev->data->tx_queues[sw_index] = NULL;
|
|
|
|
txq_info = &sa->txq_info[sw_index];
|
|
|
|
txq = txq_info->txq;
|
|
SFC_ASSERT(txq != NULL);
|
|
SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);
|
|
|
|
sa->priv.dp_tx->qdestroy(txq->dp);
|
|
txq->dp = NULL;
|
|
|
|
txq_info->txq = NULL;
|
|
txq_info->entries = 0;
|
|
|
|
sfc_dma_free(sa, &txq->mem);
|
|
|
|
sfc_ev_qfini(txq->evq);
|
|
txq->evq = NULL;
|
|
|
|
rte_free(txq);
|
|
}
|
|
|
|
static int
|
|
sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
|
|
{
|
|
sfc_log_init(sa, "TxQ = %u", sw_index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
|
|
{
|
|
int rc = 0;
|
|
|
|
switch (txmode->mq_mode) {
|
|
case ETH_MQ_TX_NONE:
|
|
break;
|
|
default:
|
|
sfc_err(sa, "Tx multi-queue mode %u not supported",
|
|
txmode->mq_mode);
|
|
rc = EINVAL;
|
|
}
|
|
|
|
/*
|
|
* These features are claimed to be i40e-specific,
|
|
* but it does make sense to double-check their absence
|
|
*/
|
|
if (txmode->hw_vlan_reject_tagged) {
|
|
sfc_err(sa, "Rejecting tagged packets not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (txmode->hw_vlan_reject_untagged) {
|
|
sfc_err(sa, "Rejecting untagged packets not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (txmode->hw_vlan_insert_pvid) {
|
|
sfc_err(sa, "Port-based VLAN insertion not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* Destroy excess queues that are no longer needed after reconfiguration
|
|
* or complete close.
|
|
*/
|
|
static void
|
|
sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
|
|
{
|
|
int sw_index;
|
|
|
|
SFC_ASSERT(nb_tx_queues <= sa->txq_count);
|
|
|
|
sw_index = sa->txq_count;
|
|
while (--sw_index >= (int)nb_tx_queues) {
|
|
if (sa->txq_info[sw_index].txq != NULL)
|
|
sfc_tx_qfini(sa, sw_index);
|
|
}
|
|
|
|
sa->txq_count = nb_tx_queues;
|
|
}
|
|
|
|
int
|
|
sfc_tx_configure(struct sfc_adapter *sa)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
|
|
const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
|
|
int rc = 0;
|
|
|
|
sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
|
|
nb_tx_queues, sa->txq_count);
|
|
|
|
/*
|
|
* The datapath implementation assumes absence of boundary
|
|
* limits on Tx DMA descriptors. Addition of these checks on
|
|
* datapath would simply make the datapath slower.
|
|
*/
|
|
if (encp->enc_tx_dma_desc_boundary != 0) {
|
|
rc = ENOTSUP;
|
|
goto fail_tx_dma_desc_boundary;
|
|
}
|
|
|
|
rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
|
|
if (rc != 0)
|
|
goto fail_check_mode;
|
|
|
|
if (nb_tx_queues == sa->txq_count)
|
|
goto done;
|
|
|
|
if (sa->txq_info == NULL) {
|
|
sa->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues,
|
|
sizeof(sa->txq_info[0]), 0,
|
|
sa->socket_id);
|
|
if (sa->txq_info == NULL)
|
|
goto fail_txqs_alloc;
|
|
} else {
|
|
struct sfc_txq_info *new_txq_info;
|
|
|
|
if (nb_tx_queues < sa->txq_count)
|
|
sfc_tx_fini_queues(sa, nb_tx_queues);
|
|
|
|
new_txq_info =
|
|
rte_realloc(sa->txq_info,
|
|
nb_tx_queues * sizeof(sa->txq_info[0]), 0);
|
|
if (new_txq_info == NULL && nb_tx_queues > 0)
|
|
goto fail_txqs_realloc;
|
|
|
|
sa->txq_info = new_txq_info;
|
|
if (nb_tx_queues > sa->txq_count)
|
|
memset(&sa->txq_info[sa->txq_count], 0,
|
|
(nb_tx_queues - sa->txq_count) *
|
|
sizeof(sa->txq_info[0]));
|
|
}
|
|
|
|
while (sa->txq_count < nb_tx_queues) {
|
|
rc = sfc_tx_qinit_info(sa, sa->txq_count);
|
|
if (rc != 0)
|
|
goto fail_tx_qinit_info;
|
|
|
|
sa->txq_count++;
|
|
}
|
|
|
|
done:
|
|
return 0;
|
|
|
|
fail_tx_qinit_info:
|
|
fail_txqs_realloc:
|
|
fail_txqs_alloc:
|
|
sfc_tx_close(sa);
|
|
|
|
fail_check_mode:
|
|
fail_tx_dma_desc_boundary:
|
|
sfc_log_init(sa, "failed (rc = %d)", rc);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_tx_close(struct sfc_adapter *sa)
|
|
{
|
|
sfc_tx_fini_queues(sa, 0);
|
|
|
|
rte_free(sa->txq_info);
|
|
sa->txq_info = NULL;
|
|
}
|
|
|
|
int
|
|
sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
|
|
{
|
|
uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) |
|
|
sfc_tx_get_queue_offload_caps(sa);
|
|
struct rte_eth_dev_data *dev_data;
|
|
struct sfc_txq_info *txq_info;
|
|
struct sfc_txq *txq;
|
|
struct sfc_evq *evq;
|
|
uint16_t flags = 0;
|
|
unsigned int desc_index;
|
|
int rc = 0;
|
|
|
|
sfc_log_init(sa, "TxQ = %u", sw_index);
|
|
|
|
SFC_ASSERT(sw_index < sa->txq_count);
|
|
txq_info = &sa->txq_info[sw_index];
|
|
|
|
txq = txq_info->txq;
|
|
|
|
SFC_ASSERT(txq != NULL);
|
|
SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);
|
|
|
|
evq = txq->evq;
|
|
|
|
rc = sfc_ev_qstart(evq, sfc_evq_index_by_txq_sw_index(sa, sw_index));
|
|
if (rc != 0)
|
|
goto fail_ev_qstart;
|
|
|
|
if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
|
|
flags |= EFX_TXQ_CKSUM_IPV4;
|
|
|
|
if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
|
|
flags |= EFX_TXQ_CKSUM_INNER_IPV4;
|
|
|
|
if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) ||
|
|
(txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
|
|
flags |= EFX_TXQ_CKSUM_TCPUDP;
|
|
|
|
if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
|
|
flags |= EFX_TXQ_CKSUM_INNER_TCPUDP;
|
|
}
|
|
|
|
if (txq_info->offloads & DEV_TX_OFFLOAD_TCP_TSO)
|
|
flags |= EFX_TXQ_FATSOV2;
|
|
|
|
rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem,
|
|
txq_info->entries, 0 /* not used on EF10 */,
|
|
flags, evq->common,
|
|
&txq->common, &desc_index);
|
|
if (rc != 0) {
|
|
if (sa->tso && (rc == ENOSPC))
|
|
sfc_err(sa, "ran out of TSO contexts");
|
|
|
|
goto fail_tx_qcreate;
|
|
}
|
|
|
|
efx_tx_qenable(txq->common);
|
|
|
|
txq->state |= SFC_TXQ_STARTED;
|
|
|
|
rc = sa->priv.dp_tx->qstart(txq->dp, evq->read_ptr, desc_index);
|
|
if (rc != 0)
|
|
goto fail_dp_qstart;
|
|
|
|
/*
|
|
* It seems to be used by DPDK for debug purposes only ('rte_ether')
|
|
*/
|
|
dev_data = sa->eth_dev->data;
|
|
dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED;
|
|
|
|
return 0;
|
|
|
|
fail_dp_qstart:
|
|
txq->state = SFC_TXQ_INITIALIZED;
|
|
efx_tx_qdestroy(txq->common);
|
|
|
|
fail_tx_qcreate:
|
|
sfc_ev_qstop(evq);
|
|
|
|
fail_ev_qstart:
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
|
|
{
|
|
struct rte_eth_dev_data *dev_data;
|
|
struct sfc_txq_info *txq_info;
|
|
struct sfc_txq *txq;
|
|
unsigned int retry_count;
|
|
unsigned int wait_count;
|
|
int rc;
|
|
|
|
sfc_log_init(sa, "TxQ = %u", sw_index);
|
|
|
|
SFC_ASSERT(sw_index < sa->txq_count);
|
|
txq_info = &sa->txq_info[sw_index];
|
|
|
|
txq = txq_info->txq;
|
|
|
|
if (txq == NULL || txq->state == SFC_TXQ_INITIALIZED)
|
|
return;
|
|
|
|
SFC_ASSERT(txq->state & SFC_TXQ_STARTED);
|
|
|
|
sa->priv.dp_tx->qstop(txq->dp, &txq->evq->read_ptr);
|
|
|
|
/*
|
|
* Retry TX queue flushing in case of flush failed or
|
|
* timeout; in the worst case it can delay for 6 seconds
|
|
*/
|
|
for (retry_count = 0;
|
|
((txq->state & SFC_TXQ_FLUSHED) == 0) &&
|
|
(retry_count < SFC_TX_QFLUSH_ATTEMPTS);
|
|
++retry_count) {
|
|
rc = efx_tx_qflush(txq->common);
|
|
if (rc != 0) {
|
|
txq->state |= (rc == EALREADY) ?
|
|
SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait for TX queue flush done or flush failed event at least
|
|
* SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
|
|
* than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
|
|
* by SFC_TX_QFLUSH_POLL_ATTEMPTS)
|
|
*/
|
|
wait_count = 0;
|
|
do {
|
|
rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
|
|
sfc_ev_qpoll(txq->evq);
|
|
} while ((txq->state & SFC_TXQ_FLUSHING) &&
|
|
wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
|
|
|
|
if (txq->state & SFC_TXQ_FLUSHING)
|
|
sfc_err(sa, "TxQ %u flush timed out", sw_index);
|
|
|
|
if (txq->state & SFC_TXQ_FLUSHED)
|
|
sfc_notice(sa, "TxQ %u flushed", sw_index);
|
|
}
|
|
|
|
sa->priv.dp_tx->qreap(txq->dp);
|
|
|
|
txq->state = SFC_TXQ_INITIALIZED;
|
|
|
|
efx_tx_qdestroy(txq->common);
|
|
|
|
sfc_ev_qstop(txq->evq);
|
|
|
|
/*
|
|
* It seems to be used by DPDK for debug purposes only ('rte_ether')
|
|
*/
|
|
dev_data = sa->eth_dev->data;
|
|
dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
}
|
|
|
|
int
|
|
sfc_tx_start(struct sfc_adapter *sa)
|
|
{
|
|
unsigned int sw_index;
|
|
int rc = 0;
|
|
|
|
sfc_log_init(sa, "txq_count = %u", sa->txq_count);
|
|
|
|
if (sa->tso) {
|
|
if (!efx_nic_cfg_get(sa->nic)->enc_fw_assisted_tso_v2_enabled) {
|
|
sfc_warn(sa, "TSO support was unable to be restored");
|
|
sa->tso = B_FALSE;
|
|
}
|
|
}
|
|
|
|
rc = efx_tx_init(sa->nic);
|
|
if (rc != 0)
|
|
goto fail_efx_tx_init;
|
|
|
|
for (sw_index = 0; sw_index < sa->txq_count; ++sw_index) {
|
|
if (sa->txq_info[sw_index].txq != NULL &&
|
|
(!(sa->txq_info[sw_index].deferred_start) ||
|
|
sa->txq_info[sw_index].deferred_started)) {
|
|
rc = sfc_tx_qstart(sa, sw_index);
|
|
if (rc != 0)
|
|
goto fail_tx_qstart;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail_tx_qstart:
|
|
while (sw_index-- > 0)
|
|
sfc_tx_qstop(sa, sw_index);
|
|
|
|
efx_tx_fini(sa->nic);
|
|
|
|
fail_efx_tx_init:
|
|
sfc_log_init(sa, "failed (rc = %d)", rc);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_tx_stop(struct sfc_adapter *sa)
|
|
{
|
|
unsigned int sw_index;
|
|
|
|
sfc_log_init(sa, "txq_count = %u", sa->txq_count);
|
|
|
|
sw_index = sa->txq_count;
|
|
while (sw_index-- > 0) {
|
|
if (sa->txq_info[sw_index].txq != NULL)
|
|
sfc_tx_qstop(sa, sw_index);
|
|
}
|
|
|
|
efx_tx_fini(sa->nic);
|
|
}
|
|
|
|
static void
|
|
sfc_efx_tx_reap(struct sfc_efx_txq *txq)
|
|
{
|
|
unsigned int completed;
|
|
|
|
sfc_ev_qpoll(txq->evq);
|
|
|
|
for (completed = txq->completed;
|
|
completed != txq->pending; completed++) {
|
|
struct sfc_efx_tx_sw_desc *txd;
|
|
|
|
txd = &txq->sw_ring[completed & txq->ptr_mask];
|
|
|
|
if (txd->mbuf != NULL) {
|
|
rte_pktmbuf_free(txd->mbuf);
|
|
txd->mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
txq->completed = completed;
|
|
}
|
|
|
|
/*
|
|
* The function is used to insert or update VLAN tag;
|
|
* the firmware has state of the firmware tag to insert per TxQ
|
|
* (controlled by option descriptors), hence, if the tag of the
|
|
* packet to be sent is different from one remembered by the firmware,
|
|
* the function will update it
|
|
*/
|
|
static unsigned int
|
|
sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
|
|
efx_desc_t **pend)
|
|
{
|
|
uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
|
|
m->vlan_tci : 0);
|
|
|
|
if (this_tag == txq->hw_vlan_tci)
|
|
return 0;
|
|
|
|
/*
|
|
* The expression inside SFC_ASSERT() is not desired to be checked in
|
|
* a non-debug build because it might be too expensive on the data path
|
|
*/
|
|
SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
|
|
|
|
efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
|
|
*pend);
|
|
(*pend)++;
|
|
txq->hw_vlan_tci = this_tag;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static uint16_t
|
|
sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
|
|
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
|
|
unsigned int added = txq->added;
|
|
unsigned int pushed = added;
|
|
unsigned int pkts_sent = 0;
|
|
efx_desc_t *pend = &txq->pend_desc[0];
|
|
const unsigned int hard_max_fill = txq->max_fill_level;
|
|
const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
|
|
unsigned int fill_level = added - txq->completed;
|
|
boolean_t reap_done;
|
|
int rc __rte_unused;
|
|
struct rte_mbuf **pktp;
|
|
|
|
if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
|
|
goto done;
|
|
|
|
/*
|
|
* If insufficient space for a single packet is present,
|
|
* we should reap; otherwise, we shouldn't do that all the time
|
|
* to avoid latency increase
|
|
*/
|
|
reap_done = (fill_level > soft_max_fill);
|
|
|
|
if (reap_done) {
|
|
sfc_efx_tx_reap(txq);
|
|
/*
|
|
* Recalculate fill level since 'txq->completed'
|
|
* might have changed on reap
|
|
*/
|
|
fill_level = added - txq->completed;
|
|
}
|
|
|
|
for (pkts_sent = 0, pktp = &tx_pkts[0];
|
|
(pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
|
|
pkts_sent++, pktp++) {
|
|
uint16_t hw_vlan_tci_prev = txq->hw_vlan_tci;
|
|
struct rte_mbuf *m_seg = *pktp;
|
|
size_t pkt_len = m_seg->pkt_len;
|
|
unsigned int pkt_descs = 0;
|
|
size_t in_off = 0;
|
|
|
|
/*
|
|
* Here VLAN TCI is expected to be zero in case if no
|
|
* DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised;
|
|
* if the calling app ignores the absence of
|
|
* DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then
|
|
* TX_ERROR will occur
|
|
*/
|
|
pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
|
|
|
|
if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
|
|
/*
|
|
* We expect correct 'pkt->l[2, 3, 4]_len' values
|
|
* to be set correctly by the caller
|
|
*/
|
|
if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
|
|
&pkt_descs, &pkt_len) != 0) {
|
|
/* We may have reached this place for
|
|
* one of the following reasons:
|
|
*
|
|
* 1) Packet header length is greater
|
|
* than SFC_TSOH_STD_LEN
|
|
* 2) TCP header starts at more then
|
|
* 208 bytes into the frame
|
|
*
|
|
* We will deceive RTE saying that we have sent
|
|
* the packet, but we will actually drop it.
|
|
* Hence, we should revert 'pend' to the
|
|
* previous state (in case we have added
|
|
* VLAN descriptor) and start processing
|
|
* another one packet. But the original
|
|
* mbuf shouldn't be orphaned
|
|
*/
|
|
pend -= pkt_descs;
|
|
txq->hw_vlan_tci = hw_vlan_tci_prev;
|
|
|
|
rte_pktmbuf_free(*pktp);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We've only added 2 FATSOv2 option descriptors
|
|
* and 1 descriptor for the linearized packet header.
|
|
* The outstanding work will be done in the same manner
|
|
* as for the usual non-TSO path
|
|
*/
|
|
}
|
|
|
|
for (; m_seg != NULL; m_seg = m_seg->next) {
|
|
efsys_dma_addr_t next_frag;
|
|
size_t seg_len;
|
|
|
|
seg_len = m_seg->data_len;
|
|
next_frag = rte_mbuf_data_iova(m_seg);
|
|
|
|
/*
|
|
* If we've started TSO transaction few steps earlier,
|
|
* we'll skip packet header using an offset in the
|
|
* current segment (which has been set to the
|
|
* first one containing payload)
|
|
*/
|
|
seg_len -= in_off;
|
|
next_frag += in_off;
|
|
in_off = 0;
|
|
|
|
do {
|
|
efsys_dma_addr_t frag_addr = next_frag;
|
|
size_t frag_len;
|
|
|
|
/*
|
|
* It is assumed here that there is no
|
|
* limitation on address boundary
|
|
* crossing by DMA descriptor.
|
|
*/
|
|
frag_len = MIN(seg_len, txq->dma_desc_size_max);
|
|
next_frag += frag_len;
|
|
seg_len -= frag_len;
|
|
pkt_len -= frag_len;
|
|
|
|
efx_tx_qdesc_dma_create(txq->common,
|
|
frag_addr, frag_len,
|
|
(pkt_len == 0),
|
|
pend++);
|
|
|
|
pkt_descs++;
|
|
} while (seg_len != 0);
|
|
}
|
|
|
|
added += pkt_descs;
|
|
|
|
fill_level += pkt_descs;
|
|
if (unlikely(fill_level > hard_max_fill)) {
|
|
/*
|
|
* Our estimation for maximum number of descriptors
|
|
* required to send a packet seems to be wrong.
|
|
* Try to reap (if we haven't yet).
|
|
*/
|
|
if (!reap_done) {
|
|
sfc_efx_tx_reap(txq);
|
|
reap_done = B_TRUE;
|
|
fill_level = added - txq->completed;
|
|
if (fill_level > hard_max_fill) {
|
|
pend -= pkt_descs;
|
|
txq->hw_vlan_tci = hw_vlan_tci_prev;
|
|
break;
|
|
}
|
|
} else {
|
|
pend -= pkt_descs;
|
|
txq->hw_vlan_tci = hw_vlan_tci_prev;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Assign mbuf to the last used desc */
|
|
txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
|
|
}
|
|
|
|
if (likely(pkts_sent > 0)) {
|
|
rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
|
|
pend - &txq->pend_desc[0],
|
|
txq->completed, &txq->added);
|
|
SFC_ASSERT(rc == 0);
|
|
|
|
if (likely(pushed != txq->added))
|
|
efx_tx_qpush(txq->common, txq->added, pushed);
|
|
}
|
|
|
|
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
|
|
if (!reap_done)
|
|
sfc_efx_tx_reap(txq);
|
|
#endif
|
|
|
|
done:
|
|
return pkts_sent;
|
|
}
|
|
|
|
struct sfc_txq *
|
|
sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
|
|
{
|
|
const struct sfc_dp_queue *dpq = &dp_txq->dpq;
|
|
struct rte_eth_dev *eth_dev;
|
|
struct sfc_adapter *sa;
|
|
struct sfc_txq *txq;
|
|
|
|
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
|
|
eth_dev = &rte_eth_devices[dpq->port_id];
|
|
|
|
sa = eth_dev->data->dev_private;
|
|
|
|
SFC_ASSERT(dpq->queue_id < sa->txq_count);
|
|
txq = sa->txq_info[dpq->queue_id].txq;
|
|
|
|
SFC_ASSERT(txq != NULL);
|
|
return txq;
|
|
}
|
|
|
|
static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings;
|
|
static int
|
|
sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,
|
|
unsigned int *txq_entries,
|
|
unsigned int *evq_entries,
|
|
unsigned int *txq_max_fill_level)
|
|
{
|
|
*txq_entries = nb_tx_desc;
|
|
*evq_entries = nb_tx_desc;
|
|
*txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries);
|
|
return 0;
|
|
}
|
|
|
|
static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
|
|
static int
|
|
sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
|
|
const struct rte_pci_addr *pci_addr,
|
|
int socket_id,
|
|
const struct sfc_dp_tx_qcreate_info *info,
|
|
struct sfc_dp_txq **dp_txqp)
|
|
{
|
|
struct sfc_efx_txq *txq;
|
|
struct sfc_txq *ctrl_txq;
|
|
int rc;
|
|
|
|
rc = ENOMEM;
|
|
txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq == NULL)
|
|
goto fail_txq_alloc;
|
|
|
|
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
|
|
|
|
rc = ENOMEM;
|
|
txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
|
|
EFX_TXQ_LIMIT(info->txq_entries),
|
|
sizeof(*txq->pend_desc), 0,
|
|
socket_id);
|
|
if (txq->pend_desc == NULL)
|
|
goto fail_pend_desc_alloc;
|
|
|
|
rc = ENOMEM;
|
|
txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
|
|
info->txq_entries,
|
|
sizeof(*txq->sw_ring),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (txq->sw_ring == NULL)
|
|
goto fail_sw_ring_alloc;
|
|
|
|
ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
|
|
if (ctrl_txq->evq->sa->tso) {
|
|
rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
|
|
info->txq_entries, socket_id);
|
|
if (rc != 0)
|
|
goto fail_alloc_tsoh_objs;
|
|
}
|
|
|
|
txq->evq = ctrl_txq->evq;
|
|
txq->ptr_mask = info->txq_entries - 1;
|
|
txq->max_fill_level = info->max_fill_level;
|
|
txq->free_thresh = info->free_thresh;
|
|
txq->dma_desc_size_max = info->dma_desc_size_max;
|
|
|
|
*dp_txqp = &txq->dp;
|
|
return 0;
|
|
|
|
fail_alloc_tsoh_objs:
|
|
rte_free(txq->sw_ring);
|
|
|
|
fail_sw_ring_alloc:
|
|
rte_free(txq->pend_desc);
|
|
|
|
fail_pend_desc_alloc:
|
|
rte_free(txq);
|
|
|
|
fail_txq_alloc:
|
|
return rc;
|
|
}
|
|
|
|
static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
|
|
static void
|
|
sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
|
|
|
|
sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
|
|
rte_free(txq->sw_ring);
|
|
rte_free(txq->pend_desc);
|
|
rte_free(txq);
|
|
}
|
|
|
|
static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
|
|
static int
|
|
sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
|
|
__rte_unused unsigned int evq_read_ptr,
|
|
unsigned int txq_desc_index)
|
|
{
|
|
/* libefx-based datapath is specific to libefx-based PMD */
|
|
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
|
|
struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
|
|
|
|
txq->common = ctrl_txq->common;
|
|
|
|
txq->pending = txq->completed = txq->added = txq_desc_index;
|
|
txq->hw_vlan_tci = 0;
|
|
|
|
txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
|
|
static void
|
|
sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
|
|
__rte_unused unsigned int *evq_read_ptr)
|
|
{
|
|
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
|
|
|
|
txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
|
|
}
|
|
|
|
static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
|
|
static void
|
|
sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
|
|
{
|
|
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
|
|
unsigned int txds;
|
|
|
|
sfc_efx_tx_reap(txq);
|
|
|
|
for (txds = 0; txds <= txq->ptr_mask; txds++) {
|
|
if (txq->sw_ring[txds].mbuf != NULL) {
|
|
rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
|
|
txq->sw_ring[txds].mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
|
|
}
|
|
|
|
static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status;
|
|
static int
|
|
sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
|
|
{
|
|
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
|
|
|
|
if (unlikely(offset > txq->ptr_mask))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(offset >= txq->max_fill_level))
|
|
return RTE_ETH_TX_DESC_UNAVAIL;
|
|
|
|
/*
|
|
* Poll EvQ to derive up-to-date 'txq->pending' figure;
|
|
* it is required for the queue to be running, but the
|
|
* check is omitted because API design assumes that it
|
|
* is the duty of the caller to satisfy all conditions
|
|
*/
|
|
SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) ==
|
|
SFC_EFX_TXQ_FLAG_RUNNING);
|
|
sfc_ev_qpoll(txq->evq);
|
|
|
|
/*
|
|
* Ring tail is 'txq->pending', and although descriptors
|
|
* between 'txq->completed' and 'txq->pending' are still
|
|
* in use by the driver, they should be reported as DONE
|
|
*/
|
|
if (unlikely(offset < (txq->added - txq->pending)))
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
|
|
/*
|
|
* There is no separate return value for unused descriptors;
|
|
* the latter will be reported as DONE because genuine DONE
|
|
* descriptors will be freed anyway in SW on the next burst
|
|
*/
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
}
|
|
|
|
struct sfc_dp_tx sfc_efx_tx = {
|
|
.dp = {
|
|
.name = SFC_KVARG_DATAPATH_EFX,
|
|
.type = SFC_DP_TX,
|
|
.hw_fw_caps = 0,
|
|
},
|
|
.features = SFC_DP_TX_FEAT_VLAN_INSERT |
|
|
SFC_DP_TX_FEAT_TSO |
|
|
SFC_DP_TX_FEAT_MULTI_POOL |
|
|
SFC_DP_TX_FEAT_REFCNT |
|
|
SFC_DP_TX_FEAT_MULTI_SEG,
|
|
.qsize_up_rings = sfc_efx_tx_qsize_up_rings,
|
|
.qcreate = sfc_efx_tx_qcreate,
|
|
.qdestroy = sfc_efx_tx_qdestroy,
|
|
.qstart = sfc_efx_tx_qstart,
|
|
.qstop = sfc_efx_tx_qstop,
|
|
.qreap = sfc_efx_tx_qreap,
|
|
.qdesc_status = sfc_efx_tx_qdesc_status,
|
|
.pkt_burst = sfc_efx_xmit_pkts,
|
|
};
|