e64f423b12
Convert rte_atomic usages to compiler atomic built-ins for lcore sync in stack_perf test cases. Signed-off-by: Joyce Kong <joyce.kong@arm.com> Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com> Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
359 lines
7.7 KiB
C
359 lines
7.7 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2019 Intel Corporation
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_cycles.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_pause.h>
|
|
#include <rte_stack.h>
|
|
|
|
#include "test.h"
|
|
|
|
#define STACK_NAME "STACK_PERF"
|
|
#define MAX_BURST 32
|
|
#define STACK_SIZE (RTE_MAX_LCORE * MAX_BURST)
|
|
|
|
/*
|
|
* Push/pop bulk sizes, marked volatile so they aren't treated as compile-time
|
|
* constants.
|
|
*/
|
|
static volatile unsigned int bulk_sizes[] = {8, MAX_BURST};
|
|
|
|
static uint32_t lcore_barrier;
|
|
|
|
struct lcore_pair {
|
|
unsigned int c1;
|
|
unsigned int c2;
|
|
};
|
|
|
|
static int
|
|
get_two_hyperthreads(struct lcore_pair *lcp)
|
|
{
|
|
unsigned int socket[2];
|
|
unsigned int core[2];
|
|
unsigned int id[2];
|
|
|
|
RTE_LCORE_FOREACH(id[0]) {
|
|
RTE_LCORE_FOREACH(id[1]) {
|
|
if (id[0] == id[1])
|
|
continue;
|
|
core[0] = rte_lcore_to_cpu_id(id[0]);
|
|
core[1] = rte_lcore_to_cpu_id(id[1]);
|
|
socket[0] = rte_lcore_to_socket_id(id[0]);
|
|
socket[1] = rte_lcore_to_socket_id(id[1]);
|
|
if ((core[0] == core[1]) && (socket[0] == socket[1])) {
|
|
lcp->c1 = id[0];
|
|
lcp->c2 = id[1];
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_cores(struct lcore_pair *lcp)
|
|
{
|
|
unsigned int socket[2];
|
|
unsigned int core[2];
|
|
unsigned int id[2];
|
|
|
|
RTE_LCORE_FOREACH(id[0]) {
|
|
RTE_LCORE_FOREACH(id[1]) {
|
|
if (id[0] == id[1])
|
|
continue;
|
|
core[0] = rte_lcore_to_cpu_id(id[0]);
|
|
core[1] = rte_lcore_to_cpu_id(id[1]);
|
|
socket[0] = rte_lcore_to_socket_id(id[0]);
|
|
socket[1] = rte_lcore_to_socket_id(id[1]);
|
|
if ((core[0] != core[1]) && (socket[0] == socket[1])) {
|
|
lcp->c1 = id[0];
|
|
lcp->c2 = id[1];
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_sockets(struct lcore_pair *lcp)
|
|
{
|
|
unsigned int socket[2];
|
|
unsigned int id[2];
|
|
|
|
RTE_LCORE_FOREACH(id[0]) {
|
|
RTE_LCORE_FOREACH(id[1]) {
|
|
if (id[0] == id[1])
|
|
continue;
|
|
socket[0] = rte_lcore_to_socket_id(id[0]);
|
|
socket[1] = rte_lcore_to_socket_id(id[1]);
|
|
if (socket[0] != socket[1]) {
|
|
lcp->c1 = id[0];
|
|
lcp->c2 = id[1];
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Measure the cycle cost of popping an empty stack. */
|
|
static void
|
|
test_empty_pop(struct rte_stack *s)
|
|
{
|
|
unsigned int iterations = 100000000;
|
|
void *objs[MAX_BURST];
|
|
unsigned int i;
|
|
|
|
uint64_t start = rte_rdtsc();
|
|
|
|
for (i = 0; i < iterations; i++)
|
|
rte_stack_pop(s, objs, bulk_sizes[0]);
|
|
|
|
uint64_t end = rte_rdtsc();
|
|
|
|
printf("Stack empty pop: %.2F\n",
|
|
(double)(end - start) / iterations);
|
|
}
|
|
|
|
struct thread_args {
|
|
struct rte_stack *s;
|
|
unsigned int sz;
|
|
double avg;
|
|
};
|
|
|
|
/* Measure the average per-pointer cycle cost of stack push and pop */
|
|
static int
|
|
bulk_push_pop(void *p)
|
|
{
|
|
unsigned int iterations = 1000000;
|
|
struct thread_args *args = p;
|
|
void *objs[MAX_BURST] = {0};
|
|
unsigned int size, i;
|
|
struct rte_stack *s;
|
|
|
|
s = args->s;
|
|
size = args->sz;
|
|
|
|
__atomic_fetch_sub(&lcore_barrier, 1, __ATOMIC_RELAXED);
|
|
rte_wait_until_equal_32(&lcore_barrier, 0, __ATOMIC_RELAXED);
|
|
|
|
uint64_t start = rte_rdtsc();
|
|
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_stack_push(s, objs, size);
|
|
rte_stack_pop(s, objs, size);
|
|
}
|
|
|
|
uint64_t end = rte_rdtsc();
|
|
|
|
args->avg = ((double)(end - start))/(iterations * size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Run bulk_push_pop() simultaneously on pairs of cores, to measure stack
|
|
* perf when between hyperthread siblings, cores on the same socket, and cores
|
|
* on different sockets.
|
|
*/
|
|
static void
|
|
run_on_core_pair(struct lcore_pair *cores, struct rte_stack *s,
|
|
lcore_function_t fn)
|
|
{
|
|
struct thread_args args[2];
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
|
|
__atomic_store_n(&lcore_barrier, 2, __ATOMIC_RELAXED);
|
|
|
|
args[0].sz = args[1].sz = bulk_sizes[i];
|
|
args[0].s = args[1].s = s;
|
|
|
|
if (cores->c1 == rte_get_main_lcore()) {
|
|
rte_eal_remote_launch(fn, &args[1], cores->c2);
|
|
fn(&args[0]);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
} else {
|
|
rte_eal_remote_launch(fn, &args[0], cores->c1);
|
|
rte_eal_remote_launch(fn, &args[1], cores->c2);
|
|
rte_eal_wait_lcore(cores->c1);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
}
|
|
|
|
printf("Average cycles per object push/pop (bulk size: %u): %.2F\n",
|
|
bulk_sizes[i], (args[0].avg + args[1].avg) / 2);
|
|
}
|
|
}
|
|
|
|
/* Run bulk_push_pop() simultaneously on 1+ cores. */
|
|
static void
|
|
run_on_n_cores(struct rte_stack *s, lcore_function_t fn, int n)
|
|
{
|
|
struct thread_args args[RTE_MAX_LCORE];
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
|
|
unsigned int lcore_id;
|
|
int cnt = 0;
|
|
double avg;
|
|
|
|
__atomic_store_n(&lcore_barrier, n, __ATOMIC_RELAXED);
|
|
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (++cnt >= n)
|
|
break;
|
|
|
|
args[lcore_id].s = s;
|
|
args[lcore_id].sz = bulk_sizes[i];
|
|
|
|
if (rte_eal_remote_launch(fn, &args[lcore_id],
|
|
lcore_id))
|
|
rte_panic("Failed to launch lcore %d\n",
|
|
lcore_id);
|
|
}
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
args[lcore_id].s = s;
|
|
args[lcore_id].sz = bulk_sizes[i];
|
|
|
|
fn(&args[lcore_id]);
|
|
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
avg = args[rte_lcore_id()].avg;
|
|
|
|
cnt = 0;
|
|
RTE_LCORE_FOREACH_WORKER(lcore_id) {
|
|
if (++cnt >= n)
|
|
break;
|
|
avg += args[lcore_id].avg;
|
|
}
|
|
|
|
printf("Average cycles per object push/pop (bulk size: %u): %.2F\n",
|
|
bulk_sizes[i], avg / n);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Measure the cycle cost of pushing and popping a single pointer on a single
|
|
* lcore.
|
|
*/
|
|
static void
|
|
test_single_push_pop(struct rte_stack *s)
|
|
{
|
|
unsigned int iterations = 16000000;
|
|
void *obj = NULL;
|
|
unsigned int i;
|
|
|
|
uint64_t start = rte_rdtsc();
|
|
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_stack_push(s, &obj, 1);
|
|
rte_stack_pop(s, &obj, 1);
|
|
}
|
|
|
|
uint64_t end = rte_rdtsc();
|
|
|
|
printf("Average cycles per single object push/pop: %.2F\n",
|
|
((double)(end - start)) / iterations);
|
|
}
|
|
|
|
/* Measure the cycle cost of bulk pushing and popping on a single lcore. */
|
|
static void
|
|
test_bulk_push_pop(struct rte_stack *s)
|
|
{
|
|
unsigned int iterations = 8000000;
|
|
void *objs[MAX_BURST];
|
|
unsigned int sz, i;
|
|
|
|
for (sz = 0; sz < RTE_DIM(bulk_sizes); sz++) {
|
|
uint64_t start = rte_rdtsc();
|
|
|
|
for (i = 0; i < iterations; i++) {
|
|
rte_stack_push(s, objs, bulk_sizes[sz]);
|
|
rte_stack_pop(s, objs, bulk_sizes[sz]);
|
|
}
|
|
|
|
uint64_t end = rte_rdtsc();
|
|
|
|
double avg = ((double)(end - start) /
|
|
(iterations * bulk_sizes[sz]));
|
|
|
|
printf("Average cycles per object push/pop (bulk size: %u): %.2F\n",
|
|
bulk_sizes[sz], avg);
|
|
}
|
|
}
|
|
|
|
static int
|
|
__test_stack_perf(uint32_t flags)
|
|
{
|
|
struct lcore_pair cores;
|
|
struct rte_stack *s;
|
|
|
|
__atomic_store_n(&lcore_barrier, 0, __ATOMIC_RELAXED);
|
|
|
|
s = rte_stack_create(STACK_NAME, STACK_SIZE, rte_socket_id(), flags);
|
|
if (s == NULL) {
|
|
printf("[%s():%u] failed to create a stack\n",
|
|
__func__, __LINE__);
|
|
return -1;
|
|
}
|
|
|
|
printf("### Testing single element push/pop ###\n");
|
|
test_single_push_pop(s);
|
|
|
|
printf("\n### Testing empty pop ###\n");
|
|
test_empty_pop(s);
|
|
|
|
printf("\n### Testing using a single lcore ###\n");
|
|
test_bulk_push_pop(s);
|
|
|
|
if (get_two_hyperthreads(&cores) == 0) {
|
|
printf("\n### Testing using two hyperthreads ###\n");
|
|
run_on_core_pair(&cores, s, bulk_push_pop);
|
|
}
|
|
if (get_two_cores(&cores) == 0) {
|
|
printf("\n### Testing using two physical cores ###\n");
|
|
run_on_core_pair(&cores, s, bulk_push_pop);
|
|
}
|
|
if (get_two_sockets(&cores) == 0) {
|
|
printf("\n### Testing using two NUMA nodes ###\n");
|
|
run_on_core_pair(&cores, s, bulk_push_pop);
|
|
}
|
|
|
|
printf("\n### Testing on all %u lcores ###\n", rte_lcore_count());
|
|
run_on_n_cores(s, bulk_push_pop, rte_lcore_count());
|
|
|
|
rte_stack_free(s);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_stack_perf(void)
|
|
{
|
|
return __test_stack_perf(0);
|
|
}
|
|
|
|
static int
|
|
test_lf_stack_perf(void)
|
|
{
|
|
#if defined(RTE_STACK_LF_SUPPORTED)
|
|
return __test_stack_perf(RTE_STACK_F_LF);
|
|
#else
|
|
return TEST_SKIPPED;
|
|
#endif
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(stack_perf_autotest, test_stack_perf);
|
|
REGISTER_TEST_COMMAND(stack_lf_perf_autotest, test_lf_stack_perf);
|