numam-dpdk/lib/librte_vhost/virtio_net.c
Yuanhan Liu cc7301908c vhost: fix dead loop in enqueue path
If a malicious guest forges a dead loop desc chain (let desc->next point
to itself) and desc->len is zero, this could lead to a dead loop in
copy_mbuf_to_desc(following is a simplified code to show this issue
clearly):

    while (mbuf_is_not_totally_consumed) {
        if (desc_avail == 0) {
            desc = &descs[desc->next];
            desc_avail = desc->len;
        }

        COPY(desc, mbuf, desc_avail);
    }

I have actually fixed a same issue before: commit a436f53ebf ("vhost:
avoid dead loop chain"); it fixes the dequeue path though, leaving the
enqueue path still vulnerable.

The fix is the same. Add a var nr_desc to avoid the dead loop.

Fixes: f1a519ad98 ("vhost: fix enqueue/dequeue to handle chained vring descriptors")
Cc: stable@dpdk.org

Reported-by: Xieming Katty <katty.xieming@huawei.com>
Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2017-01-28 14:25:23 +01:00

1185 lines
31 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_virtio_net.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_arp.h>
#include "vhost.h"
#define MAX_PKT_BURST 32
#define VHOST_LOG_PAGE 4096
static inline void __attribute__((always_inline))
vhost_log_page(uint8_t *log_base, uint64_t page)
{
log_base[page / 8] |= 1 << (page % 8);
}
static inline void __attribute__((always_inline))
vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
{
uint64_t page;
if (likely(((dev->features & (1ULL << VHOST_F_LOG_ALL)) == 0) ||
!dev->log_base || !len))
return;
if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
return;
/* To make sure guest memory updates are committed before logging */
rte_smp_wmb();
page = addr / VHOST_LOG_PAGE;
while (page * VHOST_LOG_PAGE < addr + len) {
vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
page += 1;
}
}
static inline void __attribute__((always_inline))
vhost_log_used_vring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t offset, uint64_t len)
{
vhost_log_write(dev, vq->log_guest_addr + offset, len);
}
static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t qp_nb)
{
return (is_tx ^ (idx & 1)) == 0 && idx < qp_nb * VIRTIO_QNUM;
}
static inline void __attribute__((always_inline))
do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint16_t to, uint16_t from, uint16_t size)
{
rte_memcpy(&vq->used->ring[to],
&vq->shadow_used_ring[from],
size * sizeof(struct vring_used_elem));
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[to]),
size * sizeof(struct vring_used_elem));
}
static inline void __attribute__((always_inline))
flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
if (used_idx + vq->shadow_used_idx <= vq->size) {
do_flush_shadow_used_ring(dev, vq, used_idx, 0,
vq->shadow_used_idx);
} else {
uint16_t size;
/* update used ring interval [used_idx, vq->size] */
size = vq->size - used_idx;
do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
/* update the left half used ring interval [0, left_size] */
do_flush_shadow_used_ring(dev, vq, 0, size,
vq->shadow_used_idx - size);
}
vq->last_used_idx += vq->shadow_used_idx;
rte_smp_wmb();
*(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
}
static inline void __attribute__((always_inline))
update_shadow_used_ring(struct vhost_virtqueue *vq,
uint16_t desc_idx, uint16_t len)
{
uint16_t i = vq->shadow_used_idx++;
vq->shadow_used_ring[i].id = desc_idx;
vq->shadow_used_ring[i].len = len;
}
static void
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
{
if (m_buf->ol_flags & PKT_TX_L4_MASK) {
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
switch (m_buf->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
net_hdr->csum_offset = (offsetof(struct tcp_hdr,
cksum));
break;
case PKT_TX_UDP_CKSUM:
net_hdr->csum_offset = (offsetof(struct udp_hdr,
dgram_cksum));
break;
case PKT_TX_SCTP_CKSUM:
net_hdr->csum_offset = (offsetof(struct sctp_hdr,
cksum));
break;
}
}
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
if (m_buf->ol_flags & PKT_TX_IPV4)
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
else
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
+ m_buf->l4_len;
}
}
static inline void
copy_virtio_net_hdr(struct virtio_net *dev, uint64_t desc_addr,
struct virtio_net_hdr_mrg_rxbuf hdr)
{
if (dev->vhost_hlen == sizeof(struct virtio_net_hdr_mrg_rxbuf))
*(struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)desc_addr = hdr;
else
*(struct virtio_net_hdr *)(uintptr_t)desc_addr = hdr.hdr;
}
static inline int __attribute__((always_inline))
copy_mbuf_to_desc(struct virtio_net *dev, struct vring_desc *descs,
struct rte_mbuf *m, uint16_t desc_idx, uint32_t size)
{
uint32_t desc_avail, desc_offset;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
struct vring_desc *desc;
uint64_t desc_addr;
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
/* A counter to avoid desc dead loop chain */
uint16_t nr_desc = 1;
desc = &descs[desc_idx];
desc_addr = gpa_to_vva(dev, desc->addr);
/*
* Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
* performance issue with some versions of gcc (4.8.4 and 5.3.0) which
* otherwise stores offset on the stack instead of in a register.
*/
if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr)
return -1;
rte_prefetch0((void *)(uintptr_t)desc_addr);
virtio_enqueue_offload(m, &virtio_hdr.hdr);
copy_virtio_net_hdr(dev, desc_addr, virtio_hdr);
vhost_log_write(dev, desc->addr, dev->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
desc_offset = dev->vhost_hlen;
desc_avail = desc->len - dev->vhost_hlen;
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current mbuf, fetch next */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
/* done with current desc buf, fetch next */
if (desc_avail == 0) {
if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
/* Room in vring buffer is not enough */
return -1;
}
if (unlikely(desc->next >= size || ++nr_desc > size))
return -1;
desc = &descs[desc->next];
desc_addr = gpa_to_vva(dev, desc->addr);
if (unlikely(!desc_addr))
return -1;
desc_offset = 0;
desc_avail = desc->len;
}
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_write(dev, desc->addr + desc_offset, cpy_len);
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
cpy_len, 0);
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
}
return 0;
}
/**
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
* be received from the physical port or from another virtio device. A packet
* count is returned to indicate the number of packets that are succesfully
* added to the RX queue. This function works when the mbuf is scattered, but
* it doesn't support the mergeable feature.
*/
static inline uint32_t __attribute__((always_inline))
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint16_t avail_idx, free_entries, start_idx;
uint16_t desc_indexes[MAX_PKT_BURST];
struct vring_desc *descs;
uint16_t used_idx;
uint32_t i, sz;
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
start_idx = vq->last_used_idx;
free_entries = avail_idx - start_idx;
count = RTE_MIN(count, free_entries);
count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
if (count == 0)
return 0;
LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
dev->vid, start_idx, start_idx + count);
/* Retrieve all of the desc indexes first to avoid caching issues. */
rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
for (i = 0; i < count; i++) {
used_idx = (start_idx + i) & (vq->size - 1);
desc_indexes[i] = vq->avail->ring[used_idx];
vq->used->ring[used_idx].id = desc_indexes[i];
vq->used->ring[used_idx].len = pkts[i]->pkt_len +
dev->vhost_hlen;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
rte_prefetch0(&vq->desc[desc_indexes[0]]);
for (i = 0; i < count; i++) {
uint16_t desc_idx = desc_indexes[i];
int err;
if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
descs = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
vq->desc[desc_idx].addr);
if (unlikely(!descs)) {
count = i;
break;
}
desc_idx = 0;
sz = vq->desc[desc_idx].len / sizeof(*descs);
} else {
descs = vq->desc;
sz = vq->size;
}
err = copy_mbuf_to_desc(dev, descs, pkts[i], desc_idx, sz);
if (unlikely(err)) {
used_idx = (start_idx + i) & (vq->size - 1);
vq->used->ring[used_idx].len = dev->vhost_hlen;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
if (i + 1 < count)
rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
}
rte_smp_wmb();
*(volatile uint16_t *)&vq->used->idx += count;
vq->last_used_idx += count;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
/* flush used->idx update before we read avail->flags. */
rte_mb();
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0))
eventfd_write(vq->callfd, (eventfd_t)1);
return count;
}
static inline int __attribute__((always_inline))
fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t avail_idx, uint32_t *vec_idx,
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
uint16_t *desc_chain_len)
{
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
uint32_t vec_id = *vec_idx;
uint32_t len = 0;
struct vring_desc *descs = vq->desc;
*desc_chain_head = idx;
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
descs = (struct vring_desc *)(uintptr_t)
gpa_to_vva(dev, vq->desc[idx].addr);
if (unlikely(!descs))
return -1;
idx = 0;
}
while (1) {
if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size))
return -1;
len += descs[idx].len;
buf_vec[vec_id].buf_addr = descs[idx].addr;
buf_vec[vec_id].buf_len = descs[idx].len;
buf_vec[vec_id].desc_idx = idx;
vec_id++;
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
break;
idx = descs[idx].next;
}
*desc_chain_len = len;
*vec_idx = vec_id;
return 0;
}
/*
* Returns -1 on fail, 0 on success
*/
static inline int
reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t size, struct buf_vector *buf_vec,
uint16_t *num_buffers, uint16_t avail_head)
{
uint16_t cur_idx;
uint32_t vec_idx = 0;
uint16_t tries = 0;
uint16_t head_idx = 0;
uint16_t len = 0;
*num_buffers = 0;
cur_idx = vq->last_avail_idx;
while (size > 0) {
if (unlikely(cur_idx == avail_head))
return -1;
if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
&head_idx, &len) < 0))
return -1;
len = RTE_MIN(len, size);
update_shadow_used_ring(vq, head_idx, len);
size -= len;
cur_idx++;
tries++;
*num_buffers += 1;
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(tries >= vq->size))
return -1;
}
return 0;
}
static inline int __attribute__((always_inline))
copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct rte_mbuf *m,
struct buf_vector *buf_vec, uint16_t num_buffers)
{
struct virtio_net_hdr_mrg_rxbuf virtio_hdr = {{0, 0, 0, 0, 0, 0}, 0};
uint32_t vec_idx = 0;
uint64_t desc_addr;
uint32_t mbuf_offset, mbuf_avail;
uint32_t desc_offset, desc_avail;
uint32_t cpy_len;
uint64_t hdr_addr, hdr_phys_addr;
struct rte_mbuf *hdr_mbuf;
if (unlikely(m == NULL))
return -1;
desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr)
return -1;
hdr_mbuf = m;
hdr_addr = desc_addr;
hdr_phys_addr = buf_vec[vec_idx].buf_addr;
rte_prefetch0((void *)(uintptr_t)hdr_addr);
virtio_hdr.num_buffers = num_buffers;
LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
dev->vid, num_buffers);
desc_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
desc_offset = dev->vhost_hlen;
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current desc buf, get the next one */
if (desc_avail == 0) {
vec_idx++;
desc_addr = gpa_to_vva(dev, buf_vec[vec_idx].buf_addr);
if (unlikely(!desc_addr))
return -1;
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)desc_addr);
desc_offset = 0;
desc_avail = buf_vec[vec_idx].buf_len;
}
/* done with current mbuf, get the next one */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
if (hdr_addr) {
virtio_enqueue_offload(hdr_mbuf, &virtio_hdr.hdr);
copy_virtio_net_hdr(dev, hdr_addr, virtio_hdr);
vhost_log_write(dev, hdr_phys_addr, dev->vhost_hlen);
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
dev->vhost_hlen, 0);
hdr_addr = 0;
}
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
rte_memcpy((void *)((uintptr_t)(desc_addr + desc_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_write(dev, buf_vec[vec_idx].buf_addr + desc_offset,
cpy_len);
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
cpy_len, 0);
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
}
return 0;
}
static inline uint32_t __attribute__((always_inline))
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint32_t pkt_idx = 0;
uint16_t num_buffers;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t avail_head;
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
return 0;
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
vq->shadow_used_idx = 0;
avail_head = *((volatile uint16_t *)&vq->avail->idx);
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
if (unlikely(reserve_avail_buf_mergeable(dev, vq,
pkt_len, buf_vec, &num_buffers,
avail_head) < 0)) {
LOG_DEBUG(VHOST_DATA,
"(%d) failed to get enough desc from vring\n",
dev->vid);
vq->shadow_used_idx -= num_buffers;
break;
}
LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
dev->vid, vq->last_avail_idx,
vq->last_avail_idx + num_buffers);
if (copy_mbuf_to_desc_mergeable(dev, pkts[pkt_idx],
buf_vec, num_buffers) < 0) {
vq->shadow_used_idx -= num_buffers;
break;
}
vq->last_avail_idx += num_buffers;
}
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring(dev, vq);
/* flush used->idx update before we read avail->flags. */
rte_mb();
/* Kick the guest if necessary. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0))
eventfd_write(vq->callfd, (eventfd_t)1);
}
return pkt_idx;
}
uint16_t
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev = get_device(vid);
if (!dev)
return 0;
if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
return virtio_dev_merge_rx(dev, queue_id, pkts, count);
else
return virtio_dev_rx(dev, queue_id, pkts, count);
}
static inline bool
virtio_net_with_host_offload(struct virtio_net *dev)
{
if (dev->features &
(VIRTIO_NET_F_CSUM | VIRTIO_NET_F_HOST_ECN |
VIRTIO_NET_F_HOST_TSO4 | VIRTIO_NET_F_HOST_TSO6 |
VIRTIO_NET_F_HOST_UFO))
return true;
return false;
}
static void
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
{
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
void *l3_hdr = NULL;
struct ether_hdr *eth_hdr;
uint16_t ethertype;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
m->l2_len = sizeof(struct ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == ETHER_TYPE_VLAN) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
m->l2_len += sizeof(struct vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
l3_hdr = (char *)eth_hdr + m->l2_len;
switch (ethertype) {
case ETHER_TYPE_IPv4:
ipv4_hdr = (struct ipv4_hdr *)l3_hdr;
*l4_proto = ipv4_hdr->next_proto_id;
m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV4;
break;
case ETHER_TYPE_IPv6:
ipv6_hdr = (struct ipv6_hdr *)l3_hdr;
*l4_proto = ipv6_hdr->proto;
m->l3_len = sizeof(struct ipv6_hdr);
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV6;
break;
default:
m->l3_len = 0;
*l4_proto = 0;
break;
}
}
static inline void __attribute__((always_inline))
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
{
uint16_t l4_proto = 0;
void *l4_hdr = NULL;
struct tcp_hdr *tcp_hdr = NULL;
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
return;
parse_ethernet(m, &l4_proto, &l4_hdr);
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
switch (hdr->csum_offset) {
case (offsetof(struct tcp_hdr, cksum)):
if (l4_proto == IPPROTO_TCP)
m->ol_flags |= PKT_TX_TCP_CKSUM;
break;
case (offsetof(struct udp_hdr, dgram_cksum)):
if (l4_proto == IPPROTO_UDP)
m->ol_flags |= PKT_TX_UDP_CKSUM;
break;
case (offsetof(struct sctp_hdr, cksum)):
if (l4_proto == IPPROTO_SCTP)
m->ol_flags |= PKT_TX_SCTP_CKSUM;
break;
default:
break;
}
}
}
if (hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
tcp_hdr = (struct tcp_hdr *)l4_hdr;
m->ol_flags |= PKT_TX_TCP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
break;
default:
RTE_LOG(WARNING, VHOST_DATA,
"unsupported gso type %u.\n", hdr->gso_type);
break;
}
}
}
#define RARP_PKT_SIZE 64
static int
make_rarp_packet(struct rte_mbuf *rarp_mbuf, const struct ether_addr *mac)
{
struct ether_hdr *eth_hdr;
struct arp_hdr *rarp;
if (rarp_mbuf->buf_len < 64) {
RTE_LOG(WARNING, VHOST_DATA,
"failed to make RARP; mbuf size too small %u (< %d)\n",
rarp_mbuf->buf_len, RARP_PKT_SIZE);
return -1;
}
/* Ethernet header. */
eth_hdr = rte_pktmbuf_mtod_offset(rarp_mbuf, struct ether_hdr *, 0);
memset(eth_hdr->d_addr.addr_bytes, 0xff, ETHER_ADDR_LEN);
ether_addr_copy(mac, &eth_hdr->s_addr);
eth_hdr->ether_type = htons(ETHER_TYPE_RARP);
/* RARP header. */
rarp = (struct arp_hdr *)(eth_hdr + 1);
rarp->arp_hrd = htons(ARP_HRD_ETHER);
rarp->arp_pro = htons(ETHER_TYPE_IPv4);
rarp->arp_hln = ETHER_ADDR_LEN;
rarp->arp_pln = 4;
rarp->arp_op = htons(ARP_OP_REVREQUEST);
ether_addr_copy(mac, &rarp->arp_data.arp_sha);
ether_addr_copy(mac, &rarp->arp_data.arp_tha);
memset(&rarp->arp_data.arp_sip, 0x00, 4);
memset(&rarp->arp_data.arp_tip, 0x00, 4);
rarp_mbuf->pkt_len = rarp_mbuf->data_len = RARP_PKT_SIZE;
return 0;
}
static inline void __attribute__((always_inline))
put_zmbuf(struct zcopy_mbuf *zmbuf)
{
zmbuf->in_use = 0;
}
static inline int __attribute__((always_inline))
copy_desc_to_mbuf(struct virtio_net *dev, struct vring_desc *descs,
uint16_t max_desc, struct rte_mbuf *m, uint16_t desc_idx,
struct rte_mempool *mbuf_pool)
{
struct vring_desc *desc;
uint64_t desc_addr;
uint32_t desc_avail, desc_offset;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
struct rte_mbuf *cur = m, *prev = m;
struct virtio_net_hdr *hdr = NULL;
/* A counter to avoid desc dead loop chain */
uint32_t nr_desc = 1;
desc = &descs[desc_idx];
if (unlikely((desc->len < dev->vhost_hlen)) ||
(desc->flags & VRING_DESC_F_INDIRECT))
return -1;
desc_addr = gpa_to_vva(dev, desc->addr);
if (unlikely(!desc_addr))
return -1;
if (virtio_net_with_host_offload(dev)) {
hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
rte_prefetch0(hdr);
}
/*
* A virtio driver normally uses at least 2 desc buffers
* for Tx: the first for storing the header, and others
* for storing the data.
*/
if (likely((desc->len == dev->vhost_hlen) &&
(desc->flags & VRING_DESC_F_NEXT) != 0)) {
desc = &descs[desc->next];
if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
return -1;
desc_addr = gpa_to_vva(dev, desc->addr);
if (unlikely(!desc_addr))
return -1;
desc_offset = 0;
desc_avail = desc->len;
nr_desc += 1;
} else {
desc_avail = desc->len - dev->vhost_hlen;
desc_offset = dev->vhost_hlen;
}
rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset), desc_avail, 0);
mbuf_offset = 0;
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
while (1) {
uint64_t hpa;
cpy_len = RTE_MIN(desc_avail, mbuf_avail);
/*
* A desc buf might across two host physical pages that are
* not continuous. In such case (gpa_to_hpa returns 0), data
* will be copied even though zero copy is enabled.
*/
if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
desc->addr + desc_offset, cpy_len)))) {
cur->data_len = cpy_len;
cur->data_off = 0;
cur->buf_addr = (void *)(uintptr_t)desc_addr;
cur->buf_physaddr = hpa;
/*
* In zero copy mode, one mbuf can only reference data
* for one or partial of one desc buff.
*/
mbuf_avail = cpy_len;
} else {
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
mbuf_offset),
(void *)((uintptr_t)(desc_addr + desc_offset)),
cpy_len);
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
/* This desc reaches to its end, get the next one */
if (desc_avail == 0) {
if ((desc->flags & VRING_DESC_F_NEXT) == 0)
break;
if (unlikely(desc->next >= max_desc ||
++nr_desc > max_desc))
return -1;
desc = &descs[desc->next];
if (unlikely(desc->flags & VRING_DESC_F_INDIRECT))
return -1;
desc_addr = gpa_to_vva(dev, desc->addr);
if (unlikely(!desc_addr))
return -1;
rte_prefetch0((void *)(uintptr_t)desc_addr);
desc_offset = 0;
desc_avail = desc->len;
PRINT_PACKET(dev, (uintptr_t)desc_addr, desc->len, 0);
}
/*
* This mbuf reaches to its end, get a new one
* to hold more data.
*/
if (mbuf_avail == 0) {
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
RTE_LOG(ERR, VHOST_DATA, "Failed to "
"allocate memory for mbuf.\n");
return -1;
}
prev->next = cur;
prev->data_len = mbuf_offset;
m->nb_segs += 1;
m->pkt_len += mbuf_offset;
prev = cur;
mbuf_offset = 0;
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
}
}
prev->data_len = mbuf_offset;
m->pkt_len += mbuf_offset;
if (hdr)
vhost_dequeue_offload(hdr, m);
return 0;
}
static inline void __attribute__((always_inline))
update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t used_idx, uint32_t desc_idx)
{
vq->used->ring[used_idx].id = desc_idx;
vq->used->ring[used_idx].len = 0;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
static inline void __attribute__((always_inline))
update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t count)
{
if (unlikely(count == 0))
return;
rte_smp_wmb();
rte_smp_rmb();
vq->used->idx += count;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
/* Kick guest if required. */
if (!(vq->avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
&& (vq->callfd >= 0))
eventfd_write(vq->callfd, (eventfd_t)1);
}
static inline struct zcopy_mbuf *__attribute__((always_inline))
get_zmbuf(struct vhost_virtqueue *vq)
{
uint16_t i;
uint16_t last;
int tries = 0;
/* search [last_zmbuf_idx, zmbuf_size) */
i = vq->last_zmbuf_idx;
last = vq->zmbuf_size;
again:
for (; i < last; i++) {
if (vq->zmbufs[i].in_use == 0) {
vq->last_zmbuf_idx = i + 1;
vq->zmbufs[i].in_use = 1;
return &vq->zmbufs[i];
}
}
tries++;
if (tries == 1) {
/* search [0, last_zmbuf_idx) */
i = 0;
last = vq->last_zmbuf_idx;
goto again;
}
return NULL;
}
static inline bool __attribute__((always_inline))
mbuf_is_consumed(struct rte_mbuf *m)
{
while (m) {
if (rte_mbuf_refcnt_read(m) > 1)
return false;
m = m->next;
}
return true;
}
uint16_t
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev;
struct rte_mbuf *rarp_mbuf = NULL;
struct vhost_virtqueue *vq;
uint32_t desc_indexes[MAX_PKT_BURST];
uint32_t used_idx;
uint32_t i = 0;
uint16_t free_entries;
uint16_t avail_idx;
dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->virt_qp_nb))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(vq->enabled == 0))
return 0;
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf, *next;
int nr_updated = 0;
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
zmbuf != NULL; zmbuf = next) {
next = TAILQ_NEXT(zmbuf, next);
if (mbuf_is_consumed(zmbuf->mbuf)) {
used_idx = vq->last_used_idx++ & (vq->size - 1);
update_used_ring(dev, vq, used_idx,
zmbuf->desc_idx);
nr_updated += 1;
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
rte_pktmbuf_free(zmbuf->mbuf);
put_zmbuf(zmbuf);
vq->nr_zmbuf -= 1;
}
}
update_used_idx(dev, vq, nr_updated);
}
/*
* Construct a RARP broadcast packet, and inject it to the "pkts"
* array, to looks like that guest actually send such packet.
*
* Check user_send_rarp() for more information.
*/
if (unlikely(rte_atomic16_cmpset((volatile uint16_t *)
&dev->broadcast_rarp.cnt, 1, 0))) {
rarp_mbuf = rte_pktmbuf_alloc(mbuf_pool);
if (rarp_mbuf == NULL) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
return 0;
}
if (make_rarp_packet(rarp_mbuf, &dev->mac)) {
rte_pktmbuf_free(rarp_mbuf);
rarp_mbuf = NULL;
} else {
count -= 1;
}
}
free_entries = *((volatile uint16_t *)&vq->avail->idx) -
vq->last_avail_idx;
if (free_entries == 0)
goto out;
LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
/* Prefetch available and used ring */
avail_idx = vq->last_avail_idx & (vq->size - 1);
used_idx = vq->last_used_idx & (vq->size - 1);
rte_prefetch0(&vq->avail->ring[avail_idx]);
rte_prefetch0(&vq->used->ring[used_idx]);
count = RTE_MIN(count, MAX_PKT_BURST);
count = RTE_MIN(count, free_entries);
LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
dev->vid, count);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (i = 0; i < count; i++) {
avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
used_idx = (vq->last_used_idx + i) & (vq->size - 1);
desc_indexes[i] = vq->avail->ring[avail_idx];
if (likely(dev->dequeue_zero_copy == 0))
update_used_ring(dev, vq, used_idx, desc_indexes[i]);
}
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[desc_indexes[0]]);
for (i = 0; i < count; i++) {
struct vring_desc *desc;
uint16_t sz, idx;
int err;
if (likely(i + 1 < count))
rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
desc = (struct vring_desc *)(uintptr_t)gpa_to_vva(dev,
vq->desc[desc_indexes[i]].addr);
if (unlikely(!desc))
break;
rte_prefetch0(desc);
sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
idx = 0;
} else {
desc = vq->desc;
sz = vq->size;
idx = desc_indexes[i];
}
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(pkts[i] == NULL)) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
break;
}
err = copy_desc_to_mbuf(dev, desc, sz, pkts[i], idx, mbuf_pool);
if (unlikely(err)) {
rte_pktmbuf_free(pkts[i]);
break;
}
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf;
zmbuf = get_zmbuf(vq);
if (!zmbuf) {
rte_pktmbuf_free(pkts[i]);
break;
}
zmbuf->mbuf = pkts[i];
zmbuf->desc_idx = desc_indexes[i];
/*
* Pin lock the mbuf; we will check later to see
* whether the mbuf is freed (when we are the last
* user) or not. If that's the case, we then could
* update the used ring safely.
*/
rte_mbuf_refcnt_update(pkts[i], 1);
vq->nr_zmbuf += 1;
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
}
}
vq->last_avail_idx += i;
if (likely(dev->dequeue_zero_copy == 0)) {
vq->last_used_idx += i;
update_used_idx(dev, vq, i);
}
out:
if (unlikely(rarp_mbuf != NULL)) {
/*
* Inject it to the head of "pkts" array, so that switch's mac
* learning table will get updated first.
*/
memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
pkts[0] = rarp_mbuf;
i += 1;
}
return i;
}