numam-dpdk/drivers/net/i40e/i40e_rxtx_vec_neon.c
Feifei Wang 1b73c2d1a1 net/i40e: remove redundant number of packets check
For i40e_xmit_pkts_vec_xx function, it checks nb_pkts to ensure nb_pkts
does not cross rs_thresh.

However, in i40e_xmit_fixed_burst_vec_xx function, this check will be
performed again. To improve code, delete this redundant check.

Suggested-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Signed-off-by: Feifei Wang <feifei.wang2@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
Reviewed-by: Qi Zhang <qi.z.zhang@intel.com>
2022-04-18 07:47:18 +02:00

765 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation.
* Copyright(c) 2016-2018, Linaro Limited.
*/
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_vect.h>
#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_rxtx_vec_common.h"
#pragma GCC diagnostic ignored "-Wcast-qual"
static inline void
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
uint64x2_t dma_addr0, dma_addr1;
uint64x2_t zero = vdupq_n_u64(0);
uint64_t paddr;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (unlikely(rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
RTE_I40E_RXQ_REARM_THRESH) < 0)) {
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
vst1q_u64((uint64_t *)&rxdp[i].read, zero);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_I40E_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
dma_addr0 = vdupq_n_u64(paddr);
/* flush desc with pa dma_addr */
vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
dma_addr1 = vdupq_n_u64(paddr);
vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
}
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
rte_io_wmb();
/* Update the tail pointer on the NIC */
I40E_PCI_REG_WRITE_RELAXED(rxq->qrx_tail, rx_id);
}
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
/* NEON version of FDIR mark extraction for 4 32B descriptors at a time */
static inline uint32x4_t
descs_to_fdir_32b(volatile union i40e_rx_desc *rxdp, struct rte_mbuf **rx_pkt)
{
/* 32B descriptors: Load 2nd half of descriptors for FDIR ID data */
uint64x2_t desc0_qw23, desc1_qw23, desc2_qw23, desc3_qw23;
desc0_qw23 = vld1q_u64((uint64_t *)&(rxdp + 0)->wb.qword2);
desc1_qw23 = vld1q_u64((uint64_t *)&(rxdp + 1)->wb.qword2);
desc2_qw23 = vld1q_u64((uint64_t *)&(rxdp + 2)->wb.qword2);
desc3_qw23 = vld1q_u64((uint64_t *)&(rxdp + 3)->wb.qword2);
/* FDIR ID data: move last u32 of each desc to 4 u32 lanes */
uint32x4_t v_unpack_02, v_unpack_13;
v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23),
vreinterpretq_u32_u64(desc2_qw23)).val[1];
v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23),
vreinterpretq_u32_u64(desc3_qw23)).val[1];
uint32x4_t v_fdir_ids = vzipq_u32(v_unpack_02, v_unpack_13).val[1];
/* Extended Status: extract from each lower 32 bits, to u32 lanes */
v_unpack_02 = vzipq_u32(vreinterpretq_u32_u64(desc0_qw23),
vreinterpretq_u32_u64(desc2_qw23)).val[0];
v_unpack_13 = vzipq_u32(vreinterpretq_u32_u64(desc1_qw23),
vreinterpretq_u32_u64(desc3_qw23)).val[0];
uint32x4_t v_flt_status = vzipq_u32(v_unpack_02, v_unpack_13).val[0];
/* Shift u32 left and right to "mask away" bits not required.
* Data required is 4:5 (zero based), so left shift by 26 (32-6)
* and then right shift by 30 (32 - 2 bits required).
*/
v_flt_status = vshlq_n_u32(v_flt_status, 26);
v_flt_status = vshrq_n_u32(v_flt_status, 30);
/* Generate constant 1 in all u32 lanes */
RTE_BUILD_BUG_ON(I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID != 1);
uint32x4_t v_u32_one = vdupq_n_u32(1);
/* Per desc mask, bits set if FDIR ID is valid */
uint32x4_t v_fd_id_mask = vceqq_u32(v_flt_status, v_u32_one);
/* Mask ID data to zero if the FD_ID bit not set in desc */
v_fdir_ids = vandq_u32(v_fdir_ids, v_fd_id_mask);
/* Store data to fdir.hi in mbuf */
rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0);
rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1);
rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2);
rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3);
/* Convert fdir_id_mask into a single bit, then shift as required for
* correct location in the mbuf->olflags
*/
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
v_fd_id_mask = vshrq_n_u32(v_fd_id_mask, 31);
v_fd_id_mask = vshlq_n_u32(v_fd_id_mask, 13);
/* The returned value must be combined into each mbuf. This is already
* being done for RSS and VLAN mbuf olflags, so return bits to OR in.
*/
return v_fd_id_mask;
}
#else /* 32 or 16B FDIR ID handling */
/* Handle 16B descriptor FDIR ID flag setting based on FLM(bit11). See scalar driver
* for scalar implementation of the same functionality.
*/
static inline uint32x4_t
descs_to_fdir_16b(uint32x4_t fltstat, uint64x2_t descs[4], struct rte_mbuf **rx_pkt)
{
/* Unpack filter-status data from descriptors */
uint32x4_t v_tmp_02 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
vreinterpretq_u32_u64(descs[2])).val[0];
uint32x4_t v_tmp_13 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
vreinterpretq_u32_u64(descs[3])).val[0];
uint32x4_t v_fdir_ids = vzipq_u32(v_tmp_02, v_tmp_13).val[1];
/* Generate 111 and 11 in each u32 lane */
uint32x4_t v_111_mask = vdupq_n_u32(7);
uint32x4_t v_11_mask = vdupq_n_u32(3);
/* Compare and mask away FDIR ID data if bit not set */
uint32x4_t v_u32_bits = vandq_u32(v_111_mask, fltstat);
uint32x4_t v_fdir_id_mask = vceqq_u32(v_u32_bits, v_11_mask);
v_fdir_ids = vandq_u32(v_fdir_id_mask, v_fdir_ids);
/* Store data to fdir.hi in mbuf */
rx_pkt[0]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 0);
rx_pkt[1]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 1);
rx_pkt[2]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 2);
rx_pkt[3]->hash.fdir.hi = vgetq_lane_u32(v_fdir_ids, 3);
/* Top lane ones mask for FDIR isolation */
uint32x4_t v_desc_fdir_mask = {0, UINT32_MAX, 0, 0};
/* Move fdir_id_mask to correct lane, zero RSS in mbuf if fdir hits */
uint32x4_t v_zeros = {0, 0, 0, 0};
uint32x4_t v_desc3_shift = vextq_u32(v_fdir_id_mask, v_zeros, 2);
uint32x4_t v_desc3_mask = vandq_u32(v_desc_fdir_mask, v_desc3_shift);
descs[3] = vreinterpretq_u64_u32(vbslq_u32(v_desc3_mask, v_zeros,
vreinterpretq_u32_u64(descs[3])));
uint32x4_t v_desc2_shift = vextq_u32(v_fdir_id_mask, v_zeros, 1);
uint32x4_t v_desc2_mask = vandq_u32(v_desc_fdir_mask, v_desc2_shift);
descs[2] = vreinterpretq_u64_u32(vbslq_u32(v_desc2_mask, v_zeros,
vreinterpretq_u32_u64(descs[2])));
uint32x4_t v_desc1_shift = v_fdir_id_mask;
uint32x4_t v_desc1_mask = vandq_u32(v_desc_fdir_mask, v_desc1_shift);
descs[1] = vreinterpretq_u64_u32(vbslq_u32(v_desc1_mask, v_zeros,
vreinterpretq_u32_u64(descs[1])));
uint32x4_t v_desc0_shift = vextq_u32(v_zeros, v_fdir_id_mask, 3);
uint32x4_t v_desc0_mask = vandq_u32(v_desc_fdir_mask, v_desc0_shift);
descs[0] = vreinterpretq_u64_u32(vbslq_u32(v_desc0_mask, v_zeros,
vreinterpretq_u32_u64(descs[0])));
/* Shift to 1 or 0 bit per u32 lane, then to RTE_MBUF_F_RX_FDIR_ID offset */
RTE_BUILD_BUG_ON(RTE_MBUF_F_RX_FDIR_ID != (1 << 13));
uint32x4_t v_mask_one_bit = vshrq_n_u32(v_fdir_id_mask, 31);
return vshlq_n_u32(v_mask_one_bit, 13);
}
#endif
static inline void
desc_to_olflags_v(struct i40e_rx_queue *rxq, volatile union i40e_rx_desc *rxdp,
uint64x2_t descs[4], struct rte_mbuf **rx_pkts)
{
uint32x4_t vlan0, vlan1, rss, l3_l4e;
const uint64x2_t mbuf_init = {rxq->mbuf_initializer, 0};
uint64x2_t rearm0, rearm1, rearm2, rearm3;
/* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication.
*/
const uint32x4_t rss_vlan_msk = {
0x1c03804, 0x1c03804, 0x1c03804, 0x1c03804};
const uint32x4_t cksum_mask = {
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD,
RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD};
/* map rss and vlan type to rss hash and vlan flag */
const uint8x16_t vlan_flags = {
0, 0, 0, 0,
RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
const uint8x16_t rss_flags = {
0, RTE_MBUF_F_RX_FDIR, 0, 0,
0, 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH | RTE_MBUF_F_RX_FDIR,
0, 0, 0, 0,
0, 0, 0, 0};
const uint8x16_t l3_l4e_flags = {
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_L4_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD |
RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
(RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD | RTE_MBUF_F_RX_L4_CKSUM_BAD |
RTE_MBUF_F_RX_IP_CKSUM_BAD) >> 1,
0, 0, 0, 0, 0, 0, 0, 0};
vlan0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
vreinterpretq_u32_u64(descs[2])).val[1];
vlan1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
vreinterpretq_u32_u64(descs[3])).val[1];
vlan0 = vzipq_u32(vlan0, vlan1).val[0];
vlan1 = vandq_u32(vlan0, rss_vlan_msk);
vlan0 = vreinterpretq_u32_u8(vqtbl1q_u8(vlan_flags,
vreinterpretq_u8_u32(vlan1)));
const uint32x4_t desc_fltstat = vshrq_n_u32(vlan1, 11);
rss = vreinterpretq_u32_u8(vqtbl1q_u8(rss_flags,
vreinterpretq_u8_u32(desc_fltstat)));
l3_l4e = vshrq_n_u32(vlan1, 22);
l3_l4e = vreinterpretq_u32_u8(vqtbl1q_u8(l3_l4e_flags,
vreinterpretq_u8_u32(l3_l4e)));
/* then we shift left 1 bit */
l3_l4e = vshlq_n_u32(l3_l4e, 1);
/* we need to mask out the redundant bits */
l3_l4e = vandq_u32(l3_l4e, cksum_mask);
vlan0 = vorrq_u32(vlan0, rss);
vlan0 = vorrq_u32(vlan0, l3_l4e);
/* Extract FDIR ID only if FDIR is enabled to avoid useless work */
if (rxq->fdir_enabled) {
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
uint32x4_t v_fdir_ol_flags = descs_to_fdir_32b(rxdp, rx_pkts);
#else
(void)rxdp; /* rxdp not required for 16B desc mode */
uint32x4_t v_fdir_ol_flags = descs_to_fdir_16b(desc_fltstat, descs, rx_pkts);
#endif
/* OR in ol_flag bits after descriptor specific extraction */
vlan0 = vorrq_u32(vlan0, v_fdir_ol_flags);
}
rearm0 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 0), mbuf_init, 1);
rearm1 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 1), mbuf_init, 1);
rearm2 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 2), mbuf_init, 1);
rearm3 = vsetq_lane_u64(vgetq_lane_u32(vlan0, 3), mbuf_init, 1);
vst1q_u64((uint64_t *)&rx_pkts[0]->rearm_data, rearm0);
vst1q_u64((uint64_t *)&rx_pkts[1]->rearm_data, rearm1);
vst1q_u64((uint64_t *)&rx_pkts[2]->rearm_data, rearm2);
vst1q_u64((uint64_t *)&rx_pkts[3]->rearm_data, rearm3);
}
#define PKTLEN_SHIFT 10
#define I40E_UINT16_BIT (CHAR_BIT * sizeof(uint16_t))
static inline void
desc_to_ptype_v(uint64x2_t descs[4], struct rte_mbuf **__rte_restrict rx_pkts,
uint32_t *__rte_restrict ptype_tbl)
{
int i;
uint8_t ptype;
uint8x16_t tmp;
for (i = 0; i < 4; i++) {
tmp = vreinterpretq_u8_u64(vshrq_n_u64(descs[i], 30));
ptype = vgetq_lane_u8(tmp, 8);
rx_pkts[i]->packet_type = ptype_tbl[ptype];
}
}
/**
* vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
*/
static inline uint16_t
_recv_raw_pkts_vec(struct i40e_rx_queue *__rte_restrict rxq,
struct rte_mbuf **__rte_restrict rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
/* mask to shuffle from desc. to mbuf */
uint8x16_t shuf_msk = {
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
14, 15, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
14, 15, /* octet 15~14, 16 bits data_len */
2, 3, /* octet 2~3, low 16 bits vlan_macip */
4, 5, 6, 7 /* octet 4~7, 32bits rss */
};
uint8x16_t eop_check = {
0x02, 0x00, 0x02, 0x00,
0x02, 0x00, 0x02, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
uint16x8_t crc_adjust = {
0, 0, /* ignore pkt_type field */
rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore high-16bits of pkt_len */
rxq->crc_len, /* sub crc on data_len */
0, 0, 0 /* ignore non-length fields */
};
/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch_non_temporal(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
i40e_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += RTE_I40E_DESCS_PER_LOOP,
rxdp += RTE_I40E_DESCS_PER_LOOP) {
uint64x2_t descs[RTE_I40E_DESCS_PER_LOOP];
uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
uint16x8x2_t sterr_tmp1, sterr_tmp2;
uint64x2_t mbp1, mbp2;
uint16x8_t staterr;
uint16x8_t tmp;
uint64_t stat;
int32x4_t len_shl = {0, 0, 0, PKTLEN_SHIFT};
/* A.1 load desc[3-0] */
descs[3] = vld1q_u64((uint64_t *)(rxdp + 3));
descs[2] = vld1q_u64((uint64_t *)(rxdp + 2));
descs[1] = vld1q_u64((uint64_t *)(rxdp + 1));
descs[0] = vld1q_u64((uint64_t *)(rxdp));
/* Use acquire fence to order loads of descriptor qwords */
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
/* A.2 reload qword0 to make it ordered after qword1 load */
descs[3] = vld1q_lane_u64((uint64_t *)(rxdp + 3), descs[3], 0);
descs[2] = vld1q_lane_u64((uint64_t *)(rxdp + 2), descs[2], 0);
descs[1] = vld1q_lane_u64((uint64_t *)(rxdp + 1), descs[1], 0);
descs[0] = vld1q_lane_u64((uint64_t *)(rxdp), descs[0], 0);
/* B.1 load 4 mbuf point */
mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
/* B.2 copy 4 mbuf point into rx_pkts */
vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* pkts shift the pktlen field to be 16-bit aligned*/
uint32x4_t len3 = vshlq_u32(vreinterpretq_u32_u64(descs[3]),
len_shl);
descs[3] = vreinterpretq_u64_u16(vsetq_lane_u16
(vgetq_lane_u16(vreinterpretq_u16_u32(len3), 7),
vreinterpretq_u16_u64(descs[3]),
7));
uint32x4_t len2 = vshlq_u32(vreinterpretq_u32_u64(descs[2]),
len_shl);
descs[2] = vreinterpretq_u64_u16(vsetq_lane_u16
(vgetq_lane_u16(vreinterpretq_u16_u32(len2), 7),
vreinterpretq_u16_u64(descs[2]),
7));
uint32x4_t len1 = vshlq_u32(vreinterpretq_u32_u64(descs[1]),
len_shl);
descs[1] = vreinterpretq_u64_u16(vsetq_lane_u16
(vgetq_lane_u16(vreinterpretq_u16_u32(len1), 7),
vreinterpretq_u16_u64(descs[1]),
7));
uint32x4_t len0 = vshlq_u32(vreinterpretq_u32_u64(descs[0]),
len_shl);
descs[0] = vreinterpretq_u64_u16(vsetq_lane_u16
(vgetq_lane_u16(vreinterpretq_u16_u32(len0), 7),
vreinterpretq_u16_u64(descs[0]),
7));
desc_to_olflags_v(rxq, rxdp, descs, &rx_pkts[pos]);
/* D.1 pkts convert format from desc to pktmbuf */
pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
/* D.2 pkts set in_port/nb_seg and remove crc */
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
pkt_mb4 = vreinterpretq_u8_u16(tmp);
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
pkt_mb3 = vreinterpretq_u8_u16(tmp);
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
pkt_mb2 = vreinterpretq_u8_u16(tmp);
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
pkt_mb1 = vreinterpretq_u8_u16(tmp);
/* D.3 copy final data to rx_pkts */
vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
pkt_mb4);
vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
pkt_mb3);
vst1q_u8((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
pkt_mb2);
vst1q_u8((void *)&rx_pkts[pos]->rx_descriptor_fields1,
pkt_mb1);
desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
if (likely(pos + RTE_I40E_DESCS_PER_LOOP < nb_pkts)) {
rte_prefetch_non_temporal(rxdp + RTE_I40E_DESCS_PER_LOOP);
}
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = vzipq_u16(vreinterpretq_u16_u64(descs[1]),
vreinterpretq_u16_u64(descs[3]));
sterr_tmp1 = vzipq_u16(vreinterpretq_u16_u64(descs[0]),
vreinterpretq_u16_u64(descs[2]));
/* C.2 get 4 pkts staterr value */
staterr = vzipq_u16(sterr_tmp1.val[1],
sterr_tmp2.val[1]).val[0];
/* C* extract and record EOP bit */
if (split_packet) {
uint8x16_t eop_shuf_mask = {
0x00, 0x02, 0x04, 0x06,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF};
uint8x16_t eop_bits;
/* and with mask to extract bits, flipping 1-0 */
eop_bits = vmvnq_u8(vreinterpretq_u8_u16(staterr));
eop_bits = vandq_u8(eop_bits, eop_check);
/* the staterr values are not in order, as the count
* of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = vqtbl1q_u8(eop_bits, eop_shuf_mask);
/* store the resulting 32-bit value */
vst1q_lane_u32((uint32_t *)split_packet,
vreinterpretq_u32_u8(eop_bits), 0);
split_packet += RTE_I40E_DESCS_PER_LOOP;
/* zero-out next pointers */
rx_pkts[pos]->next = NULL;
rx_pkts[pos + 1]->next = NULL;
rx_pkts[pos + 2]->next = NULL;
rx_pkts[pos + 3]->next = NULL;
}
staterr = vshlq_n_u16(staterr, I40E_UINT16_BIT - 1);
staterr = vreinterpretq_u16_s16(
vshrq_n_s16(vreinterpretq_s16_u16(staterr),
I40E_UINT16_BIT - 1));
stat = ~vgetq_lane_u64(vreinterpretq_u64_u16(staterr), 0);
/* C.4 calc available number of desc */
if (unlikely(stat == 0)) {
nb_pkts_recd += RTE_I40E_DESCS_PER_LOOP;
} else {
nb_pkts_recd += __builtin_ctzl(stat) / I40E_UINT16_BIT;
break;
}
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
i40e_recv_pkts_vec(void *__rte_restrict rx_queue,
struct rte_mbuf **__rte_restrict rx_pkts, uint16_t nb_pkts)
{
return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned i = 0;
if (rxq->pkt_first_seg == NULL) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
*/
uint16_t
i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
uint16_t burst;
burst = i40e_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
RTE_I40E_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < RTE_I40E_VPMD_RX_BURST)
return retval;
}
return retval + i40e_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
nb_pkts);
}
static inline void
vtx1(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
uint64x2_t descriptor = {pkt->buf_iova + pkt->data_off, high_qw};
vst1q_u64((uint64_t *)txdp, descriptor);
}
static inline void
vtx(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkt,
uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
vtx1(txdp, *pkt, flags);
}
uint16_t
i40e_xmit_fixed_burst_vec(void *__rte_restrict tx_queue,
struct rte_mbuf **__rte_restrict tx_pkts, uint16_t nb_pkts)
{
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
volatile struct i40e_tx_desc *txdp;
struct i40e_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = I40E_TD_CMD;
uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
int i;
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
vtx1(txdp, *tx_pkts, flags);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
rte_io_wmb();
I40E_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
return nb_pkts;
}
void __rte_cold
i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
{
_i40e_rx_queue_release_mbufs_vec(rxq);
}
int __rte_cold
i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
{
return i40e_rxq_vec_setup_default(rxq);
}
int __rte_cold
i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
{
return 0;
}
int __rte_cold
i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
return i40e_rx_vec_dev_conf_condition_check_default(dev);
}