numam-dpdk/drivers/net/e1000/base/e1000_phy.c
Xiaolong Ye 41ede22ecf net/e1000: replace license text with SPDX tag
Signed-off-by: Xiaolong Ye <xiaolong.ye@intel.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2019-07-24 18:44:40 +02:00

4232 lines
115 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001 - 2015 Intel Corporation
*/
#include "e1000_api.h"
STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw);
STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set);
STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
u16 *data, bool read);
/* Cable length tables */
STATIC const u16 e1000_m88_cable_length_table[] = {
0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
(sizeof(e1000_m88_cable_length_table) / \
sizeof(e1000_m88_cable_length_table[0]))
STATIC const u16 e1000_igp_2_cable_length_table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
124};
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
(sizeof(e1000_igp_2_cable_length_table) / \
sizeof(e1000_igp_2_cable_length_table[0]))
/**
* e1000_init_phy_ops_generic - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
**/
void e1000_init_phy_ops_generic(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
DEBUGFUNC("e1000_init_phy_ops_generic");
/* Initialize function pointers */
phy->ops.init_params = e1000_null_ops_generic;
phy->ops.acquire = e1000_null_ops_generic;
phy->ops.check_polarity = e1000_null_ops_generic;
phy->ops.check_reset_block = e1000_null_ops_generic;
phy->ops.commit = e1000_null_ops_generic;
phy->ops.force_speed_duplex = e1000_null_ops_generic;
phy->ops.get_cfg_done = e1000_null_ops_generic;
phy->ops.get_cable_length = e1000_null_ops_generic;
phy->ops.get_info = e1000_null_ops_generic;
phy->ops.set_page = e1000_null_set_page;
phy->ops.read_reg = e1000_null_read_reg;
phy->ops.read_reg_locked = e1000_null_read_reg;
phy->ops.read_reg_page = e1000_null_read_reg;
phy->ops.release = e1000_null_phy_generic;
phy->ops.reset = e1000_null_ops_generic;
phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
phy->ops.write_reg = e1000_null_write_reg;
phy->ops.write_reg_locked = e1000_null_write_reg;
phy->ops.write_reg_page = e1000_null_write_reg;
phy->ops.power_up = e1000_null_phy_generic;
phy->ops.power_down = e1000_null_phy_generic;
phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
phy->ops.cfg_on_link_up = e1000_null_ops_generic;
}
/**
* e1000_null_set_page - No-op function, return 0
* @hw: pointer to the HW structure
**/
s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
u16 E1000_UNUSEDARG data)
{
DEBUGFUNC("e1000_null_set_page");
UNREFERENCED_2PARAMETER(hw, data);
return E1000_SUCCESS;
}
/**
* e1000_null_read_reg - No-op function, return 0
* @hw: pointer to the HW structure
**/
s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
{
DEBUGFUNC("e1000_null_read_reg");
UNREFERENCED_3PARAMETER(hw, offset, data);
return E1000_SUCCESS;
}
/**
* e1000_null_phy_generic - No-op function, return void
* @hw: pointer to the HW structure
**/
void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
{
DEBUGFUNC("e1000_null_phy_generic");
UNREFERENCED_1PARAMETER(hw);
return;
}
/**
* e1000_null_lplu_state - No-op function, return 0
* @hw: pointer to the HW structure
**/
s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
bool E1000_UNUSEDARG active)
{
DEBUGFUNC("e1000_null_lplu_state");
UNREFERENCED_2PARAMETER(hw, active);
return E1000_SUCCESS;
}
/**
* e1000_null_write_reg - No-op function, return 0
* @hw: pointer to the HW structure
**/
s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
{
DEBUGFUNC("e1000_null_write_reg");
UNREFERENCED_3PARAMETER(hw, offset, data);
return E1000_SUCCESS;
}
/**
* e1000_read_i2c_byte_null - No-op function, return 0
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: device address
* @data: data value read
*
**/
s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
u8 E1000_UNUSEDARG byte_offset,
u8 E1000_UNUSEDARG dev_addr,
u8 E1000_UNUSEDARG *data)
{
DEBUGFUNC("e1000_read_i2c_byte_null");
UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
return E1000_SUCCESS;
}
/**
* e1000_write_i2c_byte_null - No-op function, return 0
* @hw: pointer to hardware structure
* @byte_offset: byte offset to write
* @dev_addr: device address
* @data: data value to write
*
**/
s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
u8 E1000_UNUSEDARG byte_offset,
u8 E1000_UNUSEDARG dev_addr,
u8 E1000_UNUSEDARG data)
{
DEBUGFUNC("e1000_write_i2c_byte_null");
UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
return E1000_SUCCESS;
}
/**
* e1000_check_reset_block_generic - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
* is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
* return E1000_BLK_PHY_RESET (12).
**/
s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
{
u32 manc;
DEBUGFUNC("e1000_check_reset_block");
manc = E1000_READ_REG(hw, E1000_MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : E1000_SUCCESS;
}
/**
* e1000_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
s32 e1000_get_phy_id(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = E1000_SUCCESS;
u16 phy_id;
u16 retry_count = 0;
DEBUGFUNC("e1000_get_phy_id");
if (!phy->ops.read_reg)
return E1000_SUCCESS;
while (retry_count < 2) {
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
if (ret_val)
return ret_val;
phy->id = (u32)(phy_id << 16);
usec_delay(20);
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
if (ret_val)
return ret_val;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
return E1000_SUCCESS;
retry_count++;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_reset_dsp_generic - Reset PHY DSP
* @hw: pointer to the HW structure
*
* Reset the digital signal processor.
**/
s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
{
s32 ret_val;
DEBUGFUNC("e1000_phy_reset_dsp_generic");
if (!hw->phy.ops.write_reg)
return E1000_SUCCESS;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
if (ret_val)
return ret_val;
return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
}
/**
* e1000_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
DEBUGFUNC("e1000_read_phy_reg_mdic");
if (offset > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
usec_delay_irq(50);
mdic = E1000_READ_REG(hw, E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
offset,
(mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
return -E1000_ERR_PHY;
}
*data = (u16) mdic;
/* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
usec_delay_irq(100);
return E1000_SUCCESS;
}
/**
* e1000_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
DEBUGFUNC("e1000_write_phy_reg_mdic");
if (offset > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = (((u32)data) |
(offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
usec_delay_irq(50);
mdic = E1000_READ_REG(hw, E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
offset,
(mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
return -E1000_ERR_PHY;
}
/* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
usec_delay_irq(100);
return E1000_SUCCESS;
}
/**
* e1000_read_phy_reg_i2c - Read PHY register using i2c
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset using the i2c interface and stores the
* retrieved information in data.
**/
s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, i2ccmd = 0;
DEBUGFUNC("e1000_read_phy_reg_i2c");
/* Set up Op-code, Phy Address, and register address in the I2CCMD
* register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
(phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
(E1000_I2CCMD_OPCODE_READ));
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
/* Poll the ready bit to see if the I2C read completed */
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
usec_delay(50);
i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
if (i2ccmd & E1000_I2CCMD_READY)
break;
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
DEBUGOUT("I2CCMD Read did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
DEBUGOUT("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
/* Need to byte-swap the 16-bit value. */
*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
return E1000_SUCCESS;
}
/**
* e1000_write_phy_reg_i2c - Write PHY register using i2c
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset using the i2c interface.
**/
s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, i2ccmd = 0;
u16 phy_data_swapped;
DEBUGFUNC("e1000_write_phy_reg_i2c");
/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
DEBUGOUT1("PHY I2C Address %d is out of range.\n",
hw->phy.addr);
return -E1000_ERR_CONFIG;
}
/* Swap the data bytes for the I2C interface */
phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
/* Set up Op-code, Phy Address, and register address in the I2CCMD
* register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
(phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
E1000_I2CCMD_OPCODE_WRITE |
phy_data_swapped);
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
/* Poll the ready bit to see if the I2C read completed */
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
usec_delay(50);
i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
if (i2ccmd & E1000_I2CCMD_READY)
break;
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
DEBUGOUT("I2CCMD Write did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
DEBUGOUT("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
return E1000_SUCCESS;
}
/**
* e1000_read_sfp_data_byte - Reads SFP module data.
* @hw: pointer to the HW structure
* @offset: byte location offset to be read
* @data: read data buffer pointer
*
* Reads one byte from SFP module data stored
* in SFP resided EEPROM memory or SFP diagnostic area.
* Function should be called with
* E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
* E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
* access
**/
s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
{
u32 i = 0;
u32 i2ccmd = 0;
u32 data_local = 0;
DEBUGFUNC("e1000_read_sfp_data_byte");
if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
DEBUGOUT("I2CCMD command address exceeds upper limit\n");
return -E1000_ERR_PHY;
}
/* Set up Op-code, EEPROM Address,in the I2CCMD
* register. The MAC will take care of interfacing with the
* EEPROM to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
E1000_I2CCMD_OPCODE_READ);
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
/* Poll the ready bit to see if the I2C read completed */
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
usec_delay(50);
data_local = E1000_READ_REG(hw, E1000_I2CCMD);
if (data_local & E1000_I2CCMD_READY)
break;
}
if (!(data_local & E1000_I2CCMD_READY)) {
DEBUGOUT("I2CCMD Read did not complete\n");
return -E1000_ERR_PHY;
}
if (data_local & E1000_I2CCMD_ERROR) {
DEBUGOUT("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
*data = (u8) data_local & 0xFF;
return E1000_SUCCESS;
}
/**
* e1000_write_sfp_data_byte - Writes SFP module data.
* @hw: pointer to the HW structure
* @offset: byte location offset to write to
* @data: data to write
*
* Writes one byte to SFP module data stored
* in SFP resided EEPROM memory or SFP diagnostic area.
* Function should be called with
* E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
* E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
* access
**/
s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
{
u32 i = 0;
u32 i2ccmd = 0;
u32 data_local = 0;
DEBUGFUNC("e1000_write_sfp_data_byte");
if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
DEBUGOUT("I2CCMD command address exceeds upper limit\n");
return -E1000_ERR_PHY;
}
/* The programming interface is 16 bits wide
* so we need to read the whole word first
* then update appropriate byte lane and write
* the updated word back.
*/
/* Set up Op-code, EEPROM Address,in the I2CCMD
* register. The MAC will take care of interfacing
* with an EEPROM to write the data given.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
E1000_I2CCMD_OPCODE_READ);
/* Set a command to read single word */
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
usec_delay(50);
/* Poll the ready bit to see if lastly
* launched I2C operation completed
*/
i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
if (i2ccmd & E1000_I2CCMD_READY) {
/* Check if this is READ or WRITE phase */
if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
E1000_I2CCMD_OPCODE_READ) {
/* Write the selected byte
* lane and update whole word
*/
data_local = i2ccmd & 0xFF00;
data_local |= data;
i2ccmd = ((offset <<
E1000_I2CCMD_REG_ADDR_SHIFT) |
E1000_I2CCMD_OPCODE_WRITE | data_local);
E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
} else {
break;
}
}
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
DEBUGOUT("I2CCMD Write did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
DEBUGOUT("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
return E1000_SUCCESS;
}
/**
* e1000_read_phy_reg_m88 - Read m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
DEBUGFUNC("e1000_read_phy_reg_m88");
if (!hw->phy.ops.acquire)
return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_m88 - Write m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
DEBUGFUNC("e1000_write_phy_reg_m88");
if (!hw->phy.ops.acquire)
return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_set_page_igp - Set page as on IGP-like PHY(s)
* @hw: pointer to the HW structure
* @page: page to set (shifted left when necessary)
*
* Sets PHY page required for PHY register access. Assumes semaphore is
* already acquired. Note, this function sets phy.addr to 1 so the caller
* must set it appropriately (if necessary) after this function returns.
**/
s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
{
DEBUGFUNC("e1000_set_page_igp");
DEBUGOUT1("Setting page 0x%x\n", page);
hw->phy.addr = 1;
return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
}
/**
* __e1000_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and stores the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked)
{
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("__e1000_read_phy_reg_igp");
if (!locked) {
if (!hw->phy.ops.acquire)
return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
if (offset > MAX_PHY_MULTI_PAGE_REG)
ret_val = e1000_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (!ret_val)
ret_val = e1000_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset and stores the
* retrieved information in data.
* Release the acquired semaphore before exiting.
**/
s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_igp(hw, offset, data, false);
}
/**
* e1000_read_phy_reg_igp_locked - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired.
**/
s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_igp(hw, offset, data, true);
}
/**
* e1000_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
bool locked)
{
s32 ret_val = E1000_SUCCESS;
DEBUGFUNC("e1000_write_phy_reg_igp");
if (!locked) {
if (!hw->phy.ops.acquire)
return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
if (offset > MAX_PHY_MULTI_PAGE_REG)
ret_val = e1000_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (!ret_val)
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
offset,
data);
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_igp(hw, offset, data, false);
}
/**
* e1000_write_phy_reg_igp_locked - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset.
* Assumes semaphore already acquired.
**/
s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_igp(hw, offset, data, true);
}
/**
* __e1000_read_kmrn_reg - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary. Then reads the PHY register at offset
* using the kumeran interface. The information retrieved is stored in data.
* Release any acquired semaphores before exiting.
**/
STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked)
{
u32 kmrnctrlsta;
DEBUGFUNC("__e1000_read_kmrn_reg");
if (!locked) {
s32 ret_val = E1000_SUCCESS;
if (!hw->phy.ops.acquire)
return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
E1000_WRITE_FLUSH(hw);
usec_delay(2);
kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
*data = (u16)kmrnctrlsta;
if (!locked)
hw->phy.ops.release(hw);
return E1000_SUCCESS;
}
/**
* e1000_read_kmrn_reg_generic - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset using the
* kumeran interface. The information retrieved is stored in data.
* Release the acquired semaphore before exiting.
**/
s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_kmrn_reg(hw, offset, data, false);
}
/**
* e1000_read_kmrn_reg_locked - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset using the kumeran interface. The
* information retrieved is stored in data.
* Assumes semaphore already acquired.
**/
s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_kmrn_reg(hw, offset, data, true);
}
/**
* __e1000_write_kmrn_reg - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary. Then write the data to PHY register
* at the offset using the kumeran interface. Release any acquired semaphores
* before exiting.
**/
STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
bool locked)
{
u32 kmrnctrlsta;
DEBUGFUNC("e1000_write_kmrn_reg_generic");
if (!locked) {
s32 ret_val = E1000_SUCCESS;
if (!hw->phy.ops.acquire)
return E1000_SUCCESS;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
E1000_WRITE_FLUSH(hw);
usec_delay(2);
if (!locked)
hw->phy.ops.release(hw);
return E1000_SUCCESS;
}
/**
* e1000_write_kmrn_reg_generic - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to the PHY register at the offset
* using the kumeran interface. Release the acquired semaphore before exiting.
**/
s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_kmrn_reg(hw, offset, data, false);
}
/**
* e1000_write_kmrn_reg_locked - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Write the data to PHY register at the offset using the kumeran interface.
* Assumes semaphore already acquired.
**/
s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_kmrn_reg(hw, offset, data, true);
}
/**
* e1000_set_master_slave_mode - Setup PHY for Master/slave mode
* @hw: pointer to the HW structure
*
* Sets up Master/slave mode
**/
STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
/* Resolve Master/Slave mode */
ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* load defaults for future use */
hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) : e1000_ms_auto;
switch (hw->phy.ms_type) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
/* fall-through */
default:
break;
}
return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
}
/**
* e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
* @hw: pointer to the HW structure
*
* Sets up Carrier-sense on Transmit and downshift values.
**/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
DEBUGFUNC("e1000_copper_link_setup_82577");
if (hw->phy.type == e1000_phy_82580) {
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
DEBUGOUT("Error resetting the PHY.\n");
return ret_val;
}
}
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
if (ret_val)
return ret_val;
phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
/* Enable downshift */
phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
if (ret_val)
return ret_val;
/* Set MDI/MDIX mode */
ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
/* Options:
* 0 - Auto (default)
* 1 - MDI mode
* 2 - MDI-X mode
*/
switch (hw->phy.mdix) {
case 1:
break;
case 2:
phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
break;
case 0:
default:
phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
break;
}
ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
if (ret_val)
return ret_val;
return e1000_set_master_slave_mode(hw);
}
/**
* e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
* and downshift values are set also.
**/
s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
DEBUGFUNC("e1000_copper_link_setup_m88");
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* For BM PHY this bit is downshift enable */
if (phy->type != e1000_phy_bm)
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (phy->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (phy->disable_polarity_correction)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
/* Enable downshift on BM (disabled by default) */
if (phy->type == e1000_phy_bm) {
/* For 82574/82583, first disable then enable downshift */
if (phy->id == BME1000_E_PHY_ID_R2) {
phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
/* Commit the changes. */
ret_val = phy->ops.commit(hw);
if (ret_val) {
DEBUGOUT("Error committing the PHY changes\n");
return ret_val;
}
}
phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
}
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if ((phy->type == e1000_phy_m88) &&
(phy->revision < E1000_REVISION_4) &&
(phy->id != BME1000_E_PHY_ID_R2)) {
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((phy->revision == E1000_REVISION_2) &&
(phy->id == M88E1111_I_PHY_ID)) {
/* 82573L PHY - set the downshift counter to 5x. */
phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
}
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
}
if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
/* Set PHY page 0, register 29 to 0x0003 */
ret_val = phy->ops.write_reg(hw, 29, 0x0003);
if (ret_val)
return ret_val;
/* Set PHY page 0, register 30 to 0x0000 */
ret_val = phy->ops.write_reg(hw, 30, 0x0000);
if (ret_val)
return ret_val;
}
/* Commit the changes. */
ret_val = phy->ops.commit(hw);
if (ret_val) {
DEBUGOUT("Error committing the PHY changes\n");
return ret_val;
}
if (phy->type == e1000_phy_82578) {
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
return ret_val;
/* 82578 PHY - set the downshift count to 1x. */
phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
* Also enables and sets the downshift parameters.
**/
s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (phy->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
/* M88E1112 does not support this mode) */
if (phy->id != M88E1112_E_PHY_ID) {
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
}
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (phy->disable_polarity_correction)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
/* Enable downshift and setting it to X6 */
if (phy->id == M88E1543_E_PHY_ID) {
phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
ret_val =
phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = phy->ops.commit(hw);
if (ret_val) {
DEBUGOUT("Error committing the PHY changes\n");
return ret_val;
}
}
phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Commit the changes. */
ret_val = phy->ops.commit(hw);
if (ret_val) {
DEBUGOUT("Error committing the PHY changes\n");
return ret_val;
}
ret_val = e1000_set_master_slave_mode(hw);
if (ret_val)
return ret_val;
return E1000_SUCCESS;
}
/**
* e1000_copper_link_setup_igp - Setup igp PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
* igp PHY's.
**/
s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
DEBUGFUNC("e1000_copper_link_setup_igp");
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
DEBUGOUT("Error resetting the PHY.\n");
return ret_val;
}
/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
* timeout issues when LFS is enabled.
*/
msec_delay(100);
/* The NVM settings will configure LPLU in D3 for
* non-IGP1 PHYs.
*/
if (phy->type == e1000_phy_igp) {
/* disable lplu d3 during driver init */
ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D3\n");
return ret_val;
}
}
/* disable lplu d0 during driver init */
if (hw->phy.ops.set_d0_lplu_state) {
ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
if (ret_val) {
DEBUGOUT("Error Disabling LPLU D0\n");
return ret_val;
}
}
/* Configure mdi-mdix settings */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (phy->mdix) {
case 1:
data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if (hw->mac.autoneg) {
/* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default.
*/
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~CR_1000T_MS_ENABLE;
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
if (ret_val)
return ret_val;
}
ret_val = e1000_set_master_slave_mode(hw);
}
return ret_val;
}
/**
* e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
* register and if the PHY is already setup for auto-negotiation, then
* return successful. Otherwise, setup advertisement and flow control to
* the appropriate values for the wanted auto-negotiation.
**/
s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg = 0;
DEBUGFUNC("e1000_phy_setup_autoneg");
phy->autoneg_advertised &= phy->autoneg_mask;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
NWAY_AR_100TX_HD_CAPS |
NWAY_AR_10T_FD_CAPS |
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
* negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/* Flow control (Rx & Tx) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause:
/* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
* capable of Rx Pause ONLY, we will advertise that we
* support both symmetric and asymmetric Rx PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause:
/* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full:
/* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL)
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
return ret_val;
}
/**
* e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
**/
s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_ctrl;
DEBUGFUNC("e1000_copper_link_autoneg");
/* Perform some bounds checking on the autoneg advertisement
* parameter.
*/
phy->autoneg_advertised &= phy->autoneg_mask;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (!phy->autoneg_advertised)
phy->autoneg_advertised = phy->autoneg_mask;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (phy->autoneg_wait_to_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
}
hw->mac.get_link_status = true;
return ret_val;
}
/**
* e1000_setup_copper_link_generic - Configure copper link settings
* @hw: pointer to the HW structure
*
* Calls the appropriate function to configure the link for auto-neg or forced
* speed and duplex. Then we check for link, once link is established calls
* to configure collision distance and flow control are called. If link is
* not established, we return -E1000_ERR_PHY (-2).
**/
s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
{
s32 ret_val;
bool link;
DEBUGFUNC("e1000_setup_copper_link_generic");
if (hw->mac.autoneg) {
/* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
} else {
/* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
DEBUGOUT("Forcing Speed and Duplex\n");
ret_val = hw->phy.ops.force_speed_duplex(hw);
if (ret_val) {
DEBUGOUT("Error Forcing Speed and Duplex\n");
return ret_val;
}
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
&link);
if (ret_val)
return ret_val;
if (link) {
DEBUGOUT("Valid link established!!!\n");
hw->mac.ops.config_collision_dist(hw);
ret_val = e1000_config_fc_after_link_up_generic(hw);
} else {
DEBUGOUT("Unable to establish link!!!\n");
}
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Waits for link and returns
* successful if link up is successful, else -E1000_ERR_PHY (-2).
**/
s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
DEBUGOUT1("IGP PSCR: %X\n", phy_data);
usec_delay(1);
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link)
DEBUGOUT("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
}
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Resets the PHY to commit the
* changes. If time expires while waiting for link up, we reset the DSP.
* After reset, TX_CLK and CRS on Tx must be set. Return successful upon
* successful completion, else return corresponding error code.
**/
s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
/* I210 and I211 devices support Auto-Crossover in forced operation. */
if (phy->type != e1000_phy_i210) {
/* Clear Auto-Crossover to force MDI manually. M88E1000
* requires MDI forced whenever speed and duplex are forced.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
return ret_val;
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
return ret_val;
DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
}
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
/* Reset the phy to commit changes. */
ret_val = hw->phy.ops.commit(hw);
if (ret_val)
return ret_val;
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link) {
bool reset_dsp = true;
switch (hw->phy.id) {
case I347AT4_E_PHY_ID:
case M88E1340M_E_PHY_ID:
case M88E1112_E_PHY_ID:
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case I210_I_PHY_ID:
reset_dsp = false;
break;
default:
if (hw->phy.type != e1000_phy_m88)
reset_dsp = false;
break;
}
if (!reset_dsp) {
DEBUGOUT("Link taking longer than expected.\n");
} else {
/* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = phy->ops.write_reg(hw,
M88E1000_PHY_PAGE_SELECT,
0x001d);
if (ret_val)
return ret_val;
ret_val = e1000_phy_reset_dsp_generic(hw);
if (ret_val)
return ret_val;
}
}
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
if (hw->phy.type != e1000_phy_m88)
return E1000_SUCCESS;
if (hw->phy.id == I347AT4_E_PHY_ID ||
hw->phy.id == M88E1340M_E_PHY_ID ||
hw->phy.id == M88E1112_E_PHY_ID)
return E1000_SUCCESS;
if (hw->phy.id == I210_I_PHY_ID)
return E1000_SUCCESS;
if ((hw->phy.id == M88E1543_E_PHY_ID) ||
(hw->phy.id == M88E1512_E_PHY_ID))
return E1000_SUCCESS;
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Resetting the phy means we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock from
* the reset value of 2.5MHz.
*/
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
* @hw: pointer to the HW structure
*
* Forces the speed and duplex settings of the PHY.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
if (ret_val)
return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
if (ret_val)
return ret_val;
/* Disable MDI-X support for 10/100 */
ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
return ret_val;
data &= ~IFE_PMC_AUTO_MDIX;
data &= ~IFE_PMC_FORCE_MDIX;
ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
if (ret_val)
return ret_val;
DEBUGOUT1("IFE PMC: %X\n", data);
usec_delay(1);
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link)
DEBUGOUT("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* @hw: pointer to the HW structure
* @phy_ctrl: pointer to current value of PHY_CONTROL
*
* Forces speed and duplex on the PHY by doing the following: disable flow
* control, force speed/duplex on the MAC, disable auto speed detection,
* disable auto-negotiation, configure duplex, configure speed, configure
* the collision distance, write configuration to CTRL register. The
* caller must write to the PHY_CONTROL register for these settings to
* take affect.
**/
void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl;
DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
/* Turn off flow control when forcing speed/duplex */
hw->fc.current_mode = e1000_fc_none;
/* Force speed/duplex on the mac */
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~E1000_CTRL_SPD_SEL;
/* Disable Auto Speed Detection */
ctrl &= ~E1000_CTRL_ASDE;
/* Disable autoneg on the phy */
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
/* Forcing Full or Half Duplex? */
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
ctrl &= ~E1000_CTRL_FD;
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
DEBUGOUT("Half Duplex\n");
} else {
ctrl |= E1000_CTRL_FD;
*phy_ctrl |= MII_CR_FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
}
/* Forcing 10mb or 100mb? */
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
ctrl |= E1000_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
*phy_ctrl &= ~MII_CR_SPEED_1000;
DEBUGOUT("Forcing 100mb\n");
} else {
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
DEBUGOUT("Forcing 10mb\n");
}
hw->mac.ops.config_collision_dist(hw);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
}
/**
* e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
DEBUGFUNC("e1000_set_d3_lplu_state_generic");
if (!hw->phy.ops.read_reg)
return E1000_SUCCESS;
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
return ret_val;
if (!active) {
data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
if (ret_val)
return ret_val;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= IGP02E1000_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
if (ret_val)
return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
}
return ret_val;
}
/**
* e1000_check_downshift_generic - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
*
* A downshift is detected by querying the PHY link health.
**/
s32 e1000_check_downshift_generic(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
DEBUGFUNC("e1000_check_downshift_generic");
switch (phy->type) {
case e1000_phy_i210:
case e1000_phy_m88:
case e1000_phy_gg82563:
case e1000_phy_bm:
case e1000_phy_82578:
offset = M88E1000_PHY_SPEC_STATUS;
mask = M88E1000_PSSR_DOWNSHIFT;
break;
case e1000_phy_igp:
case e1000_phy_igp_2:
case e1000_phy_igp_3:
offset = IGP01E1000_PHY_LINK_HEALTH;
mask = IGP01E1000_PLHR_SS_DOWNGRADE;
break;
default:
/* speed downshift not supported */
phy->speed_downgraded = false;
return E1000_SUCCESS;
}
ret_val = phy->ops.read_reg(hw, offset, &phy_data);
if (!ret_val)
phy->speed_downgraded = !!(phy_data & mask);
return ret_val;
}
/**
* e1000_check_polarity_m88 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
DEBUGFUNC("e1000_check_polarity_m88");
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
if (!ret_val)
phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal);
return ret_val;
}
/**
* e1000_check_polarity_igp - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY port status register, and the
* current speed (since there is no polarity at 100Mbps).
**/
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data, offset, mask;
DEBUGFUNC("e1000_check_polarity_igp");
/* Polarity is determined based on the speed of
* our connection.
*/
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
return ret_val;
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
offset = IGP01E1000_PHY_PCS_INIT_REG;
mask = IGP01E1000_PHY_POLARITY_MASK;
} else {
/* This really only applies to 10Mbps since
* there is no polarity for 100Mbps (always 0).
*/
offset = IGP01E1000_PHY_PORT_STATUS;
mask = IGP01E1000_PSSR_POLARITY_REVERSED;
}
ret_val = phy->ops.read_reg(hw, offset, &data);
if (!ret_val)
phy->cable_polarity = ((data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal);
return ret_val;
}
/**
* e1000_check_polarity_ife - Check cable polarity for IFE PHY
* @hw: pointer to the HW structure
*
* Polarity is determined on the polarity reversal feature being enabled.
**/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
DEBUGFUNC("e1000_check_polarity_ife");
/* Polarity is determined based on the reversal feature being enabled.
*/
if (phy->polarity_correction) {
offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
mask = IFE_PESC_POLARITY_REVERSED;
} else {
offset = IFE_PHY_SPECIAL_CONTROL;
mask = IFE_PSC_FORCE_POLARITY;
}
ret_val = phy->ops.read_reg(hw, offset, &phy_data);
if (!ret_val)
phy->cable_polarity = ((phy_data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal);
return ret_val;
}
/**
* e1000_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
**/
STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 i, phy_status;
DEBUGFUNC("e1000_wait_autoneg");
if (!hw->phy.ops.read_reg)
return E1000_SUCCESS;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_AUTONEG_COMPLETE)
break;
msec_delay(100);
}
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
}
/**
* e1000_phy_has_link_generic - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
* @success: pointer to whether polling was successful or not
*
* Polls the PHY status register for link, 'iterations' number of times.
**/
s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
u32 usec_interval, bool *success)
{
s32 ret_val = E1000_SUCCESS;
u16 i, phy_status;
DEBUGFUNC("e1000_phy_has_link_generic");
if (!hw->phy.ops.read_reg)
return E1000_SUCCESS;
for (i = 0; i < iterations; i++) {
/* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val) {
/* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
if (usec_interval >= 1000)
msec_delay(usec_interval/1000);
else
usec_delay(usec_interval);
}
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_LINK_STATUS)
break;
if (usec_interval >= 1000)
msec_delay(usec_interval/1000);
else
usec_delay(usec_interval);
}
*success = (i < iterations);
return ret_val;
}
/**
* e1000_get_cable_length_m88 - Determine cable length for m88 PHY
* @hw: pointer to the HW structure
*
* Reads the PHY specific status register to retrieve the cable length
* information. The cable length is determined by averaging the minimum and
* maximum values to get the "average" cable length. The m88 PHY has four
* possible cable length values, which are:
* Register Value Cable Length
* 0 < 50 meters
* 1 50 - 80 meters
* 2 80 - 110 meters
* 3 110 - 140 meters
* 4 > 140 meters
**/
s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, index;
DEBUGFUNC("e1000_get_cable_length_m88");
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
return ret_val;
index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT);
if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
return -E1000_ERR_PHY;
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
return E1000_SUCCESS;
}
s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, phy_data2, is_cm;
u16 index, default_page;
DEBUGFUNC("e1000_get_cable_length_m88_gen2");
switch (hw->phy.id) {
case I210_I_PHY_ID:
/* Get cable length from PHY Cable Diagnostics Control Reg */
ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
(I347AT4_PCDL + phy->addr),
&phy_data);
if (ret_val)
return ret_val;
/* Check if the unit of cable length is meters or cm */
ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
I347AT4_PCDC, &phy_data2);
if (ret_val)
return ret_val;
is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
/* Populate the phy structure with cable length in meters */
phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
phy->cable_length = phy_data / (is_cm ? 100 : 1);
break;
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case M88E1340M_E_PHY_ID:
case I347AT4_E_PHY_ID:
/* Remember the original page select and set it to 7 */
ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
&default_page);
if (ret_val)
return ret_val;
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
if (ret_val)
return ret_val;
/* Get cable length from PHY Cable Diagnostics Control Reg */
ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
&phy_data);
if (ret_val)
return ret_val;
/* Check if the unit of cable length is meters or cm */
ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
if (ret_val)
return ret_val;
is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
/* Populate the phy structure with cable length in meters */
phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
phy->cable_length = phy_data / (is_cm ? 100 : 1);
/* Reset the page select to its original value */
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
default_page);
if (ret_val)
return ret_val;
break;
case M88E1112_E_PHY_ID:
/* Remember the original page select and set it to 5 */
ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
&default_page);
if (ret_val)
return ret_val;
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
&phy_data);
if (ret_val)
return ret_val;
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
return -E1000_ERR_PHY;
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length +
phy->max_cable_length) / 2;
/* Reset the page select to its original value */
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
default_page);
if (ret_val)
return ret_val;
break;
default:
return -E1000_ERR_PHY;
}
return ret_val;
}
/**
* e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
* @hw: pointer to the HW structure
*
* The automatic gain control (agc) normalizes the amplitude of the
* received signal, adjusting for the attenuation produced by the
* cable. By reading the AGC registers, which represent the
* combination of coarse and fine gain value, the value can be put
* into a lookup table to obtain the approximate cable length
* for each channel.
**/
s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, i, agc_value = 0;
u16 cur_agc_index, max_agc_index = 0;
u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
IGP02E1000_PHY_AGC_C,
IGP02E1000_PHY_AGC_D
};
DEBUGFUNC("e1000_get_cable_length_igp_2");
/* Read the AGC registers for all channels */
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
if (ret_val)
return ret_val;
/* Getting bits 15:9, which represent the combination of
* coarse and fine gain values. The result is a number
* that can be put into the lookup table to obtain the
* approximate cable length.
*/
cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK);
/* Array index bound check. */
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
(cur_agc_index == 0))
return -E1000_ERR_PHY;
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc_index] >
e1000_igp_2_cable_length_table[cur_agc_index])
min_agc_index = cur_agc_index;
if (e1000_igp_2_cable_length_table[max_agc_index] <
e1000_igp_2_cable_length_table[cur_agc_index])
max_agc_index = cur_agc_index;
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
e1000_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
(agc_value - IGP02E1000_AGC_RANGE) : 0);
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
return E1000_SUCCESS;
}
/**
* e1000_get_phy_info_m88 - Retrieve PHY information
* @hw: pointer to the HW structure
*
* Valid for only copper links. Read the PHY status register (sticky read)
* to verify that link is up. Read the PHY special control register to
* determine the polarity and 10base-T extended distance. Read the PHY
* special status register to determine MDI/MDIx and current speed. If
* speed is 1000, then determine cable length, local and remote receiver.
**/
s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
DEBUGFUNC("e1000_get_phy_info_m88");
if (phy->media_type != e1000_media_type_copper) {
DEBUGOUT("Phy info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy->polarity_correction = !!(phy_data &
M88E1000_PSCR_POLARITY_REVERSAL);
ret_val = e1000_check_polarity_m88(hw);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
/* Set values to "undefined" */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return ret_val;
}
/**
* e1000_get_phy_info_igp - Retrieve igp PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
DEBUGFUNC("e1000_get_phy_info_igp");
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
phy->polarity_correction = true;
ret_val = e1000_check_polarity_igp(hw);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
return ret_val;
phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
ret_val = phy->ops.get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
if (ret_val)
return ret_val;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return ret_val;
}
/**
* e1000_get_phy_info_ife - Retrieves various IFE PHY states
* @hw: pointer to the HW structure
*
* Populates "phy" structure with various feature states.
**/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
DEBUGFUNC("e1000_get_phy_info_ife");
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
if (ret_val)
return ret_val;
phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
if (phy->polarity_correction) {
ret_val = e1000_check_polarity_ife(hw);
if (ret_val)
return ret_val;
} else {
/* Polarity is forced */
phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal);
}
ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
return ret_val;
phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
/* The following parameters are undefined for 10/100 operation. */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
return E1000_SUCCESS;
}
/**
* e1000_phy_sw_reset_generic - PHY software reset
* @hw: pointer to the HW structure
*
* Does a software reset of the PHY by reading the PHY control register and
* setting/write the control register reset bit to the PHY.
**/
s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_ctrl;
DEBUGFUNC("e1000_phy_sw_reset_generic");
if (!hw->phy.ops.read_reg)
return E1000_SUCCESS;
ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= MII_CR_RESET;
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
usec_delay(1);
return ret_val;
}
/**
* e1000_phy_hw_reset_generic - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and release the semaphore (if necessary).
**/
s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl;
DEBUGFUNC("e1000_phy_hw_reset_generic");
if (phy->ops.check_reset_block) {
ret_val = phy->ops.check_reset_block(hw);
if (ret_val)
return E1000_SUCCESS;
}
ret_val = phy->ops.acquire(hw);
if (ret_val)
return ret_val;
ctrl = E1000_READ_REG(hw, E1000_CTRL);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
usec_delay(phy->reset_delay_us);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
usec_delay(150);
phy->ops.release(hw);
return phy->ops.get_cfg_done(hw);
}
/**
* e1000_get_cfg_done_generic - Generic configuration done
* @hw: pointer to the HW structure
*
* Generic function to wait 10 milli-seconds for configuration to complete
* and return success.
**/
s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
{
DEBUGFUNC("e1000_get_cfg_done_generic");
UNREFERENCED_1PARAMETER(hw);
msec_delay_irq(10);
return E1000_SUCCESS;
}
/**
* e1000_phy_init_script_igp3 - Inits the IGP3 PHY
* @hw: pointer to the HW structure
*
* Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
**/
s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
{
DEBUGOUT("Running IGP 3 PHY init script\n");
/* PHY init IGP 3 */
/* Enable rise/fall, 10-mode work in class-A */
hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
/* Remove all caps from Replica path filter */
hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
/* Bias trimming for ADC, AFE and Driver (Default) */
hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
/* Increase Hybrid poly bias */
hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
/* Add 4% to Tx amplitude in Gig mode */
hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
/* Disable trimming (TTT) */
hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
/* Poly DC correction to 94.6% + 2% for all channels */
hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
/* ABS DC correction to 95.9% */
hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
/* BG temp curve trim */
hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
/* Increasing ADC OPAMP stage 1 currents to max */
hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
/* Force 1000 ( required for enabling PHY regs configuration) */
hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
/* Set upd_freq to 6 */
hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
/* Disable NPDFE */
hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
/* Disable adaptive fixed FFE (Default) */
hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
/* Enable FFE hysteresis */
hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
/* Fixed FFE for short cable lengths */
hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
/* Fixed FFE for medium cable lengths */
hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
/* Fixed FFE for long cable lengths */
hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
/* Enable Adaptive Clip Threshold */
hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
/* AHT reset limit to 1 */
hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
/* Set AHT master delay to 127 msec */
hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
/* Set scan bits for AHT */
hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
/* Set AHT Preset bits */
hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
/* Change integ_factor of channel A to 3 */
hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
/* Change prop_factor of channels BCD to 8 */
hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
/* Change cg_icount + enable integbp for channels BCD */
hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
/* Change cg_icount + enable integbp + change prop_factor_master
* to 8 for channel A
*/
hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
/* Disable AHT in Slave mode on channel A */
hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
/* Enable LPLU and disable AN to 1000 in non-D0a states,
* Enable SPD+B2B
*/
hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
/* Enable restart AN on an1000_dis change */
hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
/* Enable wh_fifo read clock in 10/100 modes */
hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
/* Restart AN, Speed selection is 1000 */
hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
return E1000_SUCCESS;
}
/**
* e1000_get_phy_type_from_id - Get PHY type from id
* @phy_id: phy_id read from the phy
*
* Returns the phy type from the id.
**/
enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
{
enum e1000_phy_type phy_type = e1000_phy_unknown;
switch (phy_id) {
case M88E1000_I_PHY_ID:
case M88E1000_E_PHY_ID:
case M88E1111_I_PHY_ID:
case M88E1011_I_PHY_ID:
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case I347AT4_E_PHY_ID:
case M88E1112_E_PHY_ID:
case M88E1340M_E_PHY_ID:
phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
phy_type = e1000_phy_igp_2;
break;
case GG82563_E_PHY_ID:
phy_type = e1000_phy_gg82563;
break;
case IGP03E1000_E_PHY_ID:
phy_type = e1000_phy_igp_3;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
phy_type = e1000_phy_ife;
break;
case BME1000_E_PHY_ID:
case BME1000_E_PHY_ID_R2:
phy_type = e1000_phy_bm;
break;
case I82578_E_PHY_ID:
phy_type = e1000_phy_82578;
break;
case I82577_E_PHY_ID:
phy_type = e1000_phy_82577;
break;
case I82579_E_PHY_ID:
phy_type = e1000_phy_82579;
break;
case I217_E_PHY_ID:
phy_type = e1000_phy_i217;
break;
case I82580_I_PHY_ID:
phy_type = e1000_phy_82580;
break;
case I210_I_PHY_ID:
phy_type = e1000_phy_i210;
break;
default:
phy_type = e1000_phy_unknown;
break;
}
return phy_type;
}
/**
* e1000_determine_phy_address - Determines PHY address.
* @hw: pointer to the HW structure
*
* This uses a trial and error method to loop through possible PHY
* addresses. It tests each by reading the PHY ID registers and
* checking for a match.
**/
s32 e1000_determine_phy_address(struct e1000_hw *hw)
{
u32 phy_addr = 0;
u32 i;
enum e1000_phy_type phy_type = e1000_phy_unknown;
hw->phy.id = phy_type;
for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
hw->phy.addr = phy_addr;
i = 0;
do {
e1000_get_phy_id(hw);
phy_type = e1000_get_phy_type_from_id(hw->phy.id);
/* If phy_type is valid, break - we found our
* PHY address
*/
if (phy_type != e1000_phy_unknown)
return E1000_SUCCESS;
msec_delay(1);
i++;
} while (i < 10);
}
return -E1000_ERR_PHY_TYPE;
}
/**
* e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
* @page: page to access
*
* Returns the phy address for the page requested.
**/
STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
u32 phy_addr = 2;
if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
phy_addr = 1;
return phy_addr;
}
/**
* e1000_write_phy_reg_bm - Write BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u32 page = offset >> IGP_PAGE_SHIFT;
DEBUGFUNC("e1000_write_phy_reg_bm");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, false);
goto release;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
u32 page_shift, page_select;
/* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
if (hw->phy.addr == 1) {
page_shift = IGP_PAGE_SHIFT;
page_select = IGP01E1000_PHY_PAGE_SELECT;
} else {
page_shift = 0;
page_select = BM_PHY_PAGE_SELECT;
}
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, page_select,
(page << page_shift));
if (ret_val)
goto release;
}
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_bm - Read BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u32 page = offset >> IGP_PAGE_SHIFT;
DEBUGFUNC("e1000_read_phy_reg_bm");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, false);
goto release;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
u32 page_shift, page_select;
/* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
if (hw->phy.addr == 1) {
page_shift = IGP_PAGE_SHIFT;
page_select = IGP01E1000_PHY_PAGE_SELECT;
} else {
page_shift = 0;
page_select = BM_PHY_PAGE_SELECT;
}
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, page_select,
(page << page_shift));
if (ret_val)
goto release;
}
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_bm2 - Read BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
DEBUGFUNC("e1000_read_phy_reg_bm2");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, false);
goto release;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
if (ret_val)
goto release;
}
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_bm2 - Write BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
DEBUGFUNC("e1000_write_phy_reg_bm2");
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, false);
goto release;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
if (ret_val)
goto release;
}
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
* @hw: pointer to the HW structure
* @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
*
* Assumes semaphore already acquired and phy_reg points to a valid memory
* address to store contents of the BM_WUC_ENABLE_REG register.
**/
s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
s32 ret_val;
u16 temp;
DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
if (!phy_reg)
return -E1000_ERR_PARAM;
/* All page select, port ctrl and wakeup registers use phy address 1 */
hw->phy.addr = 1;
/* Select Port Control Registers page */
ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
if (ret_val) {
DEBUGOUT("Could not set Port Control page\n");
return ret_val;
}
ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
if (ret_val) {
DEBUGOUT2("Could not read PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
return ret_val;
}
/* Enable both PHY wakeup mode and Wakeup register page writes.
* Prevent a power state change by disabling ME and Host PHY wakeup.
*/
temp = *phy_reg;
temp |= BM_WUC_ENABLE_BIT;
temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
if (ret_val) {
DEBUGOUT2("Could not write PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
return ret_val;
}
/* Select Host Wakeup Registers page - caller now able to write
* registers on the Wakeup registers page
*/
return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
}
/**
* e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
* @hw: pointer to the HW structure
* @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
*
* Restore BM_WUC_ENABLE_REG to its original value.
*
* Assumes semaphore already acquired and *phy_reg is the contents of the
* BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
* caller.
**/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
s32 ret_val;
DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
if (!phy_reg)
return -E1000_ERR_PARAM;
/* Select Port Control Registers page */
ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
if (ret_val) {
DEBUGOUT("Could not set Port Control page\n");
return ret_val;
}
/* Restore 769.17 to its original value */
ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
if (ret_val)
DEBUGOUT2("Could not restore PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
return ret_val;
}
/**
* e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to read or write
* @read: determines if operation is read or write
* @page_set: BM_WUC_PAGE already set and access enabled
*
* Read the PHY register at offset and store the retrieved information in
* data, or write data to PHY register at offset. Note the procedure to
* access the PHY wakeup registers is different than reading the other PHY
* registers. It works as such:
* 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
* 2) Set page to 800 for host (801 if we were manageability)
* 3) Write the address using the address opcode (0x11)
* 4) Read or write the data using the data opcode (0x12)
* 5) Restore 769.17.2 to its original value
*
* Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
* step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
*
* Assumes semaphore is already acquired. When page_set==true, assumes
* the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
* is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
**/
STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set)
{
s32 ret_val;
u16 reg = BM_PHY_REG_NUM(offset);
u16 page = BM_PHY_REG_PAGE(offset);
u16 phy_reg = 0;
DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
if ((hw->mac.type == e1000_pchlan) &&
(!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
page);
if (!page_set) {
/* Enable access to PHY wakeup registers */
ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
if (ret_val) {
DEBUGOUT("Could not enable PHY wakeup reg access\n");
return ret_val;
}
}
DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
/* Write the Wakeup register page offset value using opcode 0x11 */
ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
if (ret_val) {
DEBUGOUT1("Could not write address opcode to page %d\n", page);
return ret_val;
}
if (read) {
/* Read the Wakeup register page value using opcode 0x12 */
ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
data);
} else {
/* Write the Wakeup register page value using opcode 0x12 */
ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
*data);
}
if (ret_val) {
DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
return ret_val;
}
if (!page_set)
ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
return ret_val;
}
/**
* e1000_power_up_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
}
/**
* e1000_power_down_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
msec_delay(1);
}
/**
* __e1000_read_phy_reg_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and stores the retrieved information in data. Release any acquired
* semaphore before exiting.
**/
STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
DEBUGFUNC("__e1000_read_phy_reg_hv");
if (!locked) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
data, true);
goto out;
}
if (!page_set) {
if (page == HV_INTC_FC_PAGE_START)
page = 0;
if (reg > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_set_page_igp(hw,
(page << IGP_PAGE_SHIFT));
hw->phy.addr = phy_addr;
if (ret_val)
goto out;
}
}
DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
page << IGP_PAGE_SHIFT, reg);
ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
data);
out:
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset and stores
* the retrieved information in data. Release the acquired semaphore
* before exiting.
**/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
}
/**
* e1000_read_phy_reg_hv_locked - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired.
**/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
}
/**
* e1000_read_phy_reg_page_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired and page already set.
**/
s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
}
/**
* __e1000_write_phy_reg_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
DEBUGFUNC("__e1000_write_phy_reg_hv");
if (!locked) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
&data, false);
goto out;
}
if (!page_set) {
if (page == HV_INTC_FC_PAGE_START)
page = 0;
/* Workaround MDIO accesses being disabled after entering IEEE
* Power Down (when bit 11 of the PHY Control register is set)
*/
if ((hw->phy.type == e1000_phy_82578) &&
(hw->phy.revision >= 1) &&
(hw->phy.addr == 2) &&
!(MAX_PHY_REG_ADDRESS & reg) &&
(data & (1 << 11))) {
u16 data2 = 0x7EFF;
ret_val = e1000_access_phy_debug_regs_hv(hw,
(1 << 6) | 0x3,
&data2, false);
if (ret_val)
goto out;
}
if (reg > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_set_page_igp(hw,
(page << IGP_PAGE_SHIFT));
hw->phy.addr = phy_addr;
if (ret_val)
goto out;
}
}
DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
page << IGP_PAGE_SHIFT, reg);
ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
data);
out:
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to PHY register at the offset.
* Release the acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
}
/**
* e1000_write_phy_reg_hv_locked - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset. Assumes semaphore
* already acquired.
**/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
}
/**
* e1000_write_phy_reg_page_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset. Assumes semaphore
* already acquired and page already set.
**/
s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
}
/**
* e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
* @page: page to be accessed
**/
STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
u32 phy_addr = 2;
if (page >= HV_INTC_FC_PAGE_START)
phy_addr = 1;
return phy_addr;
}
/**
* e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to be read or written
* @read: determines if operation is read or write
*
* Reads the PHY register at offset and stores the retreived information
* in data. Assumes semaphore already acquired. Note that the procedure
* to access these regs uses the address port and data port to read/write.
* These accesses done with PHY address 2 and without using pages.
**/
STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
u16 *data, bool read)
{
s32 ret_val;
u32 addr_reg;
u32 data_reg;
DEBUGFUNC("e1000_access_phy_debug_regs_hv");
/* This takes care of the difference with desktop vs mobile phy */
addr_reg = ((hw->phy.type == e1000_phy_82578) ?
I82578_ADDR_REG : I82577_ADDR_REG);
data_reg = addr_reg + 1;
/* All operations in this function are phy address 2 */
hw->phy.addr = 2;
/* masking with 0x3F to remove the page from offset */
ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
if (ret_val) {
DEBUGOUT("Could not write the Address Offset port register\n");
return ret_val;
}
/* Read or write the data value next */
if (read)
ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
else
ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
if (ret_val)
DEBUGOUT("Could not access the Data port register\n");
return ret_val;
}
/**
* e1000_link_stall_workaround_hv - Si workaround
* @hw: pointer to the HW structure
*
* This function works around a Si bug where the link partner can get
* a link up indication before the PHY does. If small packets are sent
* by the link partner they can be placed in the packet buffer without
* being properly accounted for by the PHY and will stall preventing
* further packets from being received. The workaround is to clear the
* packet buffer after the PHY detects link up.
**/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 data;
DEBUGFUNC("e1000_link_stall_workaround_hv");
if (hw->phy.type != e1000_phy_82578)
return E1000_SUCCESS;
/* Do not apply workaround if in PHY loopback bit 14 set */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
if (data & PHY_CONTROL_LB)
return E1000_SUCCESS;
/* check if link is up and at 1Gbps */
ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
if (ret_val)
return ret_val;
data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_MASK);
if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
return E1000_SUCCESS;
msec_delay(200);
/* flush the packets in the fifo buffer */
ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
(HV_MUX_DATA_CTRL_GEN_TO_MAC |
HV_MUX_DATA_CTRL_FORCE_SPEED));
if (ret_val)
return ret_val;
return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
HV_MUX_DATA_CTRL_GEN_TO_MAC);
}
/**
* e1000_check_polarity_82577 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
DEBUGFUNC("e1000_check_polarity_82577");
ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
if (!ret_val)
phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal);
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex.
**/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
usec_delay(1);
if (phy->autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link)
DEBUGOUT("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
}
return ret_val;
}
/**
* e1000_get_phy_info_82577 - Retrieve I82577 PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
DEBUGFUNC("e1000_get_phy_info_82577");
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
DEBUGOUT("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
phy->polarity_correction = true;
ret_val = e1000_check_polarity_82577(hw);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
if (ret_val)
return ret_val;
phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
I82577_PHY_STATUS2_SPEED_1000MBPS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
if (ret_val)
return ret_val;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return E1000_SUCCESS;
}
/**
* e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
* @hw: pointer to the HW structure
*
* Reads the diagnostic status register and verifies result is valid before
* placing it in the phy_cable_length field.
**/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, length;
DEBUGFUNC("e1000_get_cable_length_82577");
ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
if (ret_val)
return ret_val;
length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
I82577_DSTATUS_CABLE_LENGTH_SHIFT);
if (length == E1000_CABLE_LENGTH_UNDEFINED)
return -E1000_ERR_PHY;
phy->cable_length = length;
return E1000_SUCCESS;
}
/**
* e1000_write_phy_reg_gs40g - Write GS40G PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u16 page = offset >> GS40G_PAGE_SHIFT;
DEBUGFUNC("e1000_write_phy_reg_gs40g");
offset = offset & GS40G_OFFSET_MASK;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
if (ret_val)
goto release;
ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_gs40g - Read GS40G PHY register
* @hw: pointer to the HW structure
* @offset: lower half is register offset to read to
* upper half is page to use.
* @data: data to read at register offset
*
* Acquires semaphore, if necessary, then reads the data in the PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u16 page = offset >> GS40G_PAGE_SHIFT;
DEBUGFUNC("e1000_read_phy_reg_gs40g");
offset = offset & GS40G_OFFSET_MASK;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
if (ret_val)
goto release;
ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_mphy - Read mPHY control register
* @hw: pointer to the HW structure
* @address: address to be read
* @data: pointer to the read data
*
* Reads the mPHY control register in the PHY at offset and stores the
* information read to data.
**/
s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
{
u32 mphy_ctrl = 0;
bool locked = false;
bool ready;
DEBUGFUNC("e1000_read_phy_reg_mphy");
/* Check if mPHY is ready to read/write operations */
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
/* Check if mPHY access is disabled and enable it if so */
mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
locked = true;
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
}
/* Set the address that we want to read */
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
/* We mask address, because we want to use only current lane */
mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
(address & E1000_MPHY_ADDRESS_MASK);
E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
/* Read data from the address */
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
*data = E1000_READ_REG(hw, E1000_MPHY_DATA);
/* Disable access to mPHY if it was originally disabled */
if (locked) {
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
E1000_MPHY_DIS_ACCESS);
}
return E1000_SUCCESS;
}
/**
* e1000_write_phy_reg_mphy - Write mPHY control register
* @hw: pointer to the HW structure
* @address: address to write to
* @data: data to write to register at offset
* @line_override: used when we want to use different line than default one
*
* Writes data to mPHY control register.
**/
s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
bool line_override)
{
u32 mphy_ctrl = 0;
bool locked = false;
bool ready;
DEBUGFUNC("e1000_write_phy_reg_mphy");
/* Check if mPHY is ready to read/write operations */
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
/* Check if mPHY access is disabled and enable it if so */
mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
locked = true;
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
}
/* Set the address that we want to read */
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
/* We mask address, because we want to use only current lane */
if (line_override)
mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
else
mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
(address & E1000_MPHY_ADDRESS_MASK);
E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
/* Read data from the address */
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
/* Disable access to mPHY if it was originally disabled */
if (locked) {
ready = e1000_is_mphy_ready(hw);
if (!ready)
return -E1000_ERR_PHY;
E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
E1000_MPHY_DIS_ACCESS);
}
return E1000_SUCCESS;
}
/**
* e1000_is_mphy_ready - Check if mPHY control register is not busy
* @hw: pointer to the HW structure
*
* Returns mPHY control register status.
**/
bool e1000_is_mphy_ready(struct e1000_hw *hw)
{
u16 retry_count = 0;
u32 mphy_ctrl = 0;
bool ready = false;
while (retry_count < 2) {
mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
if (mphy_ctrl & E1000_MPHY_BUSY) {
usec_delay(20);
retry_count++;
continue;
}
ready = true;
break;
}
if (!ready)
DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
return ready;
}