numam-dpdk/drivers/net/mlx4/mlx4.c
Matthieu Ternisien d'Ouville 501505c560 net/mlx: fix IPv4 and IPv6 packet type
Mellanox PMDs do not differentiate IP header with or without options, so
the advertised packet type for an IPv4 should not be RTE_PTYPE_L3_IPV4,
which explicitly means "does not contain any header option".

Change the driver to set
RTE_PTYPE(_INNER)_L3_IPV4_EXT_UNKNOWN or
RTE_PTYPE(_INNER)_L3_IPV6_EXT_UNKNOWN flags for all IPv4/IPv6 packets
received.

Fixes: 429df3803a ("mlx4: replace some offload flags with packet type")
Fixes: 67fa62bc67 ("mlx5: support checksum offload")

Signed-off-by: Samuel Gauthier <samuel.gauthier@6wind.com>
Signed-off-by: Matthieu Ternisien d'Ouville <matthieu.tdo@6wind.com>
Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
2017-01-17 19:41:43 +01:00

5927 lines
150 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2012-2015 6WIND S.A.
* Copyright 2012 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Known limitations:
* - RSS hash key and options cannot be modified.
* - Hardware counters aren't implemented.
*/
/* System headers. */
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <limits.h>
#include <assert.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <dirent.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <linux/ethtool.h>
#include <linux/sockios.h>
#include <fcntl.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
/* DPDK headers don't like -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_dev.h>
#include <rte_mbuf.h>
#include <rte_errno.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_malloc.h>
#include <rte_spinlock.h>
#include <rte_atomic.h>
#include <rte_version.h>
#include <rte_log.h>
#include <rte_alarm.h>
#include <rte_memory.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
/* Generated configuration header. */
#include "mlx4_autoconf.h"
/* PMD header. */
#include "mlx4.h"
/* Runtime logging through RTE_LOG() is enabled when not in debugging mode.
* Intermediate LOG_*() macros add the required end-of-line characters. */
#ifndef NDEBUG
#define INFO(...) DEBUG(__VA_ARGS__)
#define WARN(...) DEBUG(__VA_ARGS__)
#define ERROR(...) DEBUG(__VA_ARGS__)
#else
#define LOG__(level, m, ...) \
RTE_LOG(level, PMD, MLX4_DRIVER_NAME ": " m "%c", __VA_ARGS__)
#define LOG_(level, ...) LOG__(level, __VA_ARGS__, '\n')
#define INFO(...) LOG_(INFO, __VA_ARGS__)
#define WARN(...) LOG_(WARNING, __VA_ARGS__)
#define ERROR(...) LOG_(ERR, __VA_ARGS__)
#endif
/* Convenience macros for accessing mbuf fields. */
#define NEXT(m) ((m)->next)
#define DATA_LEN(m) ((m)->data_len)
#define PKT_LEN(m) ((m)->pkt_len)
#define DATA_OFF(m) ((m)->data_off)
#define SET_DATA_OFF(m, o) ((m)->data_off = (o))
#define NB_SEGS(m) ((m)->nb_segs)
#define PORT(m) ((m)->port)
/* Work Request ID data type (64 bit). */
typedef union {
struct {
uint32_t id;
uint16_t offset;
} data;
uint64_t raw;
} wr_id_t;
#define WR_ID(o) (((wr_id_t *)&(o))->data)
/* Transpose flags. Useful to convert IBV to DPDK flags. */
#define TRANSPOSE(val, from, to) \
(((from) >= (to)) ? \
(((val) & (from)) / ((from) / (to))) : \
(((val) & (from)) * ((to) / (from))))
struct mlx4_rxq_stats {
unsigned int idx; /**< Mapping index. */
#ifdef MLX4_PMD_SOFT_COUNTERS
uint64_t ipackets; /**< Total of successfully received packets. */
uint64_t ibytes; /**< Total of successfully received bytes. */
#endif
uint64_t idropped; /**< Total of packets dropped when RX ring full. */
uint64_t rx_nombuf; /**< Total of RX mbuf allocation failures. */
};
struct mlx4_txq_stats {
unsigned int idx; /**< Mapping index. */
#ifdef MLX4_PMD_SOFT_COUNTERS
uint64_t opackets; /**< Total of successfully sent packets. */
uint64_t obytes; /**< Total of successfully sent bytes. */
#endif
uint64_t odropped; /**< Total of packets not sent when TX ring full. */
};
/* RX element (scattered packets). */
struct rxq_elt_sp {
struct ibv_recv_wr wr; /* Work Request. */
struct ibv_sge sges[MLX4_PMD_SGE_WR_N]; /* Scatter/Gather Elements. */
struct rte_mbuf *bufs[MLX4_PMD_SGE_WR_N]; /* SGEs buffers. */
};
/* RX element. */
struct rxq_elt {
struct ibv_recv_wr wr; /* Work Request. */
struct ibv_sge sge; /* Scatter/Gather Element. */
/* mbuf pointer is derived from WR_ID(wr.wr_id).offset. */
};
/* RX queue descriptor. */
struct rxq {
struct priv *priv; /* Back pointer to private data. */
struct rte_mempool *mp; /* Memory Pool for allocations. */
struct ibv_mr *mr; /* Memory Region (for mp). */
struct ibv_cq *cq; /* Completion Queue. */
struct ibv_qp *qp; /* Queue Pair. */
struct ibv_exp_qp_burst_family *if_qp; /* QP burst interface. */
struct ibv_exp_cq_family *if_cq; /* CQ interface. */
/*
* Each VLAN ID requires a separate flow steering rule.
*/
BITFIELD_DECLARE(mac_configured, uint32_t, MLX4_MAX_MAC_ADDRESSES);
struct ibv_flow *mac_flow[MLX4_MAX_MAC_ADDRESSES][MLX4_MAX_VLAN_IDS];
struct ibv_flow *promisc_flow; /* Promiscuous flow. */
struct ibv_flow *allmulti_flow; /* Multicast flow. */
unsigned int port_id; /* Port ID for incoming packets. */
unsigned int elts_n; /* (*elts)[] length. */
unsigned int elts_head; /* Current index in (*elts)[]. */
union {
struct rxq_elt_sp (*sp)[]; /* Scattered RX elements. */
struct rxq_elt (*no_sp)[]; /* RX elements. */
} elts;
unsigned int sp:1; /* Use scattered RX elements. */
unsigned int csum:1; /* Enable checksum offloading. */
unsigned int csum_l2tun:1; /* Same for L2 tunnels. */
struct mlx4_rxq_stats stats; /* RX queue counters. */
unsigned int socket; /* CPU socket ID for allocations. */
struct ibv_exp_res_domain *rd; /* Resource Domain. */
};
/* TX element. */
struct txq_elt {
struct rte_mbuf *buf;
};
/* Linear buffer type. It is used when transmitting buffers with too many
* segments that do not fit the hardware queue (see max_send_sge).
* Extra segments are copied (linearized) in such buffers, replacing the
* last SGE during TX.
* The size is arbitrary but large enough to hold a jumbo frame with
* 8 segments considering mbuf.buf_len is about 2048 bytes. */
typedef uint8_t linear_t[16384];
/* TX queue descriptor. */
struct txq {
struct priv *priv; /* Back pointer to private data. */
struct {
const struct rte_mempool *mp; /* Cached Memory Pool. */
struct ibv_mr *mr; /* Memory Region (for mp). */
uint32_t lkey; /* mr->lkey */
} mp2mr[MLX4_PMD_TX_MP_CACHE]; /* MP to MR translation table. */
struct ibv_cq *cq; /* Completion Queue. */
struct ibv_qp *qp; /* Queue Pair. */
struct ibv_exp_qp_burst_family *if_qp; /* QP burst interface. */
struct ibv_exp_cq_family *if_cq; /* CQ interface. */
#if MLX4_PMD_MAX_INLINE > 0
uint32_t max_inline; /* Max inline send size <= MLX4_PMD_MAX_INLINE. */
#endif
unsigned int elts_n; /* (*elts)[] length. */
struct txq_elt (*elts)[]; /* TX elements. */
unsigned int elts_head; /* Current index in (*elts)[]. */
unsigned int elts_tail; /* First element awaiting completion. */
unsigned int elts_comp; /* Number of completion requests. */
unsigned int elts_comp_cd; /* Countdown for next completion request. */
unsigned int elts_comp_cd_init; /* Initial value for countdown. */
struct mlx4_txq_stats stats; /* TX queue counters. */
linear_t (*elts_linear)[]; /* Linearized buffers. */
struct ibv_mr *mr_linear; /* Memory Region for linearized buffers. */
unsigned int socket; /* CPU socket ID for allocations. */
struct ibv_exp_res_domain *rd; /* Resource Domain. */
};
struct priv {
struct rte_eth_dev *dev; /* Ethernet device. */
struct ibv_context *ctx; /* Verbs context. */
struct ibv_device_attr device_attr; /* Device properties. */
struct ibv_pd *pd; /* Protection Domain. */
/*
* MAC addresses array and configuration bit-field.
* An extra entry that cannot be modified by the DPDK is reserved
* for broadcast frames (destination MAC address ff:ff:ff:ff:ff:ff).
*/
struct ether_addr mac[MLX4_MAX_MAC_ADDRESSES];
BITFIELD_DECLARE(mac_configured, uint32_t, MLX4_MAX_MAC_ADDRESSES);
/* VLAN filters. */
struct {
unsigned int enabled:1; /* If enabled. */
unsigned int id:12; /* VLAN ID (0-4095). */
} vlan_filter[MLX4_MAX_VLAN_IDS]; /* VLAN filters table. */
/* Device properties. */
uint16_t mtu; /* Configured MTU. */
uint8_t port; /* Physical port number. */
unsigned int started:1; /* Device started, flows enabled. */
unsigned int promisc:1; /* Device in promiscuous mode. */
unsigned int allmulti:1; /* Device receives all multicast packets. */
unsigned int hw_qpg:1; /* QP groups are supported. */
unsigned int hw_tss:1; /* TSS is supported. */
unsigned int hw_rss:1; /* RSS is supported. */
unsigned int hw_csum:1; /* Checksum offload is supported. */
unsigned int hw_csum_l2tun:1; /* Same for L2 tunnels. */
unsigned int rss:1; /* RSS is enabled. */
unsigned int vf:1; /* This is a VF device. */
unsigned int pending_alarm:1; /* An alarm is pending. */
#ifdef INLINE_RECV
unsigned int inl_recv_size; /* Inline recv size */
#endif
unsigned int max_rss_tbl_sz; /* Maximum number of RSS queues. */
/* RX/TX queues. */
struct rxq rxq_parent; /* Parent queue when RSS is enabled. */
unsigned int rxqs_n; /* RX queues array size. */
unsigned int txqs_n; /* TX queues array size. */
struct rxq *(*rxqs)[]; /* RX queues. */
struct txq *(*txqs)[]; /* TX queues. */
struct rte_intr_handle intr_handle; /* Interrupt handler. */
rte_spinlock_t lock; /* Lock for control functions. */
};
/* Local storage for secondary process data. */
struct mlx4_secondary_data {
struct rte_eth_dev_data data; /* Local device data. */
struct priv *primary_priv; /* Private structure from primary. */
struct rte_eth_dev_data *shared_dev_data; /* Shared device data. */
rte_spinlock_t lock; /* Port configuration lock. */
} mlx4_secondary_data[RTE_MAX_ETHPORTS];
/**
* Check if running as a secondary process.
*
* @return
* Nonzero if running as a secondary process.
*/
static inline int
mlx4_is_secondary(void)
{
return rte_eal_process_type() != RTE_PROC_PRIMARY;
}
/**
* Return private structure associated with an Ethernet device.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* Pointer to private structure.
*/
static struct priv *
mlx4_get_priv(struct rte_eth_dev *dev)
{
struct mlx4_secondary_data *sd;
if (!mlx4_is_secondary())
return dev->data->dev_private;
sd = &mlx4_secondary_data[dev->data->port_id];
return sd->data.dev_private;
}
/**
* Lock private structure to protect it from concurrent access in the
* control path.
*
* @param priv
* Pointer to private structure.
*/
static void
priv_lock(struct priv *priv)
{
rte_spinlock_lock(&priv->lock);
}
/**
* Unlock private structure.
*
* @param priv
* Pointer to private structure.
*/
static void
priv_unlock(struct priv *priv)
{
rte_spinlock_unlock(&priv->lock);
}
/* Allocate a buffer on the stack and fill it with a printf format string. */
#define MKSTR(name, ...) \
char name[snprintf(NULL, 0, __VA_ARGS__) + 1]; \
\
snprintf(name, sizeof(name), __VA_ARGS__)
/**
* Get interface name from private structure.
*
* @param[in] priv
* Pointer to private structure.
* @param[out] ifname
* Interface name output buffer.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_get_ifname(const struct priv *priv, char (*ifname)[IF_NAMESIZE])
{
DIR *dir;
struct dirent *dent;
unsigned int dev_type = 0;
unsigned int dev_port_prev = ~0u;
char match[IF_NAMESIZE] = "";
{
MKSTR(path, "%s/device/net", priv->ctx->device->ibdev_path);
dir = opendir(path);
if (dir == NULL)
return -1;
}
while ((dent = readdir(dir)) != NULL) {
char *name = dent->d_name;
FILE *file;
unsigned int dev_port;
int r;
if ((name[0] == '.') &&
((name[1] == '\0') ||
((name[1] == '.') && (name[2] == '\0'))))
continue;
MKSTR(path, "%s/device/net/%s/%s",
priv->ctx->device->ibdev_path, name,
(dev_type ? "dev_id" : "dev_port"));
file = fopen(path, "rb");
if (file == NULL) {
if (errno != ENOENT)
continue;
/*
* Switch to dev_id when dev_port does not exist as
* is the case with Linux kernel versions < 3.15.
*/
try_dev_id:
match[0] = '\0';
if (dev_type)
break;
dev_type = 1;
dev_port_prev = ~0u;
rewinddir(dir);
continue;
}
r = fscanf(file, (dev_type ? "%x" : "%u"), &dev_port);
fclose(file);
if (r != 1)
continue;
/*
* Switch to dev_id when dev_port returns the same value for
* all ports. May happen when using a MOFED release older than
* 3.0 with a Linux kernel >= 3.15.
*/
if (dev_port == dev_port_prev)
goto try_dev_id;
dev_port_prev = dev_port;
if (dev_port == (priv->port - 1u))
snprintf(match, sizeof(match), "%s", name);
}
closedir(dir);
if (match[0] == '\0')
return -1;
strncpy(*ifname, match, sizeof(*ifname));
return 0;
}
/**
* Read from sysfs entry.
*
* @param[in] priv
* Pointer to private structure.
* @param[in] entry
* Entry name relative to sysfs path.
* @param[out] buf
* Data output buffer.
* @param size
* Buffer size.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_sysfs_read(const struct priv *priv, const char *entry,
char *buf, size_t size)
{
char ifname[IF_NAMESIZE];
FILE *file;
int ret;
int err;
if (priv_get_ifname(priv, &ifname))
return -1;
MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path,
ifname, entry);
file = fopen(path, "rb");
if (file == NULL)
return -1;
ret = fread(buf, 1, size, file);
err = errno;
if (((size_t)ret < size) && (ferror(file)))
ret = -1;
else
ret = size;
fclose(file);
errno = err;
return ret;
}
/**
* Write to sysfs entry.
*
* @param[in] priv
* Pointer to private structure.
* @param[in] entry
* Entry name relative to sysfs path.
* @param[in] buf
* Data buffer.
* @param size
* Buffer size.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_sysfs_write(const struct priv *priv, const char *entry,
char *buf, size_t size)
{
char ifname[IF_NAMESIZE];
FILE *file;
int ret;
int err;
if (priv_get_ifname(priv, &ifname))
return -1;
MKSTR(path, "%s/device/net/%s/%s", priv->ctx->device->ibdev_path,
ifname, entry);
file = fopen(path, "wb");
if (file == NULL)
return -1;
ret = fwrite(buf, 1, size, file);
err = errno;
if (((size_t)ret < size) || (ferror(file)))
ret = -1;
else
ret = size;
fclose(file);
errno = err;
return ret;
}
/**
* Get unsigned long sysfs property.
*
* @param priv
* Pointer to private structure.
* @param[in] name
* Entry name relative to sysfs path.
* @param[out] value
* Value output buffer.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_get_sysfs_ulong(struct priv *priv, const char *name, unsigned long *value)
{
int ret;
unsigned long value_ret;
char value_str[32];
ret = priv_sysfs_read(priv, name, value_str, (sizeof(value_str) - 1));
if (ret == -1) {
DEBUG("cannot read %s value from sysfs: %s",
name, strerror(errno));
return -1;
}
value_str[ret] = '\0';
errno = 0;
value_ret = strtoul(value_str, NULL, 0);
if (errno) {
DEBUG("invalid %s value `%s': %s", name, value_str,
strerror(errno));
return -1;
}
*value = value_ret;
return 0;
}
/**
* Set unsigned long sysfs property.
*
* @param priv
* Pointer to private structure.
* @param[in] name
* Entry name relative to sysfs path.
* @param value
* Value to set.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_set_sysfs_ulong(struct priv *priv, const char *name, unsigned long value)
{
int ret;
MKSTR(value_str, "%lu", value);
ret = priv_sysfs_write(priv, name, value_str, (sizeof(value_str) - 1));
if (ret == -1) {
DEBUG("cannot write %s `%s' (%lu) to sysfs: %s",
name, value_str, value, strerror(errno));
return -1;
}
return 0;
}
/**
* Perform ifreq ioctl() on associated Ethernet device.
*
* @param[in] priv
* Pointer to private structure.
* @param req
* Request number to pass to ioctl().
* @param[out] ifr
* Interface request structure output buffer.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_ifreq(const struct priv *priv, int req, struct ifreq *ifr)
{
int sock = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
int ret = -1;
if (sock == -1)
return ret;
if (priv_get_ifname(priv, &ifr->ifr_name) == 0)
ret = ioctl(sock, req, ifr);
close(sock);
return ret;
}
/**
* Get device MTU.
*
* @param priv
* Pointer to private structure.
* @param[out] mtu
* MTU value output buffer.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_get_mtu(struct priv *priv, uint16_t *mtu)
{
unsigned long ulong_mtu;
if (priv_get_sysfs_ulong(priv, "mtu", &ulong_mtu) == -1)
return -1;
*mtu = ulong_mtu;
return 0;
}
/**
* Set device MTU.
*
* @param priv
* Pointer to private structure.
* @param mtu
* MTU value to set.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_set_mtu(struct priv *priv, uint16_t mtu)
{
uint16_t new_mtu;
if (priv_set_sysfs_ulong(priv, "mtu", mtu) ||
priv_get_mtu(priv, &new_mtu))
return -1;
if (new_mtu == mtu)
return 0;
errno = EINVAL;
return -1;
}
/**
* Set device flags.
*
* @param priv
* Pointer to private structure.
* @param keep
* Bitmask for flags that must remain untouched.
* @param flags
* Bitmask for flags to modify.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_set_flags(struct priv *priv, unsigned int keep, unsigned int flags)
{
unsigned long tmp;
if (priv_get_sysfs_ulong(priv, "flags", &tmp) == -1)
return -1;
tmp &= keep;
tmp |= (flags & (~keep));
return priv_set_sysfs_ulong(priv, "flags", tmp);
}
/* Device configuration. */
static int
txq_setup(struct rte_eth_dev *dev, struct txq *txq, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf);
static void
txq_cleanup(struct txq *txq);
static int
rxq_setup(struct rte_eth_dev *dev, struct rxq *rxq, uint16_t desc,
unsigned int socket, int inactive, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp);
static void
rxq_cleanup(struct rxq *rxq);
/**
* Ethernet device configuration.
*
* Prepare the driver for a given number of TX and RX queues.
* Allocate parent RSS queue when several RX queues are requested.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, errno value on failure.
*/
static int
dev_configure(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int rxqs_n = dev->data->nb_rx_queues;
unsigned int txqs_n = dev->data->nb_tx_queues;
unsigned int tmp;
int ret;
priv->rxqs = (void *)dev->data->rx_queues;
priv->txqs = (void *)dev->data->tx_queues;
if (txqs_n != priv->txqs_n) {
INFO("%p: TX queues number update: %u -> %u",
(void *)dev, priv->txqs_n, txqs_n);
priv->txqs_n = txqs_n;
}
if (rxqs_n == priv->rxqs_n)
return 0;
if (!rte_is_power_of_2(rxqs_n)) {
unsigned n_active;
n_active = rte_align32pow2(rxqs_n + 1) >> 1;
WARN("%p: number of RX queues must be a power"
" of 2: %u queues among %u will be active",
(void *)dev, n_active, rxqs_n);
}
INFO("%p: RX queues number update: %u -> %u",
(void *)dev, priv->rxqs_n, rxqs_n);
/* If RSS is enabled, disable it first. */
if (priv->rss) {
unsigned int i;
/* Only if there are no remaining child RX queues. */
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] != NULL)
return EINVAL;
rxq_cleanup(&priv->rxq_parent);
priv->rss = 0;
priv->rxqs_n = 0;
}
if (rxqs_n <= 1) {
/* Nothing else to do. */
priv->rxqs_n = rxqs_n;
return 0;
}
/* Allocate a new RSS parent queue if supported by hardware. */
if (!priv->hw_rss) {
ERROR("%p: only a single RX queue can be configured when"
" hardware doesn't support RSS",
(void *)dev);
return EINVAL;
}
/* Fail if hardware doesn't support that many RSS queues. */
if (rxqs_n >= priv->max_rss_tbl_sz) {
ERROR("%p: only %u RX queues can be configured for RSS",
(void *)dev, priv->max_rss_tbl_sz);
return EINVAL;
}
priv->rss = 1;
tmp = priv->rxqs_n;
priv->rxqs_n = rxqs_n;
ret = rxq_setup(dev, &priv->rxq_parent, 0, 0, 0, NULL, NULL);
if (!ret)
return 0;
/* Failure, rollback. */
priv->rss = 0;
priv->rxqs_n = tmp;
assert(ret > 0);
return ret;
}
/**
* DPDK callback for Ethernet device configuration.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_dev_configure(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
int ret;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
ret = dev_configure(dev);
assert(ret >= 0);
priv_unlock(priv);
return -ret;
}
static uint16_t mlx4_tx_burst(void *, struct rte_mbuf **, uint16_t);
static uint16_t removed_rx_burst(void *, struct rte_mbuf **, uint16_t);
/**
* Configure secondary process queues from a private data pointer (primary
* or secondary) and update burst callbacks. Can take place only once.
*
* All queues must have been previously created by the primary process to
* avoid undefined behavior.
*
* @param priv
* Private data pointer from either primary or secondary process.
*
* @return
* Private data pointer from secondary process, NULL in case of error.
*/
static struct priv *
mlx4_secondary_data_setup(struct priv *priv)
{
unsigned int port_id = 0;
struct mlx4_secondary_data *sd;
void **tx_queues;
void **rx_queues;
unsigned int nb_tx_queues;
unsigned int nb_rx_queues;
unsigned int i;
/* priv must be valid at this point. */
assert(priv != NULL);
/* priv->dev must also be valid but may point to local memory from
* another process, possibly with the same address and must not
* be dereferenced yet. */
assert(priv->dev != NULL);
/* Determine port ID by finding out where priv comes from. */
while (1) {
sd = &mlx4_secondary_data[port_id];
rte_spinlock_lock(&sd->lock);
/* Primary process? */
if (sd->primary_priv == priv)
break;
/* Secondary process? */
if (sd->data.dev_private == priv)
break;
rte_spinlock_unlock(&sd->lock);
if (++port_id == RTE_DIM(mlx4_secondary_data))
port_id = 0;
}
/* Switch to secondary private structure. If private data has already
* been updated by another thread, there is nothing else to do. */
priv = sd->data.dev_private;
if (priv->dev->data == &sd->data)
goto end;
/* Sanity checks. Secondary private structure is supposed to point
* to local eth_dev, itself still pointing to the shared device data
* structure allocated by the primary process. */
assert(sd->shared_dev_data != &sd->data);
assert(sd->data.nb_tx_queues == 0);
assert(sd->data.tx_queues == NULL);
assert(sd->data.nb_rx_queues == 0);
assert(sd->data.rx_queues == NULL);
assert(priv != sd->primary_priv);
assert(priv->dev->data == sd->shared_dev_data);
assert(priv->txqs_n == 0);
assert(priv->txqs == NULL);
assert(priv->rxqs_n == 0);
assert(priv->rxqs == NULL);
nb_tx_queues = sd->shared_dev_data->nb_tx_queues;
nb_rx_queues = sd->shared_dev_data->nb_rx_queues;
/* Allocate local storage for queues. */
tx_queues = rte_zmalloc("secondary ethdev->tx_queues",
sizeof(sd->data.tx_queues[0]) * nb_tx_queues,
RTE_CACHE_LINE_SIZE);
rx_queues = rte_zmalloc("secondary ethdev->rx_queues",
sizeof(sd->data.rx_queues[0]) * nb_rx_queues,
RTE_CACHE_LINE_SIZE);
if (tx_queues == NULL || rx_queues == NULL)
goto error;
/* Lock to prevent control operations during setup. */
priv_lock(priv);
/* TX queues. */
for (i = 0; i != nb_tx_queues; ++i) {
struct txq *primary_txq = (*sd->primary_priv->txqs)[i];
struct txq *txq;
if (primary_txq == NULL)
continue;
txq = rte_calloc_socket("TXQ", 1, sizeof(*txq), 0,
primary_txq->socket);
if (txq != NULL) {
if (txq_setup(priv->dev,
txq,
primary_txq->elts_n * MLX4_PMD_SGE_WR_N,
primary_txq->socket,
NULL) == 0) {
txq->stats.idx = primary_txq->stats.idx;
tx_queues[i] = txq;
continue;
}
rte_free(txq);
}
while (i) {
txq = tx_queues[--i];
txq_cleanup(txq);
rte_free(txq);
}
goto error;
}
/* RX queues. */
for (i = 0; i != nb_rx_queues; ++i) {
struct rxq *primary_rxq = (*sd->primary_priv->rxqs)[i];
if (primary_rxq == NULL)
continue;
/* Not supported yet. */
rx_queues[i] = NULL;
}
/* Update everything. */
priv->txqs = (void *)tx_queues;
priv->txqs_n = nb_tx_queues;
priv->rxqs = (void *)rx_queues;
priv->rxqs_n = nb_rx_queues;
sd->data.rx_queues = rx_queues;
sd->data.tx_queues = tx_queues;
sd->data.nb_rx_queues = nb_rx_queues;
sd->data.nb_tx_queues = nb_tx_queues;
sd->data.dev_link = sd->shared_dev_data->dev_link;
sd->data.mtu = sd->shared_dev_data->mtu;
memcpy(sd->data.rx_queue_state, sd->shared_dev_data->rx_queue_state,
sizeof(sd->data.rx_queue_state));
memcpy(sd->data.tx_queue_state, sd->shared_dev_data->tx_queue_state,
sizeof(sd->data.tx_queue_state));
sd->data.dev_flags = sd->shared_dev_data->dev_flags;
/* Use local data from now on. */
rte_mb();
priv->dev->data = &sd->data;
rte_mb();
priv->dev->tx_pkt_burst = mlx4_tx_burst;
priv->dev->rx_pkt_burst = removed_rx_burst;
priv_unlock(priv);
end:
/* More sanity checks. */
assert(priv->dev->tx_pkt_burst == mlx4_tx_burst);
assert(priv->dev->rx_pkt_burst == removed_rx_burst);
assert(priv->dev->data == &sd->data);
rte_spinlock_unlock(&sd->lock);
return priv;
error:
priv_unlock(priv);
rte_free(tx_queues);
rte_free(rx_queues);
rte_spinlock_unlock(&sd->lock);
return NULL;
}
/* TX queues handling. */
/**
* Allocate TX queue elements.
*
* @param txq
* Pointer to TX queue structure.
* @param elts_n
* Number of elements to allocate.
*
* @return
* 0 on success, errno value on failure.
*/
static int
txq_alloc_elts(struct txq *txq, unsigned int elts_n)
{
unsigned int i;
struct txq_elt (*elts)[elts_n] =
rte_calloc_socket("TXQ", 1, sizeof(*elts), 0, txq->socket);
linear_t (*elts_linear)[elts_n] =
rte_calloc_socket("TXQ", 1, sizeof(*elts_linear), 0,
txq->socket);
struct ibv_mr *mr_linear = NULL;
int ret = 0;
if ((elts == NULL) || (elts_linear == NULL)) {
ERROR("%p: can't allocate packets array", (void *)txq);
ret = ENOMEM;
goto error;
}
mr_linear =
ibv_reg_mr(txq->priv->pd, elts_linear, sizeof(*elts_linear),
IBV_ACCESS_LOCAL_WRITE);
if (mr_linear == NULL) {
ERROR("%p: unable to configure MR, ibv_reg_mr() failed",
(void *)txq);
ret = EINVAL;
goto error;
}
for (i = 0; (i != elts_n); ++i) {
struct txq_elt *elt = &(*elts)[i];
elt->buf = NULL;
}
DEBUG("%p: allocated and configured %u WRs", (void *)txq, elts_n);
txq->elts_n = elts_n;
txq->elts = elts;
txq->elts_head = 0;
txq->elts_tail = 0;
txq->elts_comp = 0;
/* Request send completion every MLX4_PMD_TX_PER_COMP_REQ packets or
* at least 4 times per ring. */
txq->elts_comp_cd_init =
((MLX4_PMD_TX_PER_COMP_REQ < (elts_n / 4)) ?
MLX4_PMD_TX_PER_COMP_REQ : (elts_n / 4));
txq->elts_comp_cd = txq->elts_comp_cd_init;
txq->elts_linear = elts_linear;
txq->mr_linear = mr_linear;
assert(ret == 0);
return 0;
error:
if (mr_linear != NULL)
claim_zero(ibv_dereg_mr(mr_linear));
rte_free(elts_linear);
rte_free(elts);
DEBUG("%p: failed, freed everything", (void *)txq);
assert(ret > 0);
return ret;
}
/**
* Free TX queue elements.
*
* @param txq
* Pointer to TX queue structure.
*/
static void
txq_free_elts(struct txq *txq)
{
unsigned int elts_n = txq->elts_n;
unsigned int elts_head = txq->elts_head;
unsigned int elts_tail = txq->elts_tail;
struct txq_elt (*elts)[elts_n] = txq->elts;
linear_t (*elts_linear)[elts_n] = txq->elts_linear;
struct ibv_mr *mr_linear = txq->mr_linear;
DEBUG("%p: freeing WRs", (void *)txq);
txq->elts_n = 0;
txq->elts_head = 0;
txq->elts_tail = 0;
txq->elts_comp = 0;
txq->elts_comp_cd = 0;
txq->elts_comp_cd_init = 0;
txq->elts = NULL;
txq->elts_linear = NULL;
txq->mr_linear = NULL;
if (mr_linear != NULL)
claim_zero(ibv_dereg_mr(mr_linear));
rte_free(elts_linear);
if (elts == NULL)
return;
while (elts_tail != elts_head) {
struct txq_elt *elt = &(*elts)[elts_tail];
assert(elt->buf != NULL);
rte_pktmbuf_free(elt->buf);
#ifndef NDEBUG
/* Poisoning. */
memset(elt, 0x77, sizeof(*elt));
#endif
if (++elts_tail == elts_n)
elts_tail = 0;
}
rte_free(elts);
}
/**
* Clean up a TX queue.
*
* Destroy objects, free allocated memory and reset the structure for reuse.
*
* @param txq
* Pointer to TX queue structure.
*/
static void
txq_cleanup(struct txq *txq)
{
struct ibv_exp_release_intf_params params;
size_t i;
DEBUG("cleaning up %p", (void *)txq);
txq_free_elts(txq);
if (txq->if_qp != NULL) {
assert(txq->priv != NULL);
assert(txq->priv->ctx != NULL);
assert(txq->qp != NULL);
params = (struct ibv_exp_release_intf_params){
.comp_mask = 0,
};
claim_zero(ibv_exp_release_intf(txq->priv->ctx,
txq->if_qp,
&params));
}
if (txq->if_cq != NULL) {
assert(txq->priv != NULL);
assert(txq->priv->ctx != NULL);
assert(txq->cq != NULL);
params = (struct ibv_exp_release_intf_params){
.comp_mask = 0,
};
claim_zero(ibv_exp_release_intf(txq->priv->ctx,
txq->if_cq,
&params));
}
if (txq->qp != NULL)
claim_zero(ibv_destroy_qp(txq->qp));
if (txq->cq != NULL)
claim_zero(ibv_destroy_cq(txq->cq));
if (txq->rd != NULL) {
struct ibv_exp_destroy_res_domain_attr attr = {
.comp_mask = 0,
};
assert(txq->priv != NULL);
assert(txq->priv->ctx != NULL);
claim_zero(ibv_exp_destroy_res_domain(txq->priv->ctx,
txq->rd,
&attr));
}
for (i = 0; (i != elemof(txq->mp2mr)); ++i) {
if (txq->mp2mr[i].mp == NULL)
break;
assert(txq->mp2mr[i].mr != NULL);
claim_zero(ibv_dereg_mr(txq->mp2mr[i].mr));
}
memset(txq, 0, sizeof(*txq));
}
/**
* Manage TX completions.
*
* When sending a burst, mlx4_tx_burst() posts several WRs.
* To improve performance, a completion event is only required once every
* MLX4_PMD_TX_PER_COMP_REQ sends. Doing so discards completion information
* for other WRs, but this information would not be used anyway.
*
* @param txq
* Pointer to TX queue structure.
*
* @return
* 0 on success, -1 on failure.
*/
static int
txq_complete(struct txq *txq)
{
unsigned int elts_comp = txq->elts_comp;
unsigned int elts_tail = txq->elts_tail;
const unsigned int elts_n = txq->elts_n;
int wcs_n;
if (unlikely(elts_comp == 0))
return 0;
#ifdef DEBUG_SEND
DEBUG("%p: processing %u work requests completions",
(void *)txq, elts_comp);
#endif
wcs_n = txq->if_cq->poll_cnt(txq->cq, elts_comp);
if (unlikely(wcs_n == 0))
return 0;
if (unlikely(wcs_n < 0)) {
DEBUG("%p: ibv_poll_cq() failed (wcs_n=%d)",
(void *)txq, wcs_n);
return -1;
}
elts_comp -= wcs_n;
assert(elts_comp <= txq->elts_comp);
/*
* Assume WC status is successful as nothing can be done about it
* anyway.
*/
elts_tail += wcs_n * txq->elts_comp_cd_init;
if (elts_tail >= elts_n)
elts_tail -= elts_n;
txq->elts_tail = elts_tail;
txq->elts_comp = elts_comp;
return 0;
}
struct mlx4_check_mempool_data {
int ret;
char *start;
char *end;
};
/* Called by mlx4_check_mempool() when iterating the memory chunks. */
static void mlx4_check_mempool_cb(struct rte_mempool *mp,
void *opaque, struct rte_mempool_memhdr *memhdr,
unsigned mem_idx)
{
struct mlx4_check_mempool_data *data = opaque;
(void)mp;
(void)mem_idx;
/* It already failed, skip the next chunks. */
if (data->ret != 0)
return;
/* It is the first chunk. */
if (data->start == NULL && data->end == NULL) {
data->start = memhdr->addr;
data->end = data->start + memhdr->len;
return;
}
if (data->end == memhdr->addr) {
data->end += memhdr->len;
return;
}
if (data->start == (char *)memhdr->addr + memhdr->len) {
data->start -= memhdr->len;
return;
}
/* Error, mempool is not virtually contigous. */
data->ret = -1;
}
/**
* Check if a mempool can be used: it must be virtually contiguous.
*
* @param[in] mp
* Pointer to memory pool.
* @param[out] start
* Pointer to the start address of the mempool virtual memory area
* @param[out] end
* Pointer to the end address of the mempool virtual memory area
*
* @return
* 0 on success (mempool is virtually contiguous), -1 on error.
*/
static int mlx4_check_mempool(struct rte_mempool *mp, uintptr_t *start,
uintptr_t *end)
{
struct mlx4_check_mempool_data data;
memset(&data, 0, sizeof(data));
rte_mempool_mem_iter(mp, mlx4_check_mempool_cb, &data);
*start = (uintptr_t)data.start;
*end = (uintptr_t)data.end;
return data.ret;
}
/* For best performance, this function should not be inlined. */
static struct ibv_mr *mlx4_mp2mr(struct ibv_pd *, struct rte_mempool *)
__attribute__((noinline));
/**
* Register mempool as a memory region.
*
* @param pd
* Pointer to protection domain.
* @param mp
* Pointer to memory pool.
*
* @return
* Memory region pointer, NULL in case of error.
*/
static struct ibv_mr *
mlx4_mp2mr(struct ibv_pd *pd, struct rte_mempool *mp)
{
const struct rte_memseg *ms = rte_eal_get_physmem_layout();
uintptr_t start;
uintptr_t end;
unsigned int i;
if (mlx4_check_mempool(mp, &start, &end) != 0) {
ERROR("mempool %p: not virtually contiguous",
(void *)mp);
return NULL;
}
DEBUG("mempool %p area start=%p end=%p size=%zu",
(void *)mp, (void *)start, (void *)end,
(size_t)(end - start));
/* Round start and end to page boundary if found in memory segments. */
for (i = 0; (i < RTE_MAX_MEMSEG) && (ms[i].addr != NULL); ++i) {
uintptr_t addr = (uintptr_t)ms[i].addr;
size_t len = ms[i].len;
unsigned int align = ms[i].hugepage_sz;
if ((start > addr) && (start < addr + len))
start = RTE_ALIGN_FLOOR(start, align);
if ((end > addr) && (end < addr + len))
end = RTE_ALIGN_CEIL(end, align);
}
DEBUG("mempool %p using start=%p end=%p size=%zu for MR",
(void *)mp, (void *)start, (void *)end,
(size_t)(end - start));
return ibv_reg_mr(pd,
(void *)start,
end - start,
IBV_ACCESS_LOCAL_WRITE);
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
txq_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
/**
* Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static uint32_t
txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
{
unsigned int i;
struct ibv_mr *mr;
for (i = 0; (i != elemof(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mp == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].mp == mp) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(txq->mp2mr[i].mr->lkey == txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
}
/* Add a new entry, register MR first. */
DEBUG("%p: discovered new memory pool \"%s\" (%p)",
(void *)txq, mp->name, (void *)mp);
mr = mlx4_mp2mr(txq->priv->pd, mp);
if (unlikely(mr == NULL)) {
DEBUG("%p: unable to configure MR, ibv_reg_mr() failed.",
(void *)txq);
return (uint32_t)-1;
}
if (unlikely(i == elemof(txq->mp2mr))) {
/* Table is full, remove oldest entry. */
DEBUG("%p: MR <-> MP table full, dropping oldest entry.",
(void *)txq);
--i;
claim_zero(ibv_dereg_mr(txq->mp2mr[0].mr));
memmove(&txq->mp2mr[0], &txq->mp2mr[1],
(sizeof(txq->mp2mr) - sizeof(txq->mp2mr[0])));
}
/* Store the new entry. */
txq->mp2mr[i].mp = mp;
txq->mp2mr[i].mr = mr;
txq->mp2mr[i].lkey = mr->lkey;
DEBUG("%p: new MR lkey for MP \"%s\" (%p): 0x%08" PRIu32,
(void *)txq, mp->name, (void *)mp, txq->mp2mr[i].lkey);
return txq->mp2mr[i].lkey;
}
struct txq_mp2mr_mbuf_check_data {
int ret;
};
/**
* Callback function for rte_mempool_obj_iter() to check whether a given
* mempool object looks like a mbuf.
*
* @param[in] mp
* The mempool pointer
* @param[in] arg
* Context data (struct txq_mp2mr_mbuf_check_data). Contains the
* return value.
* @param[in] obj
* Object address.
* @param index
* Object index, unused.
*/
static void
txq_mp2mr_mbuf_check(struct rte_mempool *mp, void *arg, void *obj,
uint32_t index __rte_unused)
{
struct txq_mp2mr_mbuf_check_data *data = arg;
struct rte_mbuf *buf = obj;
/* Check whether mbuf structure fits element size and whether mempool
* pointer is valid. */
if (sizeof(*buf) > mp->elt_size || buf->pool != mp)
data->ret = -1;
}
/**
* Iterator function for rte_mempool_walk() to register existing mempools and
* fill the MP to MR cache of a TX queue.
*
* @param[in] mp
* Memory Pool to register.
* @param *arg
* Pointer to TX queue structure.
*/
static void
txq_mp2mr_iter(struct rte_mempool *mp, void *arg)
{
struct txq *txq = arg;
struct txq_mp2mr_mbuf_check_data data = {
.ret = 0,
};
/* Register mempool only if the first element looks like a mbuf. */
if (rte_mempool_obj_iter(mp, txq_mp2mr_mbuf_check, &data) == 0 ||
data.ret == -1)
return;
txq_mp2mr(txq, mp);
}
#if MLX4_PMD_SGE_WR_N > 1
/**
* Copy scattered mbuf contents to a single linear buffer.
*
* @param[out] linear
* Linear output buffer.
* @param[in] buf
* Scattered input buffer.
*
* @return
* Number of bytes copied to the output buffer or 0 if not large enough.
*/
static unsigned int
linearize_mbuf(linear_t *linear, struct rte_mbuf *buf)
{
unsigned int size = 0;
unsigned int offset;
do {
unsigned int len = DATA_LEN(buf);
offset = size;
size += len;
if (unlikely(size > sizeof(*linear)))
return 0;
memcpy(&(*linear)[offset],
rte_pktmbuf_mtod(buf, uint8_t *),
len);
buf = NEXT(buf);
} while (buf != NULL);
return size;
}
/**
* Handle scattered buffers for mlx4_tx_burst().
*
* @param txq
* TX queue structure.
* @param segs
* Number of segments in buf.
* @param elt
* TX queue element to fill.
* @param[in] buf
* Buffer to process.
* @param elts_head
* Index of the linear buffer to use if necessary (normally txq->elts_head).
* @param[out] sges
* Array filled with SGEs on success.
*
* @return
* A structure containing the processed packet size in bytes and the
* number of SGEs. Both fields are set to (unsigned int)-1 in case of
* failure.
*/
static struct tx_burst_sg_ret {
unsigned int length;
unsigned int num;
}
tx_burst_sg(struct txq *txq, unsigned int segs, struct txq_elt *elt,
struct rte_mbuf *buf, unsigned int elts_head,
struct ibv_sge (*sges)[MLX4_PMD_SGE_WR_N])
{
unsigned int sent_size = 0;
unsigned int j;
int linearize = 0;
/* When there are too many segments, extra segments are
* linearized in the last SGE. */
if (unlikely(segs > elemof(*sges))) {
segs = (elemof(*sges) - 1);
linearize = 1;
}
/* Update element. */
elt->buf = buf;
/* Register segments as SGEs. */
for (j = 0; (j != segs); ++j) {
struct ibv_sge *sge = &(*sges)[j];
uint32_t lkey;
/* Retrieve Memory Region key for this memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR association",
(void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
/* Update SGE. */
sge->addr = rte_pktmbuf_mtod(buf, uintptr_t);
if (txq->priv->vf)
rte_prefetch0((volatile void *)
(uintptr_t)sge->addr);
sge->length = DATA_LEN(buf);
sge->lkey = lkey;
sent_size += sge->length;
buf = NEXT(buf);
}
/* If buf is not NULL here and is not going to be linearized,
* nb_segs is not valid. */
assert(j == segs);
assert((buf == NULL) || (linearize));
/* Linearize extra segments. */
if (linearize) {
struct ibv_sge *sge = &(*sges)[segs];
linear_t *linear = &(*txq->elts_linear)[elts_head];
unsigned int size = linearize_mbuf(linear, buf);
assert(segs == (elemof(*sges) - 1));
if (size == 0) {
/* Invalid packet. */
DEBUG("%p: packet too large to be linearized.",
(void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
/* If MLX4_PMD_SGE_WR_N is 1, free mbuf immediately. */
if (elemof(*sges) == 1) {
do {
struct rte_mbuf *next = NEXT(buf);
rte_pktmbuf_free_seg(buf);
buf = next;
} while (buf != NULL);
elt->buf = NULL;
}
/* Update SGE. */
sge->addr = (uintptr_t)&(*linear)[0];
sge->length = size;
sge->lkey = txq->mr_linear->lkey;
sent_size += size;
/* Include last segment. */
segs++;
}
return (struct tx_burst_sg_ret){
.length = sent_size,
.num = segs,
};
stop:
return (struct tx_burst_sg_ret){
.length = -1,
.num = -1,
};
}
#endif /* MLX4_PMD_SGE_WR_N > 1 */
/**
* DPDK callback for TX.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static uint16_t
mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
unsigned int elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int elts_comp_cd = txq->elts_comp_cd;
unsigned int elts_comp = 0;
unsigned int i;
unsigned int max;
int err;
assert(elts_comp_cd != 0);
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
assert(max >= 1);
assert(max <= elts_n);
/* Always leave one free entry in the ring. */
--max;
if (max == 0)
return 0;
if (max > pkts_n)
max = pkts_n;
for (i = 0; (i != max); ++i) {
struct rte_mbuf *buf = pkts[i];
unsigned int elts_head_next =
(((elts_head + 1) == elts_n) ? 0 : elts_head + 1);
struct txq_elt *elt_next = &(*txq->elts)[elts_head_next];
struct txq_elt *elt = &(*txq->elts)[elts_head];
unsigned int segs = NB_SEGS(buf);
#ifdef MLX4_PMD_SOFT_COUNTERS
unsigned int sent_size = 0;
#endif
uint32_t send_flags = 0;
/* Clean up old buffer. */
if (likely(elt->buf != NULL)) {
struct rte_mbuf *tmp = elt->buf;
#ifndef NDEBUG
/* Poisoning. */
memset(elt, 0x66, sizeof(*elt));
#endif
/* Faster than rte_pktmbuf_free(). */
do {
struct rte_mbuf *next = NEXT(tmp);
rte_pktmbuf_free_seg(tmp);
tmp = next;
} while (tmp != NULL);
}
/* Request TX completion. */
if (unlikely(--elts_comp_cd == 0)) {
elts_comp_cd = txq->elts_comp_cd_init;
++elts_comp;
send_flags |= IBV_EXP_QP_BURST_SIGNALED;
}
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
send_flags |= IBV_EXP_QP_BURST_IP_CSUM;
/* HW does not support checksum offloads at arbitrary
* offsets but automatically recognizes the packet
* type. For inner L3/L4 checksums, only VXLAN (UDP)
* tunnels are currently supported. */
if (RTE_ETH_IS_TUNNEL_PKT(buf->packet_type))
send_flags |= IBV_EXP_QP_BURST_TUNNEL;
}
if (likely(segs == 1)) {
uintptr_t addr;
uint32_t length;
uint32_t lkey;
/* Retrieve buffer information. */
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = DATA_LEN(buf);
/* Retrieve Memory Region key for this memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (unlikely(lkey == (uint32_t)-1)) {
/* MR does not exist. */
DEBUG("%p: unable to get MP <-> MR"
" association", (void *)txq);
/* Clean up TX element. */
elt->buf = NULL;
goto stop;
}
/* Update element. */
elt->buf = buf;
if (txq->priv->vf)
rte_prefetch0((volatile void *)
(uintptr_t)addr);
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
/* Put packet into send queue. */
#if MLX4_PMD_MAX_INLINE > 0
if (length <= txq->max_inline)
err = txq->if_qp->send_pending_inline
(txq->qp,
(void *)addr,
length,
send_flags);
else
#endif
err = txq->if_qp->send_pending
(txq->qp,
addr,
length,
lkey,
send_flags);
if (unlikely(err))
goto stop;
#ifdef MLX4_PMD_SOFT_COUNTERS
sent_size += length;
#endif
} else {
#if MLX4_PMD_SGE_WR_N > 1
struct ibv_sge sges[MLX4_PMD_SGE_WR_N];
struct tx_burst_sg_ret ret;
ret = tx_burst_sg(txq, segs, elt, buf, elts_head,
&sges);
if (ret.length == (unsigned int)-1)
goto stop;
RTE_MBUF_PREFETCH_TO_FREE(elt_next->buf);
/* Put SG list into send queue. */
err = txq->if_qp->send_pending_sg_list
(txq->qp,
sges,
ret.num,
send_flags);
if (unlikely(err))
goto stop;
#ifdef MLX4_PMD_SOFT_COUNTERS
sent_size += ret.length;
#endif
#else /* MLX4_PMD_SGE_WR_N > 1 */
DEBUG("%p: TX scattered buffers support not"
" compiled in", (void *)txq);
goto stop;
#endif /* MLX4_PMD_SGE_WR_N > 1 */
}
elts_head = elts_head_next;
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += sent_size;
#endif
}
stop:
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
err = txq->if_qp->send_flush(txq->qp);
if (unlikely(err)) {
/* A nonzero value is not supposed to be returned.
* Nothing can be done about it. */
DEBUG("%p: send_flush() failed with error %d",
(void *)txq, err);
}
txq->elts_head = elts_head;
txq->elts_comp += elts_comp;
txq->elts_comp_cd = elts_comp_cd;
return i;
}
/**
* DPDK callback for TX in secondary processes.
*
* This function configures all queues from primary process information
* if necessary before reverting to the normal TX burst callback.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static uint16_t
mlx4_tx_burst_secondary_setup(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct txq *txq = dpdk_txq;
struct priv *priv = mlx4_secondary_data_setup(txq->priv);
struct priv *primary_priv;
unsigned int index;
if (priv == NULL)
return 0;
primary_priv =
mlx4_secondary_data[priv->dev->data->port_id].primary_priv;
/* Look for queue index in both private structures. */
for (index = 0; index != priv->txqs_n; ++index)
if (((*primary_priv->txqs)[index] == txq) ||
((*priv->txqs)[index] == txq))
break;
if (index == priv->txqs_n)
return 0;
txq = (*priv->txqs)[index];
return priv->dev->tx_pkt_burst(txq, pkts, pkts_n);
}
/**
* Configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param txq
* Pointer to TX queue structure.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, errno value on failure.
*/
static int
txq_setup(struct rte_eth_dev *dev, struct txq *txq, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct priv *priv = mlx4_get_priv(dev);
struct txq tmpl = {
.priv = priv,
.socket = socket
};
union {
struct ibv_exp_query_intf_params params;
struct ibv_exp_qp_init_attr init;
struct ibv_exp_res_domain_init_attr rd;
struct ibv_exp_cq_init_attr cq;
struct ibv_exp_qp_attr mod;
} attr;
enum ibv_exp_query_intf_status status;
int ret = 0;
(void)conf; /* Thresholds configuration (ignored). */
if (priv == NULL)
return EINVAL;
if ((desc == 0) || (desc % MLX4_PMD_SGE_WR_N)) {
ERROR("%p: invalid number of TX descriptors (must be a"
" multiple of %d)", (void *)dev, MLX4_PMD_SGE_WR_N);
return EINVAL;
}
desc /= MLX4_PMD_SGE_WR_N;
/* MRs will be registered in mp2mr[] later. */
attr.rd = (struct ibv_exp_res_domain_init_attr){
.comp_mask = (IBV_EXP_RES_DOMAIN_THREAD_MODEL |
IBV_EXP_RES_DOMAIN_MSG_MODEL),
.thread_model = IBV_EXP_THREAD_SINGLE,
.msg_model = IBV_EXP_MSG_HIGH_BW,
};
tmpl.rd = ibv_exp_create_res_domain(priv->ctx, &attr.rd);
if (tmpl.rd == NULL) {
ret = ENOMEM;
ERROR("%p: RD creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.cq = (struct ibv_exp_cq_init_attr){
.comp_mask = IBV_EXP_CQ_INIT_ATTR_RES_DOMAIN,
.res_domain = tmpl.rd,
};
tmpl.cq = ibv_exp_create_cq(priv->ctx, desc, NULL, NULL, 0, &attr.cq);
if (tmpl.cq == NULL) {
ret = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
DEBUG("priv->device_attr.max_qp_wr is %d",
priv->device_attr.max_qp_wr);
DEBUG("priv->device_attr.max_sge is %d",
priv->device_attr.max_sge);
attr.init = (struct ibv_exp_qp_init_attr){
/* CQ to be associated with the send queue. */
.send_cq = tmpl.cq,
/* CQ to be associated with the receive queue. */
.recv_cq = tmpl.cq,
.cap = {
/* Max number of outstanding WRs. */
.max_send_wr = ((priv->device_attr.max_qp_wr < desc) ?
priv->device_attr.max_qp_wr :
desc),
/* Max number of scatter/gather elements in a WR. */
.max_send_sge = ((priv->device_attr.max_sge <
MLX4_PMD_SGE_WR_N) ?
priv->device_attr.max_sge :
MLX4_PMD_SGE_WR_N),
#if MLX4_PMD_MAX_INLINE > 0
.max_inline_data = MLX4_PMD_MAX_INLINE,
#endif
},
.qp_type = IBV_QPT_RAW_PACKET,
/* Do *NOT* enable this, completions events are managed per
* TX burst. */
.sq_sig_all = 0,
.pd = priv->pd,
.res_domain = tmpl.rd,
.comp_mask = (IBV_EXP_QP_INIT_ATTR_PD |
IBV_EXP_QP_INIT_ATTR_RES_DOMAIN),
};
tmpl.qp = ibv_exp_create_qp(priv->ctx, &attr.init);
if (tmpl.qp == NULL) {
ret = (errno ? errno : EINVAL);
ERROR("%p: QP creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
#if MLX4_PMD_MAX_INLINE > 0
/* ibv_create_qp() updates this value. */
tmpl.max_inline = attr.init.cap.max_inline_data;
#endif
attr.mod = (struct ibv_exp_qp_attr){
/* Move the QP to this state. */
.qp_state = IBV_QPS_INIT,
/* Primary port number. */
.port_num = priv->port
};
ret = ibv_exp_modify_qp(tmpl.qp, &attr.mod,
(IBV_EXP_QP_STATE | IBV_EXP_QP_PORT));
if (ret) {
ERROR("%p: QP state to IBV_QPS_INIT failed: %s",
(void *)dev, strerror(ret));
goto error;
}
ret = txq_alloc_elts(&tmpl, desc);
if (ret) {
ERROR("%p: TXQ allocation failed: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.mod = (struct ibv_exp_qp_attr){
.qp_state = IBV_QPS_RTR
};
ret = ibv_exp_modify_qp(tmpl.qp, &attr.mod, IBV_EXP_QP_STATE);
if (ret) {
ERROR("%p: QP state to IBV_QPS_RTR failed: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.mod.qp_state = IBV_QPS_RTS;
ret = ibv_exp_modify_qp(tmpl.qp, &attr.mod, IBV_EXP_QP_STATE);
if (ret) {
ERROR("%p: QP state to IBV_QPS_RTS failed: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.params = (struct ibv_exp_query_intf_params){
.intf_scope = IBV_EXP_INTF_GLOBAL,
.intf = IBV_EXP_INTF_CQ,
.obj = tmpl.cq,
};
tmpl.if_cq = ibv_exp_query_intf(priv->ctx, &attr.params, &status);
if (tmpl.if_cq == NULL) {
ERROR("%p: CQ interface family query failed with status %d",
(void *)dev, status);
goto error;
}
attr.params = (struct ibv_exp_query_intf_params){
.intf_scope = IBV_EXP_INTF_GLOBAL,
.intf = IBV_EXP_INTF_QP_BURST,
.obj = tmpl.qp,
#ifdef HAVE_EXP_QP_BURST_CREATE_DISABLE_ETH_LOOPBACK
/* MC loopback must be disabled when not using a VF. */
.family_flags =
(!priv->vf ?
IBV_EXP_QP_BURST_CREATE_DISABLE_ETH_LOOPBACK :
0),
#endif
};
tmpl.if_qp = ibv_exp_query_intf(priv->ctx, &attr.params, &status);
if (tmpl.if_qp == NULL) {
ERROR("%p: QP interface family query failed with status %d",
(void *)dev, status);
goto error;
}
/* Clean up txq in case we're reinitializing it. */
DEBUG("%p: cleaning-up old txq just in case", (void *)txq);
txq_cleanup(txq);
*txq = tmpl;
DEBUG("%p: txq updated with %p", (void *)txq, (void *)&tmpl);
/* Pre-register known mempools. */
rte_mempool_walk(txq_mp2mr_iter, txq);
assert(ret == 0);
return 0;
error:
txq_cleanup(&tmpl);
assert(ret > 0);
return ret;
}
/**
* DPDK callback to configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct priv *priv = dev->data->dev_private;
struct txq *txq = (*priv->txqs)[idx];
int ret;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= priv->txqs_n) {
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, priv->txqs_n);
priv_unlock(priv);
return -EOVERFLOW;
}
if (txq != NULL) {
DEBUG("%p: reusing already allocated queue index %u (%p)",
(void *)dev, idx, (void *)txq);
if (priv->started) {
priv_unlock(priv);
return -EEXIST;
}
(*priv->txqs)[idx] = NULL;
txq_cleanup(txq);
} else {
txq = rte_calloc_socket("TXQ", 1, sizeof(*txq), 0, socket);
if (txq == NULL) {
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
priv_unlock(priv);
return -ENOMEM;
}
}
ret = txq_setup(dev, txq, desc, socket, conf);
if (ret)
rte_free(txq);
else {
txq->stats.idx = idx;
DEBUG("%p: adding TX queue %p to list",
(void *)dev, (void *)txq);
(*priv->txqs)[idx] = txq;
/* Update send callback. */
dev->tx_pkt_burst = mlx4_tx_burst;
}
priv_unlock(priv);
return -ret;
}
/**
* DPDK callback to release a TX queue.
*
* @param dpdk_txq
* Generic TX queue pointer.
*/
static void
mlx4_tx_queue_release(void *dpdk_txq)
{
struct txq *txq = (struct txq *)dpdk_txq;
struct priv *priv;
unsigned int i;
if (mlx4_is_secondary())
return;
if (txq == NULL)
return;
priv = txq->priv;
priv_lock(priv);
for (i = 0; (i != priv->txqs_n); ++i)
if ((*priv->txqs)[i] == txq) {
DEBUG("%p: removing TX queue %p from list",
(void *)priv->dev, (void *)txq);
(*priv->txqs)[i] = NULL;
break;
}
txq_cleanup(txq);
rte_free(txq);
priv_unlock(priv);
}
/* RX queues handling. */
/**
* Allocate RX queue elements with scattered packets support.
*
* @param rxq
* Pointer to RX queue structure.
* @param elts_n
* Number of elements to allocate.
* @param[in] pool
* If not NULL, fetch buffers from this array instead of allocating them
* with rte_pktmbuf_alloc().
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_alloc_elts_sp(struct rxq *rxq, unsigned int elts_n,
struct rte_mbuf **pool)
{
unsigned int i;
struct rxq_elt_sp (*elts)[elts_n] =
rte_calloc_socket("RXQ elements", 1, sizeof(*elts), 0,
rxq->socket);
int ret = 0;
if (elts == NULL) {
ERROR("%p: can't allocate packets array", (void *)rxq);
ret = ENOMEM;
goto error;
}
/* For each WR (packet). */
for (i = 0; (i != elts_n); ++i) {
unsigned int j;
struct rxq_elt_sp *elt = &(*elts)[i];
struct ibv_recv_wr *wr = &elt->wr;
struct ibv_sge (*sges)[(elemof(elt->sges))] = &elt->sges;
/* These two arrays must have the same size. */
assert(elemof(elt->sges) == elemof(elt->bufs));
/* Configure WR. */
wr->wr_id = i;
wr->next = &(*elts)[(i + 1)].wr;
wr->sg_list = &(*sges)[0];
wr->num_sge = elemof(*sges);
/* For each SGE (segment). */
for (j = 0; (j != elemof(elt->bufs)); ++j) {
struct ibv_sge *sge = &(*sges)[j];
struct rte_mbuf *buf;
if (pool != NULL) {
buf = *(pool++);
assert(buf != NULL);
rte_pktmbuf_reset(buf);
} else
buf = rte_pktmbuf_alloc(rxq->mp);
if (buf == NULL) {
assert(pool == NULL);
ERROR("%p: empty mbuf pool", (void *)rxq);
ret = ENOMEM;
goto error;
}
elt->bufs[j] = buf;
/* Headroom is reserved by rte_pktmbuf_alloc(). */
assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM);
/* Buffer is supposed to be empty. */
assert(rte_pktmbuf_data_len(buf) == 0);
assert(rte_pktmbuf_pkt_len(buf) == 0);
/* sge->addr must be able to store a pointer. */
assert(sizeof(sge->addr) >= sizeof(uintptr_t));
if (j == 0) {
/* The first SGE keeps its headroom. */
sge->addr = rte_pktmbuf_mtod(buf, uintptr_t);
sge->length = (buf->buf_len -
RTE_PKTMBUF_HEADROOM);
} else {
/* Subsequent SGEs lose theirs. */
assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM);
SET_DATA_OFF(buf, 0);
sge->addr = (uintptr_t)buf->buf_addr;
sge->length = buf->buf_len;
}
sge->lkey = rxq->mr->lkey;
/* Redundant check for tailroom. */
assert(sge->length == rte_pktmbuf_tailroom(buf));
}
}
/* The last WR pointer must be NULL. */
(*elts)[(i - 1)].wr.next = NULL;
DEBUG("%p: allocated and configured %u WRs (%zu segments)",
(void *)rxq, elts_n, (elts_n * elemof((*elts)[0].sges)));
rxq->elts_n = elts_n;
rxq->elts_head = 0;
rxq->elts.sp = elts;
assert(ret == 0);
return 0;
error:
if (elts != NULL) {
assert(pool == NULL);
for (i = 0; (i != elemof(*elts)); ++i) {
unsigned int j;
struct rxq_elt_sp *elt = &(*elts)[i];
for (j = 0; (j != elemof(elt->bufs)); ++j) {
struct rte_mbuf *buf = elt->bufs[j];
if (buf != NULL)
rte_pktmbuf_free_seg(buf);
}
}
rte_free(elts);
}
DEBUG("%p: failed, freed everything", (void *)rxq);
assert(ret > 0);
return ret;
}
/**
* Free RX queue elements with scattered packets support.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_free_elts_sp(struct rxq *rxq)
{
unsigned int i;
unsigned int elts_n = rxq->elts_n;
struct rxq_elt_sp (*elts)[elts_n] = rxq->elts.sp;
DEBUG("%p: freeing WRs", (void *)rxq);
rxq->elts_n = 0;
rxq->elts.sp = NULL;
if (elts == NULL)
return;
for (i = 0; (i != elemof(*elts)); ++i) {
unsigned int j;
struct rxq_elt_sp *elt = &(*elts)[i];
for (j = 0; (j != elemof(elt->bufs)); ++j) {
struct rte_mbuf *buf = elt->bufs[j];
if (buf != NULL)
rte_pktmbuf_free_seg(buf);
}
}
rte_free(elts);
}
/**
* Allocate RX queue elements.
*
* @param rxq
* Pointer to RX queue structure.
* @param elts_n
* Number of elements to allocate.
* @param[in] pool
* If not NULL, fetch buffers from this array instead of allocating them
* with rte_pktmbuf_alloc().
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_alloc_elts(struct rxq *rxq, unsigned int elts_n, struct rte_mbuf **pool)
{
unsigned int i;
struct rxq_elt (*elts)[elts_n] =
rte_calloc_socket("RXQ elements", 1, sizeof(*elts), 0,
rxq->socket);
int ret = 0;
if (elts == NULL) {
ERROR("%p: can't allocate packets array", (void *)rxq);
ret = ENOMEM;
goto error;
}
/* For each WR (packet). */
for (i = 0; (i != elts_n); ++i) {
struct rxq_elt *elt = &(*elts)[i];
struct ibv_recv_wr *wr = &elt->wr;
struct ibv_sge *sge = &(*elts)[i].sge;
struct rte_mbuf *buf;
if (pool != NULL) {
buf = *(pool++);
assert(buf != NULL);
rte_pktmbuf_reset(buf);
} else
buf = rte_pktmbuf_alloc(rxq->mp);
if (buf == NULL) {
assert(pool == NULL);
ERROR("%p: empty mbuf pool", (void *)rxq);
ret = ENOMEM;
goto error;
}
/* Configure WR. Work request ID contains its own index in
* the elts array and the offset between SGE buffer header and
* its data. */
WR_ID(wr->wr_id).id = i;
WR_ID(wr->wr_id).offset =
(((uintptr_t)buf->buf_addr + RTE_PKTMBUF_HEADROOM) -
(uintptr_t)buf);
wr->next = &(*elts)[(i + 1)].wr;
wr->sg_list = sge;
wr->num_sge = 1;
/* Headroom is reserved by rte_pktmbuf_alloc(). */
assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM);
/* Buffer is supposed to be empty. */
assert(rte_pktmbuf_data_len(buf) == 0);
assert(rte_pktmbuf_pkt_len(buf) == 0);
/* sge->addr must be able to store a pointer. */
assert(sizeof(sge->addr) >= sizeof(uintptr_t));
/* SGE keeps its headroom. */
sge->addr = (uintptr_t)
((uint8_t *)buf->buf_addr + RTE_PKTMBUF_HEADROOM);
sge->length = (buf->buf_len - RTE_PKTMBUF_HEADROOM);
sge->lkey = rxq->mr->lkey;
/* Redundant check for tailroom. */
assert(sge->length == rte_pktmbuf_tailroom(buf));
/* Make sure elts index and SGE mbuf pointer can be deduced
* from WR ID. */
if ((WR_ID(wr->wr_id).id != i) ||
((void *)((uintptr_t)sge->addr -
WR_ID(wr->wr_id).offset) != buf)) {
ERROR("%p: cannot store index and offset in WR ID",
(void *)rxq);
sge->addr = 0;
rte_pktmbuf_free(buf);
ret = EOVERFLOW;
goto error;
}
}
/* The last WR pointer must be NULL. */
(*elts)[(i - 1)].wr.next = NULL;
DEBUG("%p: allocated and configured %u single-segment WRs",
(void *)rxq, elts_n);
rxq->elts_n = elts_n;
rxq->elts_head = 0;
rxq->elts.no_sp = elts;
assert(ret == 0);
return 0;
error:
if (elts != NULL) {
assert(pool == NULL);
for (i = 0; (i != elemof(*elts)); ++i) {
struct rxq_elt *elt = &(*elts)[i];
struct rte_mbuf *buf;
if (elt->sge.addr == 0)
continue;
assert(WR_ID(elt->wr.wr_id).id == i);
buf = (void *)((uintptr_t)elt->sge.addr -
WR_ID(elt->wr.wr_id).offset);
rte_pktmbuf_free_seg(buf);
}
rte_free(elts);
}
DEBUG("%p: failed, freed everything", (void *)rxq);
assert(ret > 0);
return ret;
}
/**
* Free RX queue elements.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_free_elts(struct rxq *rxq)
{
unsigned int i;
unsigned int elts_n = rxq->elts_n;
struct rxq_elt (*elts)[elts_n] = rxq->elts.no_sp;
DEBUG("%p: freeing WRs", (void *)rxq);
rxq->elts_n = 0;
rxq->elts.no_sp = NULL;
if (elts == NULL)
return;
for (i = 0; (i != elemof(*elts)); ++i) {
struct rxq_elt *elt = &(*elts)[i];
struct rte_mbuf *buf;
if (elt->sge.addr == 0)
continue;
assert(WR_ID(elt->wr.wr_id).id == i);
buf = (void *)((uintptr_t)elt->sge.addr -
WR_ID(elt->wr.wr_id).offset);
rte_pktmbuf_free_seg(buf);
}
rte_free(elts);
}
/**
* Delete flow steering rule.
*
* @param rxq
* Pointer to RX queue structure.
* @param mac_index
* MAC address index.
* @param vlan_index
* VLAN index.
*/
static void
rxq_del_flow(struct rxq *rxq, unsigned int mac_index, unsigned int vlan_index)
{
#ifndef NDEBUG
struct priv *priv = rxq->priv;
const uint8_t (*mac)[ETHER_ADDR_LEN] =
(const uint8_t (*)[ETHER_ADDR_LEN])
priv->mac[mac_index].addr_bytes;
#endif
assert(rxq->mac_flow[mac_index][vlan_index] != NULL);
DEBUG("%p: removing MAC address %02x:%02x:%02x:%02x:%02x:%02x index %u"
" (VLAN ID %" PRIu16 ")",
(void *)rxq,
(*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5],
mac_index, priv->vlan_filter[vlan_index].id);
claim_zero(ibv_destroy_flow(rxq->mac_flow[mac_index][vlan_index]));
rxq->mac_flow[mac_index][vlan_index] = NULL;
}
/**
* Unregister a MAC address from a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
* @param mac_index
* MAC address index.
*/
static void
rxq_mac_addr_del(struct rxq *rxq, unsigned int mac_index)
{
struct priv *priv = rxq->priv;
unsigned int i;
unsigned int vlans = 0;
assert(mac_index < elemof(priv->mac));
if (!BITFIELD_ISSET(rxq->mac_configured, mac_index))
return;
for (i = 0; (i != elemof(priv->vlan_filter)); ++i) {
if (!priv->vlan_filter[i].enabled)
continue;
rxq_del_flow(rxq, mac_index, i);
vlans++;
}
if (!vlans) {
rxq_del_flow(rxq, mac_index, 0);
}
BITFIELD_RESET(rxq->mac_configured, mac_index);
}
/**
* Unregister all MAC addresses from a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_mac_addrs_del(struct rxq *rxq)
{
struct priv *priv = rxq->priv;
unsigned int i;
for (i = 0; (i != elemof(priv->mac)); ++i)
rxq_mac_addr_del(rxq, i);
}
static int rxq_promiscuous_enable(struct rxq *);
static void rxq_promiscuous_disable(struct rxq *);
/**
* Add single flow steering rule.
*
* @param rxq
* Pointer to RX queue structure.
* @param mac_index
* MAC address index to register.
* @param vlan_index
* VLAN index. Use -1 for a flow without VLAN.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_add_flow(struct rxq *rxq, unsigned int mac_index, unsigned int vlan_index)
{
struct ibv_flow *flow;
struct priv *priv = rxq->priv;
const uint8_t (*mac)[ETHER_ADDR_LEN] =
(const uint8_t (*)[ETHER_ADDR_LEN])
priv->mac[mac_index].addr_bytes;
/* Allocate flow specification on the stack. */
struct __attribute__((packed)) {
struct ibv_flow_attr attr;
struct ibv_flow_spec_eth spec;
} data;
struct ibv_flow_attr *attr = &data.attr;
struct ibv_flow_spec_eth *spec = &data.spec;
assert(mac_index < elemof(priv->mac));
assert((vlan_index < elemof(priv->vlan_filter)) || (vlan_index == -1u));
/*
* No padding must be inserted by the compiler between attr and spec.
* This layout is expected by libibverbs.
*/
assert(((uint8_t *)attr + sizeof(*attr)) == (uint8_t *)spec);
*attr = (struct ibv_flow_attr){
.type = IBV_FLOW_ATTR_NORMAL,
.num_of_specs = 1,
.port = priv->port,
.flags = 0
};
*spec = (struct ibv_flow_spec_eth){
.type = IBV_FLOW_SPEC_ETH,
.size = sizeof(*spec),
.val = {
.dst_mac = {
(*mac)[0], (*mac)[1], (*mac)[2],
(*mac)[3], (*mac)[4], (*mac)[5]
},
.vlan_tag = ((vlan_index != -1u) ?
htons(priv->vlan_filter[vlan_index].id) :
0),
},
.mask = {
.dst_mac = "\xff\xff\xff\xff\xff\xff",
.vlan_tag = ((vlan_index != -1u) ? htons(0xfff) : 0),
}
};
DEBUG("%p: adding MAC address %02x:%02x:%02x:%02x:%02x:%02x index %u"
" (VLAN %s %" PRIu16 ")",
(void *)rxq,
(*mac)[0], (*mac)[1], (*mac)[2], (*mac)[3], (*mac)[4], (*mac)[5],
mac_index,
((vlan_index != -1u) ? "ID" : "index"),
((vlan_index != -1u) ? priv->vlan_filter[vlan_index].id : -1u));
/* Create related flow. */
errno = 0;
flow = ibv_create_flow(rxq->qp, attr);
if (flow == NULL) {
/* It's not clear whether errno is always set in this case. */
ERROR("%p: flow configuration failed, errno=%d: %s",
(void *)rxq, errno,
(errno ? strerror(errno) : "Unknown error"));
if (errno)
return errno;
return EINVAL;
}
if (vlan_index == -1u)
vlan_index = 0;
assert(rxq->mac_flow[mac_index][vlan_index] == NULL);
rxq->mac_flow[mac_index][vlan_index] = flow;
return 0;
}
/**
* Register a MAC address in a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
* @param mac_index
* MAC address index to register.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_mac_addr_add(struct rxq *rxq, unsigned int mac_index)
{
struct priv *priv = rxq->priv;
unsigned int i;
unsigned int vlans = 0;
int ret;
assert(mac_index < elemof(priv->mac));
if (BITFIELD_ISSET(rxq->mac_configured, mac_index))
rxq_mac_addr_del(rxq, mac_index);
/* Fill VLAN specifications. */
for (i = 0; (i != elemof(priv->vlan_filter)); ++i) {
if (!priv->vlan_filter[i].enabled)
continue;
/* Create related flow. */
ret = rxq_add_flow(rxq, mac_index, i);
if (!ret) {
vlans++;
continue;
}
/* Failure, rollback. */
while (i != 0)
if (priv->vlan_filter[--i].enabled)
rxq_del_flow(rxq, mac_index, i);
assert(ret > 0);
return ret;
}
/* In case there is no VLAN filter. */
if (!vlans) {
ret = rxq_add_flow(rxq, mac_index, -1);
if (ret)
return ret;
}
BITFIELD_SET(rxq->mac_configured, mac_index);
return 0;
}
/**
* Register all MAC addresses in a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_mac_addrs_add(struct rxq *rxq)
{
struct priv *priv = rxq->priv;
unsigned int i;
int ret;
for (i = 0; (i != elemof(priv->mac)); ++i) {
if (!BITFIELD_ISSET(priv->mac_configured, i))
continue;
ret = rxq_mac_addr_add(rxq, i);
if (!ret)
continue;
/* Failure, rollback. */
while (i != 0)
rxq_mac_addr_del(rxq, --i);
assert(ret > 0);
return ret;
}
return 0;
}
/**
* Unregister a MAC address.
*
* In RSS mode, the MAC address is unregistered from the parent queue,
* otherwise it is unregistered from each queue directly.
*
* @param priv
* Pointer to private structure.
* @param mac_index
* MAC address index.
*/
static void
priv_mac_addr_del(struct priv *priv, unsigned int mac_index)
{
unsigned int i;
assert(mac_index < elemof(priv->mac));
if (!BITFIELD_ISSET(priv->mac_configured, mac_index))
return;
if (priv->rss) {
rxq_mac_addr_del(&priv->rxq_parent, mac_index);
goto end;
}
for (i = 0; (i != priv->dev->data->nb_rx_queues); ++i)
rxq_mac_addr_del((*priv->rxqs)[i], mac_index);
end:
BITFIELD_RESET(priv->mac_configured, mac_index);
}
/**
* Register a MAC address.
*
* In RSS mode, the MAC address is registered in the parent queue,
* otherwise it is registered in each queue directly.
*
* @param priv
* Pointer to private structure.
* @param mac_index
* MAC address index to use.
* @param mac
* MAC address to register.
*
* @return
* 0 on success, errno value on failure.
*/
static int
priv_mac_addr_add(struct priv *priv, unsigned int mac_index,
const uint8_t (*mac)[ETHER_ADDR_LEN])
{
unsigned int i;
int ret;
assert(mac_index < elemof(priv->mac));
/* First, make sure this address isn't already configured. */
for (i = 0; (i != elemof(priv->mac)); ++i) {
/* Skip this index, it's going to be reconfigured. */
if (i == mac_index)
continue;
if (!BITFIELD_ISSET(priv->mac_configured, i))
continue;
if (memcmp(priv->mac[i].addr_bytes, *mac, sizeof(*mac)))
continue;
/* Address already configured elsewhere, return with error. */
return EADDRINUSE;
}
if (BITFIELD_ISSET(priv->mac_configured, mac_index))
priv_mac_addr_del(priv, mac_index);
priv->mac[mac_index] = (struct ether_addr){
{
(*mac)[0], (*mac)[1], (*mac)[2],
(*mac)[3], (*mac)[4], (*mac)[5]
}
};
/* If device isn't started, this is all we need to do. */
if (!priv->started) {
#ifndef NDEBUG
/* Verify that all queues have this index disabled. */
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
assert(!BITFIELD_ISSET
((*priv->rxqs)[i]->mac_configured, mac_index));
}
#endif
goto end;
}
if (priv->rss) {
ret = rxq_mac_addr_add(&priv->rxq_parent, mac_index);
if (ret)
return ret;
goto end;
}
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
ret = rxq_mac_addr_add((*priv->rxqs)[i], mac_index);
if (!ret)
continue;
/* Failure, rollback. */
while (i != 0)
if ((*priv->rxqs)[(--i)] != NULL)
rxq_mac_addr_del((*priv->rxqs)[i], mac_index);
return ret;
}
end:
BITFIELD_SET(priv->mac_configured, mac_index);
return 0;
}
/**
* Enable allmulti mode in a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_allmulticast_enable(struct rxq *rxq)
{
struct ibv_flow *flow;
struct ibv_flow_attr attr = {
.type = IBV_FLOW_ATTR_MC_DEFAULT,
.num_of_specs = 0,
.port = rxq->priv->port,
.flags = 0
};
DEBUG("%p: enabling allmulticast mode", (void *)rxq);
if (rxq->allmulti_flow != NULL)
return EBUSY;
errno = 0;
flow = ibv_create_flow(rxq->qp, &attr);
if (flow == NULL) {
/* It's not clear whether errno is always set in this case. */
ERROR("%p: flow configuration failed, errno=%d: %s",
(void *)rxq, errno,
(errno ? strerror(errno) : "Unknown error"));
if (errno)
return errno;
return EINVAL;
}
rxq->allmulti_flow = flow;
DEBUG("%p: allmulticast mode enabled", (void *)rxq);
return 0;
}
/**
* Disable allmulti mode in a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_allmulticast_disable(struct rxq *rxq)
{
DEBUG("%p: disabling allmulticast mode", (void *)rxq);
if (rxq->allmulti_flow == NULL)
return;
claim_zero(ibv_destroy_flow(rxq->allmulti_flow));
rxq->allmulti_flow = NULL;
DEBUG("%p: allmulticast mode disabled", (void *)rxq);
}
/**
* Enable promiscuous mode in a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_promiscuous_enable(struct rxq *rxq)
{
struct ibv_flow *flow;
struct ibv_flow_attr attr = {
.type = IBV_FLOW_ATTR_ALL_DEFAULT,
.num_of_specs = 0,
.port = rxq->priv->port,
.flags = 0
};
if (rxq->priv->vf)
return 0;
DEBUG("%p: enabling promiscuous mode", (void *)rxq);
if (rxq->promisc_flow != NULL)
return EBUSY;
errno = 0;
flow = ibv_create_flow(rxq->qp, &attr);
if (flow == NULL) {
/* It's not clear whether errno is always set in this case. */
ERROR("%p: flow configuration failed, errno=%d: %s",
(void *)rxq, errno,
(errno ? strerror(errno) : "Unknown error"));
if (errno)
return errno;
return EINVAL;
}
rxq->promisc_flow = flow;
DEBUG("%p: promiscuous mode enabled", (void *)rxq);
return 0;
}
/**
* Disable promiscuous mode in a RX queue.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_promiscuous_disable(struct rxq *rxq)
{
if (rxq->priv->vf)
return;
DEBUG("%p: disabling promiscuous mode", (void *)rxq);
if (rxq->promisc_flow == NULL)
return;
claim_zero(ibv_destroy_flow(rxq->promisc_flow));
rxq->promisc_flow = NULL;
DEBUG("%p: promiscuous mode disabled", (void *)rxq);
}
/**
* Clean up a RX queue.
*
* Destroy objects, free allocated memory and reset the structure for reuse.
*
* @param rxq
* Pointer to RX queue structure.
*/
static void
rxq_cleanup(struct rxq *rxq)
{
struct ibv_exp_release_intf_params params;
DEBUG("cleaning up %p", (void *)rxq);
if (rxq->sp)
rxq_free_elts_sp(rxq);
else
rxq_free_elts(rxq);
if (rxq->if_qp != NULL) {
assert(rxq->priv != NULL);
assert(rxq->priv->ctx != NULL);
assert(rxq->qp != NULL);
params = (struct ibv_exp_release_intf_params){
.comp_mask = 0,
};
claim_zero(ibv_exp_release_intf(rxq->priv->ctx,
rxq->if_qp,
&params));
}
if (rxq->if_cq != NULL) {
assert(rxq->priv != NULL);
assert(rxq->priv->ctx != NULL);
assert(rxq->cq != NULL);
params = (struct ibv_exp_release_intf_params){
.comp_mask = 0,
};
claim_zero(ibv_exp_release_intf(rxq->priv->ctx,
rxq->if_cq,
&params));
}
if (rxq->qp != NULL) {
rxq_promiscuous_disable(rxq);
rxq_allmulticast_disable(rxq);
rxq_mac_addrs_del(rxq);
claim_zero(ibv_destroy_qp(rxq->qp));
}
if (rxq->cq != NULL)
claim_zero(ibv_destroy_cq(rxq->cq));
if (rxq->rd != NULL) {
struct ibv_exp_destroy_res_domain_attr attr = {
.comp_mask = 0,
};
assert(rxq->priv != NULL);
assert(rxq->priv->ctx != NULL);
claim_zero(ibv_exp_destroy_res_domain(rxq->priv->ctx,
rxq->rd,
&attr));
}
if (rxq->mr != NULL)
claim_zero(ibv_dereg_mr(rxq->mr));
memset(rxq, 0, sizeof(*rxq));
}
/**
* Translate RX completion flags to packet type.
*
* @param flags
* RX completion flags returned by poll_length_flags().
*
* @note: fix mlx4_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(uint32_t flags)
{
uint32_t pkt_type;
if (flags & IBV_EXP_CQ_RX_TUNNEL_PACKET)
pkt_type =
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IPV4_PACKET,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IPV6_PACKET,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV4_PACKET,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV6_PACKET,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN);
else
pkt_type =
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV4_PACKET,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV6_PACKET,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN);
return pkt_type;
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param flags
* RX completion flags returned by poll_length_flags().
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(const struct rxq *rxq, uint32_t flags)
{
uint32_t ol_flags = 0;
if (rxq->csum)
ol_flags |=
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IP_CSUM_OK,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_GOOD);
if ((flags & IBV_EXP_CQ_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
ol_flags |=
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IP_CSUM_OK,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
static uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n);
/**
* DPDK callback for RX with scattered packets support.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
static uint16_t
mlx4_rx_burst_sp(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_elt_sp (*elts)[rxq->elts_n] = rxq->elts.sp;
const unsigned int elts_n = rxq->elts_n;
unsigned int elts_head = rxq->elts_head;
struct ibv_recv_wr head;
struct ibv_recv_wr **next = &head.next;
struct ibv_recv_wr *bad_wr;
unsigned int i;
unsigned int pkts_ret = 0;
int ret;
if (unlikely(!rxq->sp))
return mlx4_rx_burst(dpdk_rxq, pkts, pkts_n);
if (unlikely(elts == NULL)) /* See RTE_DEV_CMD_SET_MTU. */
return 0;
for (i = 0; (i != pkts_n); ++i) {
struct rxq_elt_sp *elt = &(*elts)[elts_head];
struct ibv_recv_wr *wr = &elt->wr;
uint64_t wr_id = wr->wr_id;
unsigned int len;
unsigned int pkt_buf_len;
struct rte_mbuf *pkt_buf = NULL; /* Buffer returned in pkts. */
struct rte_mbuf **pkt_buf_next = &pkt_buf;
unsigned int seg_headroom = RTE_PKTMBUF_HEADROOM;
unsigned int j = 0;
uint32_t flags;
/* Sanity checks. */
#ifdef NDEBUG
(void)wr_id;
#endif
assert(wr_id < rxq->elts_n);
assert(wr->sg_list == elt->sges);
assert(wr->num_sge == elemof(elt->sges));
assert(elts_head < rxq->elts_n);
assert(rxq->elts_head < rxq->elts_n);
ret = rxq->if_cq->poll_length_flags(rxq->cq, NULL, NULL,
&flags);
if (unlikely(ret < 0)) {
struct ibv_wc wc;
int wcs_n;
DEBUG("rxq=%p, poll_length() failed (ret=%d)",
(void *)rxq, ret);
/* ibv_poll_cq() must be used in case of failure. */
wcs_n = ibv_poll_cq(rxq->cq, 1, &wc);
if (unlikely(wcs_n == 0))
break;
if (unlikely(wcs_n < 0)) {
DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)",
(void *)rxq, wcs_n);
break;
}
assert(wcs_n == 1);
if (unlikely(wc.status != IBV_WC_SUCCESS)) {
/* Whatever, just repost the offending WR. */
DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work"
" completion status (%d): %s",
(void *)rxq, wc.wr_id, wc.status,
ibv_wc_status_str(wc.status));
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increment dropped packets counter. */
++rxq->stats.idropped;
#endif
/* Link completed WRs together for repost. */
*next = wr;
next = &wr->next;
goto repost;
}
ret = wc.byte_len;
}
if (ret == 0)
break;
len = ret;
pkt_buf_len = len;
/* Link completed WRs together for repost. */
*next = wr;
next = &wr->next;
/*
* Replace spent segments with new ones, concatenate and
* return them as pkt_buf.
*/
while (1) {
struct ibv_sge *sge = &elt->sges[j];
struct rte_mbuf *seg = elt->bufs[j];
struct rte_mbuf *rep;
unsigned int seg_tailroom;
/*
* Fetch initial bytes of packet descriptor into a
* cacheline while allocating rep.
*/
rte_prefetch0(seg);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
/*
* Unable to allocate a replacement mbuf,
* repost WR.
*/
DEBUG("rxq=%p, wr_id=%" PRIu64 ":"
" can't allocate a new mbuf",
(void *)rxq, wr_id);
if (pkt_buf != NULL) {
*pkt_buf_next = NULL;
rte_pktmbuf_free(pkt_buf);
}
/* Increase out of memory counters. */
++rxq->stats.rx_nombuf;
++rxq->priv->dev->data->rx_mbuf_alloc_failed;
goto repost;
}
#ifndef NDEBUG
/* Poison user-modifiable fields in rep. */
NEXT(rep) = (void *)((uintptr_t)-1);
SET_DATA_OFF(rep, 0xdead);
DATA_LEN(rep) = 0xd00d;
PKT_LEN(rep) = 0xdeadd00d;
NB_SEGS(rep) = 0x2a;
PORT(rep) = 0x2a;
rep->ol_flags = -1;
#endif
assert(rep->buf_len == seg->buf_len);
/* Reconfigure sge to use rep instead of seg. */
assert(sge->lkey == rxq->mr->lkey);
sge->addr = ((uintptr_t)rep->buf_addr + seg_headroom);
elt->bufs[j] = rep;
++j;
/* Update pkt_buf if it's the first segment, or link
* seg to the previous one and update pkt_buf_next. */
*pkt_buf_next = seg;
pkt_buf_next = &NEXT(seg);
/* Update seg information. */
seg_tailroom = (seg->buf_len - seg_headroom);
assert(sge->length == seg_tailroom);
SET_DATA_OFF(seg, seg_headroom);
if (likely(len <= seg_tailroom)) {
/* Last segment. */
DATA_LEN(seg) = len;
PKT_LEN(seg) = len;
/* Sanity check. */
assert(rte_pktmbuf_headroom(seg) ==
seg_headroom);
assert(rte_pktmbuf_tailroom(seg) ==
(seg_tailroom - len));
break;
}
DATA_LEN(seg) = seg_tailroom;
PKT_LEN(seg) = seg_tailroom;
/* Sanity check. */
assert(rte_pktmbuf_headroom(seg) == seg_headroom);
assert(rte_pktmbuf_tailroom(seg) == 0);
/* Fix len and clear headroom for next segments. */
len -= seg_tailroom;
seg_headroom = 0;
}
/* Update head and tail segments. */
*pkt_buf_next = NULL;
assert(pkt_buf != NULL);
assert(j != 0);
NB_SEGS(pkt_buf) = j;
PORT(pkt_buf) = rxq->port_id;
PKT_LEN(pkt_buf) = pkt_buf_len;
pkt_buf->packet_type = rxq_cq_to_pkt_type(flags);
pkt_buf->ol_flags = rxq_cq_to_ol_flags(rxq, flags);
/* Return packet. */
*(pkts++) = pkt_buf;
++pkts_ret;
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increase bytes counter. */
rxq->stats.ibytes += pkt_buf_len;
#endif
repost:
if (++elts_head >= elts_n)
elts_head = 0;
continue;
}
if (unlikely(i == 0))
return 0;
*next = NULL;
/* Repost WRs. */
#ifdef DEBUG_RECV
DEBUG("%p: reposting %d WRs", (void *)rxq, i);
#endif
ret = ibv_post_recv(rxq->qp, head.next, &bad_wr);
if (unlikely(ret)) {
/* Inability to repost WRs is fatal. */
DEBUG("%p: ibv_post_recv(): failed for WR %p: %s",
(void *)rxq->priv,
(void *)bad_wr,
strerror(ret));
abort();
}
rxq->elts_head = elts_head;
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increase packets counter. */
rxq->stats.ipackets += pkts_ret;
#endif
return pkts_ret;
}
/**
* DPDK callback for RX.
*
* The following function is the same as mlx4_rx_burst_sp(), except it doesn't
* manage scattered packets. Improves performance when MRU is lower than the
* size of the first segment.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
static uint16_t
mlx4_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts.no_sp;
const unsigned int elts_n = rxq->elts_n;
unsigned int elts_head = rxq->elts_head;
struct ibv_sge sges[pkts_n];
unsigned int i;
unsigned int pkts_ret = 0;
int ret;
if (unlikely(rxq->sp))
return mlx4_rx_burst_sp(dpdk_rxq, pkts, pkts_n);
for (i = 0; (i != pkts_n); ++i) {
struct rxq_elt *elt = &(*elts)[elts_head];
struct ibv_recv_wr *wr = &elt->wr;
uint64_t wr_id = wr->wr_id;
unsigned int len;
struct rte_mbuf *seg = (void *)((uintptr_t)elt->sge.addr -
WR_ID(wr_id).offset);
struct rte_mbuf *rep;
uint32_t flags;
/* Sanity checks. */
assert(WR_ID(wr_id).id < rxq->elts_n);
assert(wr->sg_list == &elt->sge);
assert(wr->num_sge == 1);
assert(elts_head < rxq->elts_n);
assert(rxq->elts_head < rxq->elts_n);
/*
* Fetch initial bytes of packet descriptor into a
* cacheline while allocating rep.
*/
rte_mbuf_prefetch_part1(seg);
rte_mbuf_prefetch_part2(seg);
ret = rxq->if_cq->poll_length_flags(rxq->cq, NULL, NULL,
&flags);
if (unlikely(ret < 0)) {
struct ibv_wc wc;
int wcs_n;
DEBUG("rxq=%p, poll_length() failed (ret=%d)",
(void *)rxq, ret);
/* ibv_poll_cq() must be used in case of failure. */
wcs_n = ibv_poll_cq(rxq->cq, 1, &wc);
if (unlikely(wcs_n == 0))
break;
if (unlikely(wcs_n < 0)) {
DEBUG("rxq=%p, ibv_poll_cq() failed (wcs_n=%d)",
(void *)rxq, wcs_n);
break;
}
assert(wcs_n == 1);
if (unlikely(wc.status != IBV_WC_SUCCESS)) {
/* Whatever, just repost the offending WR. */
DEBUG("rxq=%p, wr_id=%" PRIu64 ": bad work"
" completion status (%d): %s",
(void *)rxq, wc.wr_id, wc.status,
ibv_wc_status_str(wc.status));
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increment dropped packets counter. */
++rxq->stats.idropped;
#endif
/* Add SGE to array for repost. */
sges[i] = elt->sge;
goto repost;
}
ret = wc.byte_len;
}
if (ret == 0)
break;
len = ret;
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
/*
* Unable to allocate a replacement mbuf,
* repost WR.
*/
DEBUG("rxq=%p, wr_id=%" PRIu32 ":"
" can't allocate a new mbuf",
(void *)rxq, WR_ID(wr_id).id);
/* Increase out of memory counters. */
++rxq->stats.rx_nombuf;
++rxq->priv->dev->data->rx_mbuf_alloc_failed;
goto repost;
}
/* Reconfigure sge to use rep instead of seg. */
elt->sge.addr = (uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM;
assert(elt->sge.lkey == rxq->mr->lkey);
WR_ID(wr->wr_id).offset =
(((uintptr_t)rep->buf_addr + RTE_PKTMBUF_HEADROOM) -
(uintptr_t)rep);
assert(WR_ID(wr->wr_id).id == WR_ID(wr_id).id);
/* Add SGE to array for repost. */
sges[i] = elt->sge;
/* Update seg information. */
SET_DATA_OFF(seg, RTE_PKTMBUF_HEADROOM);
NB_SEGS(seg) = 1;
PORT(seg) = rxq->port_id;
NEXT(seg) = NULL;
PKT_LEN(seg) = len;
DATA_LEN(seg) = len;
seg->packet_type = rxq_cq_to_pkt_type(flags);
seg->ol_flags = rxq_cq_to_ol_flags(rxq, flags);
/* Return packet. */
*(pkts++) = seg;
++pkts_ret;
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increase bytes counter. */
rxq->stats.ibytes += len;
#endif
repost:
if (++elts_head >= elts_n)
elts_head = 0;
continue;
}
if (unlikely(i == 0))
return 0;
/* Repost WRs. */
#ifdef DEBUG_RECV
DEBUG("%p: reposting %u WRs", (void *)rxq, i);
#endif
ret = rxq->if_qp->recv_burst(rxq->qp, sges, i);
if (unlikely(ret)) {
/* Inability to repost WRs is fatal. */
DEBUG("%p: recv_burst(): failed (ret=%d)",
(void *)rxq->priv,
ret);
abort();
}
rxq->elts_head = elts_head;
#ifdef MLX4_PMD_SOFT_COUNTERS
/* Increase packets counter. */
rxq->stats.ipackets += pkts_ret;
#endif
return pkts_ret;
}
/**
* DPDK callback for RX in secondary processes.
*
* This function configures all queues from primary process information
* if necessary before reverting to the normal RX burst callback.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
static uint16_t
mlx4_rx_burst_secondary_setup(void *dpdk_rxq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
struct priv *priv = mlx4_secondary_data_setup(rxq->priv);
struct priv *primary_priv;
unsigned int index;
if (priv == NULL)
return 0;
primary_priv =
mlx4_secondary_data[priv->dev->data->port_id].primary_priv;
/* Look for queue index in both private structures. */
for (index = 0; index != priv->rxqs_n; ++index)
if (((*primary_priv->rxqs)[index] == rxq) ||
((*priv->rxqs)[index] == rxq))
break;
if (index == priv->rxqs_n)
return 0;
rxq = (*priv->rxqs)[index];
return priv->dev->rx_pkt_burst(rxq, pkts, pkts_n);
}
/**
* Allocate a Queue Pair.
* Optionally setup inline receive if supported.
*
* @param priv
* Pointer to private structure.
* @param cq
* Completion queue to associate with QP.
* @param desc
* Number of descriptors in QP (hint only).
*
* @return
* QP pointer or NULL in case of error.
*/
static struct ibv_qp *
rxq_setup_qp(struct priv *priv, struct ibv_cq *cq, uint16_t desc,
struct ibv_exp_res_domain *rd)
{
struct ibv_exp_qp_init_attr attr = {
/* CQ to be associated with the send queue. */
.send_cq = cq,
/* CQ to be associated with the receive queue. */
.recv_cq = cq,
.cap = {
/* Max number of outstanding WRs. */
.max_recv_wr = ((priv->device_attr.max_qp_wr < desc) ?
priv->device_attr.max_qp_wr :
desc),
/* Max number of scatter/gather elements in a WR. */
.max_recv_sge = ((priv->device_attr.max_sge <
MLX4_PMD_SGE_WR_N) ?
priv->device_attr.max_sge :
MLX4_PMD_SGE_WR_N),
},
.qp_type = IBV_QPT_RAW_PACKET,
.comp_mask = (IBV_EXP_QP_INIT_ATTR_PD |
IBV_EXP_QP_INIT_ATTR_RES_DOMAIN),
.pd = priv->pd,
.res_domain = rd,
};
#ifdef INLINE_RECV
attr.max_inl_recv = priv->inl_recv_size;
attr.comp_mask |= IBV_EXP_QP_INIT_ATTR_INL_RECV;
#endif
return ibv_exp_create_qp(priv->ctx, &attr);
}
#ifdef RSS_SUPPORT
/**
* Allocate a RSS Queue Pair.
* Optionally setup inline receive if supported.
*
* @param priv
* Pointer to private structure.
* @param cq
* Completion queue to associate with QP.
* @param desc
* Number of descriptors in QP (hint only).
* @param parent
* If nonzero, create a parent QP, otherwise a child.
*
* @return
* QP pointer or NULL in case of error.
*/
static struct ibv_qp *
rxq_setup_qp_rss(struct priv *priv, struct ibv_cq *cq, uint16_t desc,
int parent, struct ibv_exp_res_domain *rd)
{
struct ibv_exp_qp_init_attr attr = {
/* CQ to be associated with the send queue. */
.send_cq = cq,
/* CQ to be associated with the receive queue. */
.recv_cq = cq,
.cap = {
/* Max number of outstanding WRs. */
.max_recv_wr = ((priv->device_attr.max_qp_wr < desc) ?
priv->device_attr.max_qp_wr :
desc),
/* Max number of scatter/gather elements in a WR. */
.max_recv_sge = ((priv->device_attr.max_sge <
MLX4_PMD_SGE_WR_N) ?
priv->device_attr.max_sge :
MLX4_PMD_SGE_WR_N),
},
.qp_type = IBV_QPT_RAW_PACKET,
.comp_mask = (IBV_EXP_QP_INIT_ATTR_PD |
IBV_EXP_QP_INIT_ATTR_RES_DOMAIN |
IBV_EXP_QP_INIT_ATTR_QPG),
.pd = priv->pd,
.res_domain = rd,
};
#ifdef INLINE_RECV
attr.max_inl_recv = priv->inl_recv_size,
attr.comp_mask |= IBV_EXP_QP_INIT_ATTR_INL_RECV;
#endif
if (parent) {
attr.qpg.qpg_type = IBV_EXP_QPG_PARENT;
/* TSS isn't necessary. */
attr.qpg.parent_attrib.tss_child_count = 0;
attr.qpg.parent_attrib.rss_child_count =
rte_align32pow2(priv->rxqs_n + 1) >> 1;
DEBUG("initializing parent RSS queue");
} else {
attr.qpg.qpg_type = IBV_EXP_QPG_CHILD_RX;
attr.qpg.qpg_parent = priv->rxq_parent.qp;
DEBUG("initializing child RSS queue");
}
return ibv_exp_create_qp(priv->ctx, &attr);
}
#endif /* RSS_SUPPORT */
/**
* Reconfigure a RX queue with new parameters.
*
* rxq_rehash() does not allocate mbufs, which, if not done from the right
* thread (such as a control thread), may corrupt the pool.
* In case of failure, the queue is left untouched.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq
* RX queue pointer.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_rehash(struct rte_eth_dev *dev, struct rxq *rxq)
{
struct priv *priv = rxq->priv;
struct rxq tmpl = *rxq;
unsigned int mbuf_n;
unsigned int desc_n;
struct rte_mbuf **pool;
unsigned int i, k;
struct ibv_exp_qp_attr mod;
struct ibv_recv_wr *bad_wr;
unsigned int mb_len;
int err;
int parent = (rxq == &priv->rxq_parent);
if (parent) {
ERROR("%p: cannot rehash parent queue %p",
(void *)dev, (void *)rxq);
return EINVAL;
}
mb_len = rte_pktmbuf_data_room_size(rxq->mp);
DEBUG("%p: rehashing queue %p", (void *)dev, (void *)rxq);
/* Number of descriptors and mbufs currently allocated. */
desc_n = (tmpl.elts_n * (tmpl.sp ? MLX4_PMD_SGE_WR_N : 1));
mbuf_n = desc_n;
/* Toggle RX checksum offload if hardware supports it. */
if (priv->hw_csum) {
tmpl.csum = !!dev->data->dev_conf.rxmode.hw_ip_checksum;
rxq->csum = tmpl.csum;
}
if (priv->hw_csum_l2tun) {
tmpl.csum_l2tun = !!dev->data->dev_conf.rxmode.hw_ip_checksum;
rxq->csum_l2tun = tmpl.csum_l2tun;
}
/* Enable scattered packets support for this queue if necessary. */
assert(mb_len >= RTE_PKTMBUF_HEADROOM);
if ((dev->data->dev_conf.rxmode.jumbo_frame) &&
(dev->data->dev_conf.rxmode.max_rx_pkt_len >
(mb_len - RTE_PKTMBUF_HEADROOM))) {
tmpl.sp = 1;
desc_n /= MLX4_PMD_SGE_WR_N;
} else
tmpl.sp = 0;
DEBUG("%p: %s scattered packets support (%u WRs)",
(void *)dev, (tmpl.sp ? "enabling" : "disabling"), desc_n);
/* If scatter mode is the same as before, nothing to do. */
if (tmpl.sp == rxq->sp) {
DEBUG("%p: nothing to do", (void *)dev);
return 0;
}
/* Remove attached flows if RSS is disabled (no parent queue). */
if (!priv->rss) {
rxq_allmulticast_disable(&tmpl);
rxq_promiscuous_disable(&tmpl);
rxq_mac_addrs_del(&tmpl);
/* Update original queue in case of failure. */
rxq->allmulti_flow = tmpl.allmulti_flow;
rxq->promisc_flow = tmpl.promisc_flow;
memcpy(rxq->mac_configured, tmpl.mac_configured,
sizeof(rxq->mac_configured));
memcpy(rxq->mac_flow, tmpl.mac_flow, sizeof(rxq->mac_flow));
}
/* From now on, any failure will render the queue unusable.
* Reinitialize QP. */
mod = (struct ibv_exp_qp_attr){ .qp_state = IBV_QPS_RESET };
err = ibv_exp_modify_qp(tmpl.qp, &mod, IBV_EXP_QP_STATE);
if (err) {
ERROR("%p: cannot reset QP: %s", (void *)dev, strerror(err));
assert(err > 0);
return err;
}
err = ibv_resize_cq(tmpl.cq, desc_n);
if (err) {
ERROR("%p: cannot resize CQ: %s", (void *)dev, strerror(err));
assert(err > 0);
return err;
}
mod = (struct ibv_exp_qp_attr){
/* Move the QP to this state. */
.qp_state = IBV_QPS_INIT,
/* Primary port number. */
.port_num = priv->port
};
err = ibv_exp_modify_qp(tmpl.qp, &mod,
(IBV_EXP_QP_STATE |
#ifdef RSS_SUPPORT
(parent ? IBV_EXP_QP_GROUP_RSS : 0) |
#endif /* RSS_SUPPORT */
IBV_EXP_QP_PORT));
if (err) {
ERROR("%p: QP state to IBV_QPS_INIT failed: %s",
(void *)dev, strerror(err));
assert(err > 0);
return err;
};
/* Reconfigure flows. Do not care for errors. */
if (!priv->rss) {
rxq_mac_addrs_add(&tmpl);
if (priv->promisc)
rxq_promiscuous_enable(&tmpl);
if (priv->allmulti)
rxq_allmulticast_enable(&tmpl);
/* Update original queue in case of failure. */
rxq->allmulti_flow = tmpl.allmulti_flow;
rxq->promisc_flow = tmpl.promisc_flow;
memcpy(rxq->mac_configured, tmpl.mac_configured,
sizeof(rxq->mac_configured));
memcpy(rxq->mac_flow, tmpl.mac_flow, sizeof(rxq->mac_flow));
}
/* Allocate pool. */
pool = rte_malloc(__func__, (mbuf_n * sizeof(*pool)), 0);
if (pool == NULL) {
ERROR("%p: cannot allocate memory", (void *)dev);
return ENOBUFS;
}
/* Snatch mbufs from original queue. */
k = 0;
if (rxq->sp) {
struct rxq_elt_sp (*elts)[rxq->elts_n] = rxq->elts.sp;
for (i = 0; (i != elemof(*elts)); ++i) {
struct rxq_elt_sp *elt = &(*elts)[i];
unsigned int j;
for (j = 0; (j != elemof(elt->bufs)); ++j) {
assert(elt->bufs[j] != NULL);
pool[k++] = elt->bufs[j];
}
}
} else {
struct rxq_elt (*elts)[rxq->elts_n] = rxq->elts.no_sp;
for (i = 0; (i != elemof(*elts)); ++i) {
struct rxq_elt *elt = &(*elts)[i];
struct rte_mbuf *buf = (void *)
((uintptr_t)elt->sge.addr -
WR_ID(elt->wr.wr_id).offset);
assert(WR_ID(elt->wr.wr_id).id == i);
pool[k++] = buf;
}
}
assert(k == mbuf_n);
tmpl.elts_n = 0;
tmpl.elts.sp = NULL;
assert((void *)&tmpl.elts.sp == (void *)&tmpl.elts.no_sp);
err = ((tmpl.sp) ?
rxq_alloc_elts_sp(&tmpl, desc_n, pool) :
rxq_alloc_elts(&tmpl, desc_n, pool));
if (err) {
ERROR("%p: cannot reallocate WRs, aborting", (void *)dev);
rte_free(pool);
assert(err > 0);
return err;
}
assert(tmpl.elts_n == desc_n);
assert(tmpl.elts.sp != NULL);
rte_free(pool);
/* Clean up original data. */
rxq->elts_n = 0;
rte_free(rxq->elts.sp);
rxq->elts.sp = NULL;
/* Post WRs. */
err = ibv_post_recv(tmpl.qp,
(tmpl.sp ?
&(*tmpl.elts.sp)[0].wr :
&(*tmpl.elts.no_sp)[0].wr),
&bad_wr);
if (err) {
ERROR("%p: ibv_post_recv() failed for WR %p: %s",
(void *)dev,
(void *)bad_wr,
strerror(err));
goto skip_rtr;
}
mod = (struct ibv_exp_qp_attr){
.qp_state = IBV_QPS_RTR
};
err = ibv_exp_modify_qp(tmpl.qp, &mod, IBV_EXP_QP_STATE);
if (err)
ERROR("%p: QP state to IBV_QPS_RTR failed: %s",
(void *)dev, strerror(err));
skip_rtr:
*rxq = tmpl;
assert(err >= 0);
return err;
}
/**
* Configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq
* Pointer to RX queue structure.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param inactive
* If true, the queue is disabled because its index is higher or
* equal to the real number of queues, which must be a power of 2.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_setup(struct rte_eth_dev *dev, struct rxq *rxq, uint16_t desc,
unsigned int socket, int inactive, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq tmpl = {
.priv = priv,
.mp = mp,
.socket = socket
};
struct ibv_exp_qp_attr mod;
union {
struct ibv_exp_query_intf_params params;
struct ibv_exp_cq_init_attr cq;
struct ibv_exp_res_domain_init_attr rd;
} attr;
enum ibv_exp_query_intf_status status;
struct ibv_recv_wr *bad_wr;
unsigned int mb_len;
int ret = 0;
int parent = (rxq == &priv->rxq_parent);
(void)conf; /* Thresholds configuration (ignored). */
/*
* If this is a parent queue, hardware must support RSS and
* RSS must be enabled.
*/
assert((!parent) || ((priv->hw_rss) && (priv->rss)));
if (parent) {
/* Even if unused, ibv_create_cq() requires at least one
* descriptor. */
desc = 1;
goto skip_mr;
}
mb_len = rte_pktmbuf_data_room_size(mp);
if ((desc == 0) || (desc % MLX4_PMD_SGE_WR_N)) {
ERROR("%p: invalid number of RX descriptors (must be a"
" multiple of %d)", (void *)dev, MLX4_PMD_SGE_WR_N);
return EINVAL;
}
/* Toggle RX checksum offload if hardware supports it. */
if (priv->hw_csum)
tmpl.csum = !!dev->data->dev_conf.rxmode.hw_ip_checksum;
if (priv->hw_csum_l2tun)
tmpl.csum_l2tun = !!dev->data->dev_conf.rxmode.hw_ip_checksum;
/* Enable scattered packets support for this queue if necessary. */
assert(mb_len >= RTE_PKTMBUF_HEADROOM);
if ((dev->data->dev_conf.rxmode.jumbo_frame) &&
(dev->data->dev_conf.rxmode.max_rx_pkt_len >
(mb_len - RTE_PKTMBUF_HEADROOM))) {
tmpl.sp = 1;
desc /= MLX4_PMD_SGE_WR_N;
}
DEBUG("%p: %s scattered packets support (%u WRs)",
(void *)dev, (tmpl.sp ? "enabling" : "disabling"), desc);
/* Use the entire RX mempool as the memory region. */
tmpl.mr = mlx4_mp2mr(priv->pd, mp);
if (tmpl.mr == NULL) {
ret = EINVAL;
ERROR("%p: MR creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
skip_mr:
attr.rd = (struct ibv_exp_res_domain_init_attr){
.comp_mask = (IBV_EXP_RES_DOMAIN_THREAD_MODEL |
IBV_EXP_RES_DOMAIN_MSG_MODEL),
.thread_model = IBV_EXP_THREAD_SINGLE,
.msg_model = IBV_EXP_MSG_HIGH_BW,
};
tmpl.rd = ibv_exp_create_res_domain(priv->ctx, &attr.rd);
if (tmpl.rd == NULL) {
ret = ENOMEM;
ERROR("%p: RD creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
attr.cq = (struct ibv_exp_cq_init_attr){
.comp_mask = IBV_EXP_CQ_INIT_ATTR_RES_DOMAIN,
.res_domain = tmpl.rd,
};
tmpl.cq = ibv_exp_create_cq(priv->ctx, desc, NULL, NULL, 0, &attr.cq);
if (tmpl.cq == NULL) {
ret = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
DEBUG("priv->device_attr.max_qp_wr is %d",
priv->device_attr.max_qp_wr);
DEBUG("priv->device_attr.max_sge is %d",
priv->device_attr.max_sge);
#ifdef RSS_SUPPORT
if (priv->rss && !inactive)
tmpl.qp = rxq_setup_qp_rss(priv, tmpl.cq, desc, parent,
tmpl.rd);
else
#endif /* RSS_SUPPORT */
tmpl.qp = rxq_setup_qp(priv, tmpl.cq, desc, tmpl.rd);
if (tmpl.qp == NULL) {
ret = (errno ? errno : EINVAL);
ERROR("%p: QP creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
mod = (struct ibv_exp_qp_attr){
/* Move the QP to this state. */
.qp_state = IBV_QPS_INIT,
/* Primary port number. */
.port_num = priv->port
};
ret = ibv_exp_modify_qp(tmpl.qp, &mod,
(IBV_EXP_QP_STATE |
#ifdef RSS_SUPPORT
(parent ? IBV_EXP_QP_GROUP_RSS : 0) |
#endif /* RSS_SUPPORT */
IBV_EXP_QP_PORT));
if (ret) {
ERROR("%p: QP state to IBV_QPS_INIT failed: %s",
(void *)dev, strerror(ret));
goto error;
}
if ((parent) || (!priv->rss)) {
/* Configure MAC and broadcast addresses. */
ret = rxq_mac_addrs_add(&tmpl);
if (ret) {
ERROR("%p: QP flow attachment failed: %s",
(void *)dev, strerror(ret));
goto error;
}
}
/* Allocate descriptors for RX queues, except for the RSS parent. */
if (parent)
goto skip_alloc;
if (tmpl.sp)
ret = rxq_alloc_elts_sp(&tmpl, desc, NULL);
else
ret = rxq_alloc_elts(&tmpl, desc, NULL);
if (ret) {
ERROR("%p: RXQ allocation failed: %s",
(void *)dev, strerror(ret));
goto error;
}
ret = ibv_post_recv(tmpl.qp,
(tmpl.sp ?
&(*tmpl.elts.sp)[0].wr :
&(*tmpl.elts.no_sp)[0].wr),
&bad_wr);
if (ret) {
ERROR("%p: ibv_post_recv() failed for WR %p: %s",
(void *)dev,
(void *)bad_wr,
strerror(ret));
goto error;
}
skip_alloc:
mod = (struct ibv_exp_qp_attr){
.qp_state = IBV_QPS_RTR
};
ret = ibv_exp_modify_qp(tmpl.qp, &mod, IBV_EXP_QP_STATE);
if (ret) {
ERROR("%p: QP state to IBV_QPS_RTR failed: %s",
(void *)dev, strerror(ret));
goto error;
}
/* Save port ID. */
tmpl.port_id = dev->data->port_id;
DEBUG("%p: RTE port ID: %u", (void *)rxq, tmpl.port_id);
attr.params = (struct ibv_exp_query_intf_params){
.intf_scope = IBV_EXP_INTF_GLOBAL,
.intf = IBV_EXP_INTF_CQ,
.obj = tmpl.cq,
};
tmpl.if_cq = ibv_exp_query_intf(priv->ctx, &attr.params, &status);
if (tmpl.if_cq == NULL) {
ERROR("%p: CQ interface family query failed with status %d",
(void *)dev, status);
goto error;
}
attr.params = (struct ibv_exp_query_intf_params){
.intf_scope = IBV_EXP_INTF_GLOBAL,
.intf = IBV_EXP_INTF_QP_BURST,
.obj = tmpl.qp,
};
tmpl.if_qp = ibv_exp_query_intf(priv->ctx, &attr.params, &status);
if (tmpl.if_qp == NULL) {
ERROR("%p: QP interface family query failed with status %d",
(void *)dev, status);
goto error;
}
/* Clean up rxq in case we're reinitializing it. */
DEBUG("%p: cleaning-up old rxq just in case", (void *)rxq);
rxq_cleanup(rxq);
*rxq = tmpl;
DEBUG("%p: rxq updated with %p", (void *)rxq, (void *)&tmpl);
assert(ret == 0);
return 0;
error:
rxq_cleanup(&tmpl);
assert(ret > 0);
return ret;
}
/**
* DPDK callback to configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq *rxq = (*priv->rxqs)[idx];
int inactive = 0;
int ret;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= priv->rxqs_n) {
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, priv->rxqs_n);
priv_unlock(priv);
return -EOVERFLOW;
}
if (rxq != NULL) {
DEBUG("%p: reusing already allocated queue index %u (%p)",
(void *)dev, idx, (void *)rxq);
if (priv->started) {
priv_unlock(priv);
return -EEXIST;
}
(*priv->rxqs)[idx] = NULL;
rxq_cleanup(rxq);
} else {
rxq = rte_calloc_socket("RXQ", 1, sizeof(*rxq), 0, socket);
if (rxq == NULL) {
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
priv_unlock(priv);
return -ENOMEM;
}
}
if (idx >= rte_align32pow2(priv->rxqs_n + 1) >> 1)
inactive = 1;
ret = rxq_setup(dev, rxq, desc, socket, inactive, conf, mp);
if (ret)
rte_free(rxq);
else {
rxq->stats.idx = idx;
DEBUG("%p: adding RX queue %p to list",
(void *)dev, (void *)rxq);
(*priv->rxqs)[idx] = rxq;
/* Update receive callback. */
if (rxq->sp)
dev->rx_pkt_burst = mlx4_rx_burst_sp;
else
dev->rx_pkt_burst = mlx4_rx_burst;
}
priv_unlock(priv);
return -ret;
}
/**
* DPDK callback to release a RX queue.
*
* @param dpdk_rxq
* Generic RX queue pointer.
*/
static void
mlx4_rx_queue_release(void *dpdk_rxq)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct priv *priv;
unsigned int i;
if (mlx4_is_secondary())
return;
if (rxq == NULL)
return;
priv = rxq->priv;
priv_lock(priv);
assert(rxq != &priv->rxq_parent);
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] == rxq) {
DEBUG("%p: removing RX queue %p from list",
(void *)priv->dev, (void *)rxq);
(*priv->rxqs)[i] = NULL;
break;
}
rxq_cleanup(rxq);
rte_free(rxq);
priv_unlock(priv);
}
static void
priv_dev_interrupt_handler_install(struct priv *, struct rte_eth_dev *);
/**
* DPDK callback to start the device.
*
* Simulate device start by attaching all configured flows.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_dev_start(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i = 0;
unsigned int r;
struct rxq *rxq;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
if (priv->started) {
priv_unlock(priv);
return 0;
}
DEBUG("%p: attaching configured flows to all RX queues", (void *)dev);
priv->started = 1;
if (priv->rss) {
rxq = &priv->rxq_parent;
r = 1;
} else {
rxq = (*priv->rxqs)[0];
r = priv->rxqs_n;
}
/* Iterate only once when RSS is enabled. */
do {
int ret;
/* Ignore nonexistent RX queues. */
if (rxq == NULL)
continue;
ret = rxq_mac_addrs_add(rxq);
if (!ret && priv->promisc)
ret = rxq_promiscuous_enable(rxq);
if (!ret && priv->allmulti)
ret = rxq_allmulticast_enable(rxq);
if (!ret)
continue;
WARN("%p: QP flow attachment failed: %s",
(void *)dev, strerror(ret));
/* Rollback. */
while (i != 0) {
rxq = (*priv->rxqs)[--i];
if (rxq != NULL) {
rxq_allmulticast_disable(rxq);
rxq_promiscuous_disable(rxq);
rxq_mac_addrs_del(rxq);
}
}
priv->started = 0;
priv_unlock(priv);
return -ret;
} while ((--r) && ((rxq = (*priv->rxqs)[++i]), i));
priv_dev_interrupt_handler_install(priv, dev);
priv_unlock(priv);
return 0;
}
/**
* DPDK callback to stop the device.
*
* Simulate device stop by detaching all configured flows.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_dev_stop(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i = 0;
unsigned int r;
struct rxq *rxq;
if (mlx4_is_secondary())
return;
priv_lock(priv);
if (!priv->started) {
priv_unlock(priv);
return;
}
DEBUG("%p: detaching flows from all RX queues", (void *)dev);
priv->started = 0;
if (priv->rss) {
rxq = &priv->rxq_parent;
r = 1;
} else {
rxq = (*priv->rxqs)[0];
r = priv->rxqs_n;
}
/* Iterate only once when RSS is enabled. */
do {
/* Ignore nonexistent RX queues. */
if (rxq == NULL)
continue;
rxq_allmulticast_disable(rxq);
rxq_promiscuous_disable(rxq);
rxq_mac_addrs_del(rxq);
} while ((--r) && ((rxq = (*priv->rxqs)[++i]), i));
priv_unlock(priv);
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static uint16_t
removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
static uint16_t
removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}
static void
priv_dev_interrupt_handler_uninstall(struct priv *, struct rte_eth_dev *);
/**
* DPDK callback to close the device.
*
* Destroy all queues and objects, free memory.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_dev_close(struct rte_eth_dev *dev)
{
struct priv *priv = mlx4_get_priv(dev);
void *tmp;
unsigned int i;
if (priv == NULL)
return;
priv_lock(priv);
DEBUG("%p: closing device \"%s\"",
(void *)dev,
((priv->ctx != NULL) ? priv->ctx->device->name : ""));
/* Prevent crashes when queues are still in use. This is unfortunately
* still required for DPDK 1.3 because some programs (such as testpmd)
* never release them before closing the device. */
dev->rx_pkt_burst = removed_rx_burst;
dev->tx_pkt_burst = removed_tx_burst;
if (priv->rxqs != NULL) {
/* XXX race condition if mlx4_rx_burst() is still running. */
usleep(1000);
for (i = 0; (i != priv->rxqs_n); ++i) {
tmp = (*priv->rxqs)[i];
if (tmp == NULL)
continue;
(*priv->rxqs)[i] = NULL;
rxq_cleanup(tmp);
rte_free(tmp);
}
priv->rxqs_n = 0;
priv->rxqs = NULL;
}
if (priv->txqs != NULL) {
/* XXX race condition if mlx4_tx_burst() is still running. */
usleep(1000);
for (i = 0; (i != priv->txqs_n); ++i) {
tmp = (*priv->txqs)[i];
if (tmp == NULL)
continue;
(*priv->txqs)[i] = NULL;
txq_cleanup(tmp);
rte_free(tmp);
}
priv->txqs_n = 0;
priv->txqs = NULL;
}
if (priv->rss)
rxq_cleanup(&priv->rxq_parent);
if (priv->pd != NULL) {
assert(priv->ctx != NULL);
claim_zero(ibv_dealloc_pd(priv->pd));
claim_zero(ibv_close_device(priv->ctx));
} else
assert(priv->ctx == NULL);
priv_dev_interrupt_handler_uninstall(priv, dev);
priv_unlock(priv);
memset(priv, 0, sizeof(*priv));
}
/**
* Change the link state (UP / DOWN).
*
* @param priv
* Pointer to Ethernet device private data.
* @param up
* Nonzero for link up, otherwise link down.
*
* @return
* 0 on success, errno value on failure.
*/
static int
priv_set_link(struct priv *priv, int up)
{
struct rte_eth_dev *dev = priv->dev;
int err;
unsigned int i;
if (up) {
err = priv_set_flags(priv, ~IFF_UP, IFF_UP);
if (err)
return err;
for (i = 0; i < priv->rxqs_n; i++)
if ((*priv->rxqs)[i]->sp)
break;
/* Check if an sp queue exists.
* Note: Some old frames might be received.
*/
if (i == priv->rxqs_n)
dev->rx_pkt_burst = mlx4_rx_burst;
else
dev->rx_pkt_burst = mlx4_rx_burst_sp;
dev->tx_pkt_burst = mlx4_tx_burst;
} else {
err = priv_set_flags(priv, ~IFF_UP, ~IFF_UP);
if (err)
return err;
dev->rx_pkt_burst = removed_rx_burst;
dev->tx_pkt_burst = removed_tx_burst;
}
return 0;
}
/**
* DPDK callback to bring the link DOWN.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, errno value on failure.
*/
static int
mlx4_set_link_down(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
int err;
priv_lock(priv);
err = priv_set_link(priv, 0);
priv_unlock(priv);
return err;
}
/**
* DPDK callback to bring the link UP.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, errno value on failure.
*/
static int
mlx4_set_link_up(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
int err;
priv_lock(priv);
err = priv_set_link(priv, 1);
priv_unlock(priv);
return err;
}
/**
* DPDK callback to get information about the device.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] info
* Info structure output buffer.
*/
static void
mlx4_dev_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *info)
{
struct priv *priv = mlx4_get_priv(dev);
unsigned int max;
char ifname[IF_NAMESIZE];
info->pci_dev = RTE_DEV_TO_PCI(dev->device);
if (priv == NULL)
return;
priv_lock(priv);
/* FIXME: we should ask the device for these values. */
info->min_rx_bufsize = 32;
info->max_rx_pktlen = 65536;
/*
* Since we need one CQ per QP, the limit is the minimum number
* between the two values.
*/
max = ((priv->device_attr.max_cq > priv->device_attr.max_qp) ?
priv->device_attr.max_qp : priv->device_attr.max_cq);
/* If max >= 65535 then max = 0, max_rx_queues is uint16_t. */
if (max >= 65535)
max = 65535;
info->max_rx_queues = max;
info->max_tx_queues = max;
/* Last array entry is reserved for broadcast. */
info->max_mac_addrs = (elemof(priv->mac) - 1);
info->rx_offload_capa =
(priv->hw_csum ?
(DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM) :
0);
info->tx_offload_capa =
(priv->hw_csum ?
(DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM) :
0);
if (priv_get_ifname(priv, &ifname) == 0)
info->if_index = if_nametoindex(ifname);
info->speed_capa =
ETH_LINK_SPEED_1G |
ETH_LINK_SPEED_10G |
ETH_LINK_SPEED_20G |
ETH_LINK_SPEED_40G |
ETH_LINK_SPEED_56G;
priv_unlock(priv);
}
static const uint32_t *
mlx4_dev_supported_ptypes_get(struct rte_eth_dev *dev)
{
static const uint32_t ptypes[] = {
/* refers to rxq_cq_to_pkt_type() */
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_UNKNOWN
};
if (dev->rx_pkt_burst == mlx4_rx_burst ||
dev->rx_pkt_burst == mlx4_rx_burst_sp)
return ptypes;
return NULL;
}
/**
* DPDK callback to get device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] stats
* Stats structure output buffer.
*/
static void
mlx4_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct priv *priv = mlx4_get_priv(dev);
struct rte_eth_stats tmp = {0};
unsigned int i;
unsigned int idx;
if (priv == NULL)
return;
priv_lock(priv);
/* Add software counters. */
for (i = 0; (i != priv->rxqs_n); ++i) {
struct rxq *rxq = (*priv->rxqs)[i];
if (rxq == NULL)
continue;
idx = rxq->stats.idx;
if (idx < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
#ifdef MLX4_PMD_SOFT_COUNTERS
tmp.q_ipackets[idx] += rxq->stats.ipackets;
tmp.q_ibytes[idx] += rxq->stats.ibytes;
#endif
tmp.q_errors[idx] += (rxq->stats.idropped +
rxq->stats.rx_nombuf);
}
#ifdef MLX4_PMD_SOFT_COUNTERS
tmp.ipackets += rxq->stats.ipackets;
tmp.ibytes += rxq->stats.ibytes;
#endif
tmp.ierrors += rxq->stats.idropped;
tmp.rx_nombuf += rxq->stats.rx_nombuf;
}
for (i = 0; (i != priv->txqs_n); ++i) {
struct txq *txq = (*priv->txqs)[i];
if (txq == NULL)
continue;
idx = txq->stats.idx;
if (idx < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
#ifdef MLX4_PMD_SOFT_COUNTERS
tmp.q_opackets[idx] += txq->stats.opackets;
tmp.q_obytes[idx] += txq->stats.obytes;
#endif
tmp.q_errors[idx] += txq->stats.odropped;
}
#ifdef MLX4_PMD_SOFT_COUNTERS
tmp.opackets += txq->stats.opackets;
tmp.obytes += txq->stats.obytes;
#endif
tmp.oerrors += txq->stats.odropped;
}
#ifndef MLX4_PMD_SOFT_COUNTERS
/* FIXME: retrieve and add hardware counters. */
#endif
*stats = tmp;
priv_unlock(priv);
}
/**
* DPDK callback to clear device statistics.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_stats_reset(struct rte_eth_dev *dev)
{
struct priv *priv = mlx4_get_priv(dev);
unsigned int i;
unsigned int idx;
if (priv == NULL)
return;
priv_lock(priv);
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
idx = (*priv->rxqs)[i]->stats.idx;
(*priv->rxqs)[i]->stats =
(struct mlx4_rxq_stats){ .idx = idx };
}
for (i = 0; (i != priv->txqs_n); ++i) {
if ((*priv->txqs)[i] == NULL)
continue;
idx = (*priv->txqs)[i]->stats.idx;
(*priv->txqs)[i]->stats =
(struct mlx4_txq_stats){ .idx = idx };
}
#ifndef MLX4_PMD_SOFT_COUNTERS
/* FIXME: reset hardware counters. */
#endif
priv_unlock(priv);
}
/**
* DPDK callback to remove a MAC address.
*
* @param dev
* Pointer to Ethernet device structure.
* @param index
* MAC address index.
*/
static void
mlx4_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct priv *priv = dev->data->dev_private;
if (mlx4_is_secondary())
return;
priv_lock(priv);
DEBUG("%p: removing MAC address from index %" PRIu32,
(void *)dev, index);
/* Last array entry is reserved for broadcast. */
if (index >= (elemof(priv->mac) - 1))
goto end;
priv_mac_addr_del(priv, index);
end:
priv_unlock(priv);
}
/**
* DPDK callback to add a MAC address.
*
* @param dev
* Pointer to Ethernet device structure.
* @param mac_addr
* MAC address to register.
* @param index
* MAC address index.
* @param vmdq
* VMDq pool index to associate address with (ignored).
*/
static void
mlx4_mac_addr_add(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, uint32_t vmdq)
{
struct priv *priv = dev->data->dev_private;
if (mlx4_is_secondary())
return;
(void)vmdq;
priv_lock(priv);
DEBUG("%p: adding MAC address at index %" PRIu32,
(void *)dev, index);
/* Last array entry is reserved for broadcast. */
if (index >= (elemof(priv->mac) - 1))
goto end;
priv_mac_addr_add(priv, index,
(const uint8_t (*)[ETHER_ADDR_LEN])
mac_addr->addr_bytes);
end:
priv_unlock(priv);
}
/**
* DPDK callback to set the primary MAC address.
*
* @param dev
* Pointer to Ethernet device structure.
* @param mac_addr
* MAC address to register.
*/
static void
mlx4_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
{
DEBUG("%p: setting primary MAC address", (void *)dev);
mlx4_mac_addr_remove(dev, 0);
mlx4_mac_addr_add(dev, mac_addr, 0, 0);
}
/**
* DPDK callback to enable promiscuous mode.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_promiscuous_enable(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
int ret;
if (mlx4_is_secondary())
return;
priv_lock(priv);
if (priv->promisc) {
priv_unlock(priv);
return;
}
/* If device isn't started, this is all we need to do. */
if (!priv->started)
goto end;
if (priv->rss) {
ret = rxq_promiscuous_enable(&priv->rxq_parent);
if (ret) {
priv_unlock(priv);
return;
}
goto end;
}
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
ret = rxq_promiscuous_enable((*priv->rxqs)[i]);
if (!ret)
continue;
/* Failure, rollback. */
while (i != 0)
if ((*priv->rxqs)[--i] != NULL)
rxq_promiscuous_disable((*priv->rxqs)[i]);
priv_unlock(priv);
return;
}
end:
priv->promisc = 1;
priv_unlock(priv);
}
/**
* DPDK callback to disable promiscuous mode.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_promiscuous_disable(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
if (mlx4_is_secondary())
return;
priv_lock(priv);
if (!priv->promisc) {
priv_unlock(priv);
return;
}
if (priv->rss) {
rxq_promiscuous_disable(&priv->rxq_parent);
goto end;
}
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] != NULL)
rxq_promiscuous_disable((*priv->rxqs)[i]);
end:
priv->promisc = 0;
priv_unlock(priv);
}
/**
* DPDK callback to enable allmulti mode.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_allmulticast_enable(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
int ret;
if (mlx4_is_secondary())
return;
priv_lock(priv);
if (priv->allmulti) {
priv_unlock(priv);
return;
}
/* If device isn't started, this is all we need to do. */
if (!priv->started)
goto end;
if (priv->rss) {
ret = rxq_allmulticast_enable(&priv->rxq_parent);
if (ret) {
priv_unlock(priv);
return;
}
goto end;
}
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
ret = rxq_allmulticast_enable((*priv->rxqs)[i]);
if (!ret)
continue;
/* Failure, rollback. */
while (i != 0)
if ((*priv->rxqs)[--i] != NULL)
rxq_allmulticast_disable((*priv->rxqs)[i]);
priv_unlock(priv);
return;
}
end:
priv->allmulti = 1;
priv_unlock(priv);
}
/**
* DPDK callback to disable allmulti mode.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx4_allmulticast_disable(struct rte_eth_dev *dev)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
if (mlx4_is_secondary())
return;
priv_lock(priv);
if (!priv->allmulti) {
priv_unlock(priv);
return;
}
if (priv->rss) {
rxq_allmulticast_disable(&priv->rxq_parent);
goto end;
}
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] != NULL)
rxq_allmulticast_disable((*priv->rxqs)[i]);
end:
priv->allmulti = 0;
priv_unlock(priv);
}
/**
* DPDK callback to retrieve physical link information.
*
* @param dev
* Pointer to Ethernet device structure.
* @param wait_to_complete
* Wait for request completion (ignored).
*/
static int
mlx4_link_update(struct rte_eth_dev *dev, int wait_to_complete)
{
const struct priv *priv = mlx4_get_priv(dev);
struct ethtool_cmd edata = {
.cmd = ETHTOOL_GSET
};
struct ifreq ifr;
struct rte_eth_link dev_link;
int link_speed = 0;
/* priv_lock() is not taken to allow concurrent calls. */
if (priv == NULL)
return -EINVAL;
(void)wait_to_complete;
if (priv_ifreq(priv, SIOCGIFFLAGS, &ifr)) {
WARN("ioctl(SIOCGIFFLAGS) failed: %s", strerror(errno));
return -1;
}
memset(&dev_link, 0, sizeof(dev_link));
dev_link.link_status = ((ifr.ifr_flags & IFF_UP) &&
(ifr.ifr_flags & IFF_RUNNING));
ifr.ifr_data = (void *)&edata;
if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) {
WARN("ioctl(SIOCETHTOOL, ETHTOOL_GSET) failed: %s",
strerror(errno));
return -1;
}
link_speed = ethtool_cmd_speed(&edata);
if (link_speed == -1)
dev_link.link_speed = 0;
else
dev_link.link_speed = link_speed;
dev_link.link_duplex = ((edata.duplex == DUPLEX_HALF) ?
ETH_LINK_HALF_DUPLEX : ETH_LINK_FULL_DUPLEX);
dev_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
ETH_LINK_SPEED_FIXED);
if (memcmp(&dev_link, &dev->data->dev_link, sizeof(dev_link))) {
/* Link status changed. */
dev->data->dev_link = dev_link;
return 0;
}
/* Link status is still the same. */
return -1;
}
/**
* DPDK callback to change the MTU.
*
* Setting the MTU affects hardware MRU (packets larger than the MTU cannot be
* received). Use this as a hint to enable/disable scattered packets support
* and improve performance when not needed.
* Since failure is not an option, reconfiguring queues on the fly is not
* recommended.
*
* @param dev
* Pointer to Ethernet device structure.
* @param in_mtu
* New MTU.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_dev_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct priv *priv = dev->data->dev_private;
int ret = 0;
unsigned int i;
uint16_t (*rx_func)(void *, struct rte_mbuf **, uint16_t) =
mlx4_rx_burst;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
/* Set kernel interface MTU first. */
if (priv_set_mtu(priv, mtu)) {
ret = errno;
WARN("cannot set port %u MTU to %u: %s", priv->port, mtu,
strerror(ret));
goto out;
} else
DEBUG("adapter port %u MTU set to %u", priv->port, mtu);
priv->mtu = mtu;
/* Temporarily replace RX handler with a fake one, assuming it has not
* been copied elsewhere. */
dev->rx_pkt_burst = removed_rx_burst;
/* Make sure everyone has left mlx4_rx_burst() and uses
* removed_rx_burst() instead. */
rte_wmb();
usleep(1000);
/* Reconfigure each RX queue. */
for (i = 0; (i != priv->rxqs_n); ++i) {
struct rxq *rxq = (*priv->rxqs)[i];
unsigned int mb_len;
unsigned int max_frame_len;
int sp;
if (rxq == NULL)
continue;
/* Calculate new maximum frame length according to MTU and
* toggle scattered support (sp) if necessary. */
max_frame_len = (priv->mtu + ETHER_HDR_LEN +
(ETHER_MAX_VLAN_FRAME_LEN - ETHER_MAX_LEN));
mb_len = rte_pktmbuf_data_room_size(rxq->mp);
assert(mb_len >= RTE_PKTMBUF_HEADROOM);
sp = (max_frame_len > (mb_len - RTE_PKTMBUF_HEADROOM));
/* Provide new values to rxq_setup(). */
dev->data->dev_conf.rxmode.jumbo_frame = sp;
dev->data->dev_conf.rxmode.max_rx_pkt_len = max_frame_len;
ret = rxq_rehash(dev, rxq);
if (ret) {
/* Force SP RX if that queue requires it and abort. */
if (rxq->sp)
rx_func = mlx4_rx_burst_sp;
break;
}
/* Reenable non-RSS queue attributes. No need to check
* for errors at this stage. */
if (!priv->rss) {
rxq_mac_addrs_add(rxq);
if (priv->promisc)
rxq_promiscuous_enable(rxq);
if (priv->allmulti)
rxq_allmulticast_enable(rxq);
}
/* Scattered burst function takes priority. */
if (rxq->sp)
rx_func = mlx4_rx_burst_sp;
}
/* Burst functions can now be called again. */
rte_wmb();
dev->rx_pkt_burst = rx_func;
out:
priv_unlock(priv);
assert(ret >= 0);
return -ret;
}
/**
* DPDK callback to get flow control status.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] fc_conf
* Flow control output buffer.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_dev_get_flow_ctrl(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct priv *priv = dev->data->dev_private;
struct ifreq ifr;
struct ethtool_pauseparam ethpause = {
.cmd = ETHTOOL_GPAUSEPARAM
};
int ret;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
ifr.ifr_data = (void *)&ethpause;
priv_lock(priv);
if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) {
ret = errno;
WARN("ioctl(SIOCETHTOOL, ETHTOOL_GPAUSEPARAM)"
" failed: %s",
strerror(ret));
goto out;
}
fc_conf->autoneg = ethpause.autoneg;
if (ethpause.rx_pause && ethpause.tx_pause)
fc_conf->mode = RTE_FC_FULL;
else if (ethpause.rx_pause)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (ethpause.tx_pause)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
ret = 0;
out:
priv_unlock(priv);
assert(ret >= 0);
return -ret;
}
/**
* DPDK callback to modify flow control parameters.
*
* @param dev
* Pointer to Ethernet device structure.
* @param[in] fc_conf
* Flow control parameters.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_dev_set_flow_ctrl(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct priv *priv = dev->data->dev_private;
struct ifreq ifr;
struct ethtool_pauseparam ethpause = {
.cmd = ETHTOOL_SPAUSEPARAM
};
int ret;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
ifr.ifr_data = (void *)&ethpause;
ethpause.autoneg = fc_conf->autoneg;
if (((fc_conf->mode & RTE_FC_FULL) == RTE_FC_FULL) ||
(fc_conf->mode & RTE_FC_RX_PAUSE))
ethpause.rx_pause = 1;
else
ethpause.rx_pause = 0;
if (((fc_conf->mode & RTE_FC_FULL) == RTE_FC_FULL) ||
(fc_conf->mode & RTE_FC_TX_PAUSE))
ethpause.tx_pause = 1;
else
ethpause.tx_pause = 0;
priv_lock(priv);
if (priv_ifreq(priv, SIOCETHTOOL, &ifr)) {
ret = errno;
WARN("ioctl(SIOCETHTOOL, ETHTOOL_SPAUSEPARAM)"
" failed: %s",
strerror(ret));
goto out;
}
ret = 0;
out:
priv_unlock(priv);
assert(ret >= 0);
return -ret;
}
/**
* Configure a VLAN filter.
*
* @param dev
* Pointer to Ethernet device structure.
* @param vlan_id
* VLAN ID to filter.
* @param on
* Toggle filter.
*
* @return
* 0 on success, errno value on failure.
*/
static int
vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct priv *priv = dev->data->dev_private;
unsigned int i;
unsigned int j = -1;
DEBUG("%p: %s VLAN filter ID %" PRIu16,
(void *)dev, (on ? "enable" : "disable"), vlan_id);
for (i = 0; (i != elemof(priv->vlan_filter)); ++i) {
if (!priv->vlan_filter[i].enabled) {
/* Unused index, remember it. */
j = i;
continue;
}
if (priv->vlan_filter[i].id != vlan_id)
continue;
/* This VLAN ID is already known, use its index. */
j = i;
break;
}
/* Check if there's room for another VLAN filter. */
if (j == (unsigned int)-1)
return ENOMEM;
/*
* VLAN filters apply to all configured MAC addresses, flow
* specifications must be reconfigured accordingly.
*/
priv->vlan_filter[j].id = vlan_id;
if ((on) && (!priv->vlan_filter[j].enabled)) {
/*
* Filter is disabled, enable it.
* Rehashing flows in all RX queues is necessary.
*/
if (priv->rss)
rxq_mac_addrs_del(&priv->rxq_parent);
else
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] != NULL)
rxq_mac_addrs_del((*priv->rxqs)[i]);
priv->vlan_filter[j].enabled = 1;
if (priv->started) {
if (priv->rss)
rxq_mac_addrs_add(&priv->rxq_parent);
else
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
rxq_mac_addrs_add((*priv->rxqs)[i]);
}
}
} else if ((!on) && (priv->vlan_filter[j].enabled)) {
/*
* Filter is enabled, disable it.
* Rehashing flows in all RX queues is necessary.
*/
if (priv->rss)
rxq_mac_addrs_del(&priv->rxq_parent);
else
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] != NULL)
rxq_mac_addrs_del((*priv->rxqs)[i]);
priv->vlan_filter[j].enabled = 0;
if (priv->started) {
if (priv->rss)
rxq_mac_addrs_add(&priv->rxq_parent);
else
for (i = 0; (i != priv->rxqs_n); ++i) {
if ((*priv->rxqs)[i] == NULL)
continue;
rxq_mac_addrs_add((*priv->rxqs)[i]);
}
}
}
return 0;
}
/**
* DPDK callback to configure a VLAN filter.
*
* @param dev
* Pointer to Ethernet device structure.
* @param vlan_id
* VLAN ID to filter.
* @param on
* Toggle filter.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct priv *priv = dev->data->dev_private;
int ret;
if (mlx4_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
ret = vlan_filter_set(dev, vlan_id, on);
priv_unlock(priv);
assert(ret >= 0);
return -ret;
}
static const struct eth_dev_ops mlx4_dev_ops = {
.dev_configure = mlx4_dev_configure,
.dev_start = mlx4_dev_start,
.dev_stop = mlx4_dev_stop,
.dev_set_link_down = mlx4_set_link_down,
.dev_set_link_up = mlx4_set_link_up,
.dev_close = mlx4_dev_close,
.promiscuous_enable = mlx4_promiscuous_enable,
.promiscuous_disable = mlx4_promiscuous_disable,
.allmulticast_enable = mlx4_allmulticast_enable,
.allmulticast_disable = mlx4_allmulticast_disable,
.link_update = mlx4_link_update,
.stats_get = mlx4_stats_get,
.stats_reset = mlx4_stats_reset,
.queue_stats_mapping_set = NULL,
.dev_infos_get = mlx4_dev_infos_get,
.dev_supported_ptypes_get = mlx4_dev_supported_ptypes_get,
.vlan_filter_set = mlx4_vlan_filter_set,
.vlan_tpid_set = NULL,
.vlan_strip_queue_set = NULL,
.vlan_offload_set = NULL,
.rx_queue_setup = mlx4_rx_queue_setup,
.tx_queue_setup = mlx4_tx_queue_setup,
.rx_queue_release = mlx4_rx_queue_release,
.tx_queue_release = mlx4_tx_queue_release,
.dev_led_on = NULL,
.dev_led_off = NULL,
.flow_ctrl_get = mlx4_dev_get_flow_ctrl,
.flow_ctrl_set = mlx4_dev_set_flow_ctrl,
.priority_flow_ctrl_set = NULL,
.mac_addr_remove = mlx4_mac_addr_remove,
.mac_addr_add = mlx4_mac_addr_add,
.mac_addr_set = mlx4_mac_addr_set,
.mtu_set = mlx4_dev_set_mtu,
};
/**
* Get PCI information from struct ibv_device.
*
* @param device
* Pointer to Ethernet device structure.
* @param[out] pci_addr
* PCI bus address output buffer.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
mlx4_ibv_device_to_pci_addr(const struct ibv_device *device,
struct rte_pci_addr *pci_addr)
{
FILE *file;
char line[32];
MKSTR(path, "%s/device/uevent", device->ibdev_path);
file = fopen(path, "rb");
if (file == NULL)
return -1;
while (fgets(line, sizeof(line), file) == line) {
size_t len = strlen(line);
int ret;
/* Truncate long lines. */
if (len == (sizeof(line) - 1))
while (line[(len - 1)] != '\n') {
ret = fgetc(file);
if (ret == EOF)
break;
line[(len - 1)] = ret;
}
/* Extract information. */
if (sscanf(line,
"PCI_SLOT_NAME="
"%" SCNx16 ":%" SCNx8 ":%" SCNx8 ".%" SCNx8 "\n",
&pci_addr->domain,
&pci_addr->bus,
&pci_addr->devid,
&pci_addr->function) == 4) {
ret = 0;
break;
}
}
fclose(file);
return 0;
}
/**
* Get MAC address by querying netdevice.
*
* @param[in] priv
* struct priv for the requested device.
* @param[out] mac
* MAC address output buffer.
*
* @return
* 0 on success, -1 on failure and errno is set.
*/
static int
priv_get_mac(struct priv *priv, uint8_t (*mac)[ETHER_ADDR_LEN])
{
struct ifreq request;
if (priv_ifreq(priv, SIOCGIFHWADDR, &request))
return -1;
memcpy(mac, request.ifr_hwaddr.sa_data, ETHER_ADDR_LEN);
return 0;
}
/* Support up to 32 adapters. */
static struct {
struct rte_pci_addr pci_addr; /* associated PCI address */
uint32_t ports; /* physical ports bitfield. */
} mlx4_dev[32];
/**
* Get device index in mlx4_dev[] from PCI bus address.
*
* @param[in] pci_addr
* PCI bus address to look for.
*
* @return
* mlx4_dev[] index on success, -1 on failure.
*/
static int
mlx4_dev_idx(struct rte_pci_addr *pci_addr)
{
unsigned int i;
int ret = -1;
assert(pci_addr != NULL);
for (i = 0; (i != elemof(mlx4_dev)); ++i) {
if ((mlx4_dev[i].pci_addr.domain == pci_addr->domain) &&
(mlx4_dev[i].pci_addr.bus == pci_addr->bus) &&
(mlx4_dev[i].pci_addr.devid == pci_addr->devid) &&
(mlx4_dev[i].pci_addr.function == pci_addr->function))
return i;
if ((mlx4_dev[i].ports == 0) && (ret == -1))
ret = i;
}
return ret;
}
/**
* Retrieve integer value from environment variable.
*
* @param[in] name
* Environment variable name.
*
* @return
* Integer value, 0 if the variable is not set.
*/
static int
mlx4_getenv_int(const char *name)
{
const char *val = getenv(name);
if (val == NULL)
return 0;
return atoi(val);
}
static void
mlx4_dev_link_status_handler(void *);
static void
mlx4_dev_interrupt_handler(struct rte_intr_handle *, void *);
/**
* Link status handler.
*
* @param priv
* Pointer to private structure.
* @param dev
* Pointer to the rte_eth_dev structure.
*
* @return
* Nonzero if the callback process can be called immediately.
*/
static int
priv_dev_link_status_handler(struct priv *priv, struct rte_eth_dev *dev)
{
struct ibv_async_event event;
int port_change = 0;
int ret = 0;
/* Read all message and acknowledge them. */
for (;;) {
if (ibv_get_async_event(priv->ctx, &event))
break;
if (event.event_type == IBV_EVENT_PORT_ACTIVE ||
event.event_type == IBV_EVENT_PORT_ERR)
port_change = 1;
else
DEBUG("event type %d on port %d not handled",
event.event_type, event.element.port_num);
ibv_ack_async_event(&event);
}
if (port_change ^ priv->pending_alarm) {
struct rte_eth_link *link = &dev->data->dev_link;
priv->pending_alarm = 0;
mlx4_link_update(dev, 0);
if (((link->link_speed == 0) && link->link_status) ||
((link->link_speed != 0) && !link->link_status)) {
/* Inconsistent status, check again later. */
priv->pending_alarm = 1;
rte_eal_alarm_set(MLX4_ALARM_TIMEOUT_US,
mlx4_dev_link_status_handler,
dev);
} else
ret = 1;
}
return ret;
}
/**
* Handle delayed link status event.
*
* @param arg
* Registered argument.
*/
static void
mlx4_dev_link_status_handler(void *arg)
{
struct rte_eth_dev *dev = arg;
struct priv *priv = dev->data->dev_private;
int ret;
priv_lock(priv);
assert(priv->pending_alarm == 1);
ret = priv_dev_link_status_handler(priv, dev);
priv_unlock(priv);
if (ret)
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
/**
* Handle interrupts from the NIC.
*
* @param[in] intr_handle
* Interrupt handler.
* @param cb_arg
* Callback argument.
*/
static void
mlx4_dev_interrupt_handler(struct rte_intr_handle *intr_handle, void *cb_arg)
{
struct rte_eth_dev *dev = cb_arg;
struct priv *priv = dev->data->dev_private;
int ret;
(void)intr_handle;
priv_lock(priv);
ret = priv_dev_link_status_handler(priv, dev);
priv_unlock(priv);
if (ret)
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
}
/**
* Uninstall interrupt handler.
*
* @param priv
* Pointer to private structure.
* @param dev
* Pointer to the rte_eth_dev structure.
*/
static void
priv_dev_interrupt_handler_uninstall(struct priv *priv, struct rte_eth_dev *dev)
{
if (!dev->data->dev_conf.intr_conf.lsc)
return;
rte_intr_callback_unregister(&priv->intr_handle,
mlx4_dev_interrupt_handler,
dev);
if (priv->pending_alarm)
rte_eal_alarm_cancel(mlx4_dev_link_status_handler, dev);
priv->pending_alarm = 0;
priv->intr_handle.fd = 0;
priv->intr_handle.type = RTE_INTR_HANDLE_UNKNOWN;
}
/**
* Install interrupt handler.
*
* @param priv
* Pointer to private structure.
* @param dev
* Pointer to the rte_eth_dev structure.
*/
static void
priv_dev_interrupt_handler_install(struct priv *priv, struct rte_eth_dev *dev)
{
int rc, flags;
if (!dev->data->dev_conf.intr_conf.lsc)
return;
assert(priv->ctx->async_fd > 0);
flags = fcntl(priv->ctx->async_fd, F_GETFL);
rc = fcntl(priv->ctx->async_fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {
INFO("failed to change file descriptor async event queue");
dev->data->dev_conf.intr_conf.lsc = 0;
} else {
priv->intr_handle.fd = priv->ctx->async_fd;
priv->intr_handle.type = RTE_INTR_HANDLE_EXT;
rte_intr_callback_register(&priv->intr_handle,
mlx4_dev_interrupt_handler,
dev);
}
}
static struct eth_driver mlx4_driver;
/**
* DPDK callback to register a PCI device.
*
* This function creates an Ethernet device for each port of a given
* PCI device.
*
* @param[in] pci_drv
* PCI driver structure (mlx4_driver).
* @param[in] pci_dev
* PCI device information.
*
* @return
* 0 on success, negative errno value on failure.
*/
static int
mlx4_pci_probe(struct rte_pci_driver *pci_drv, struct rte_pci_device *pci_dev)
{
struct ibv_device **list;
struct ibv_device *ibv_dev;
int err = 0;
struct ibv_context *attr_ctx = NULL;
struct ibv_device_attr device_attr;
unsigned int vf;
int idx;
int i;
(void)pci_drv;
assert(pci_drv == &mlx4_driver.pci_drv);
/* Get mlx4_dev[] index. */
idx = mlx4_dev_idx(&pci_dev->addr);
if (idx == -1) {
ERROR("this driver cannot support any more adapters");
return -ENOMEM;
}
DEBUG("using driver device index %d", idx);
/* Save PCI address. */
mlx4_dev[idx].pci_addr = pci_dev->addr;
list = ibv_get_device_list(&i);
if (list == NULL) {
assert(errno);
if (errno == ENOSYS) {
WARN("cannot list devices, is ib_uverbs loaded?");
return 0;
}
return -errno;
}
assert(i >= 0);
/*
* For each listed device, check related sysfs entry against
* the provided PCI ID.
*/
while (i != 0) {
struct rte_pci_addr pci_addr;
--i;
DEBUG("checking device \"%s\"", list[i]->name);
if (mlx4_ibv_device_to_pci_addr(list[i], &pci_addr))
continue;
if ((pci_dev->addr.domain != pci_addr.domain) ||
(pci_dev->addr.bus != pci_addr.bus) ||
(pci_dev->addr.devid != pci_addr.devid) ||
(pci_dev->addr.function != pci_addr.function))
continue;
vf = (pci_dev->id.device_id ==
PCI_DEVICE_ID_MELLANOX_CONNECTX3VF);
INFO("PCI information matches, using device \"%s\" (VF: %s)",
list[i]->name, (vf ? "true" : "false"));
attr_ctx = ibv_open_device(list[i]);
err = errno;
break;
}
if (attr_ctx == NULL) {
ibv_free_device_list(list);
switch (err) {
case 0:
WARN("cannot access device, is mlx4_ib loaded?");
return 0;
case EINVAL:
WARN("cannot use device, are drivers up to date?");
return 0;
}
assert(err > 0);
return -err;
}
ibv_dev = list[i];
DEBUG("device opened");
if (ibv_query_device(attr_ctx, &device_attr))
goto error;
INFO("%u port(s) detected", device_attr.phys_port_cnt);
for (i = 0; i < device_attr.phys_port_cnt; i++) {
uint32_t port = i + 1; /* ports are indexed from one */
uint32_t test = (1 << i);
struct ibv_context *ctx = NULL;
struct ibv_port_attr port_attr;
struct ibv_pd *pd = NULL;
struct priv *priv = NULL;
struct rte_eth_dev *eth_dev = NULL;
#ifdef HAVE_EXP_QUERY_DEVICE
struct ibv_exp_device_attr exp_device_attr;
#endif /* HAVE_EXP_QUERY_DEVICE */
struct ether_addr mac;
#ifdef HAVE_EXP_QUERY_DEVICE
exp_device_attr.comp_mask = IBV_EXP_DEVICE_ATTR_EXP_CAP_FLAGS;
#ifdef RSS_SUPPORT
exp_device_attr.comp_mask |= IBV_EXP_DEVICE_ATTR_RSS_TBL_SZ;
#endif /* RSS_SUPPORT */
#endif /* HAVE_EXP_QUERY_DEVICE */
DEBUG("using port %u (%08" PRIx32 ")", port, test);
ctx = ibv_open_device(ibv_dev);
if (ctx == NULL)
goto port_error;
/* Check port status. */
err = ibv_query_port(ctx, port, &port_attr);
if (err) {
ERROR("port query failed: %s", strerror(err));
goto port_error;
}
if (port_attr.link_layer != IBV_LINK_LAYER_ETHERNET) {
ERROR("port %d is not configured in Ethernet mode",
port);
goto port_error;
}
if (port_attr.state != IBV_PORT_ACTIVE)
DEBUG("port %d is not active: \"%s\" (%d)",
port, ibv_port_state_str(port_attr.state),
port_attr.state);
/* Allocate protection domain. */
pd = ibv_alloc_pd(ctx);
if (pd == NULL) {
ERROR("PD allocation failure");
err = ENOMEM;
goto port_error;
}
mlx4_dev[idx].ports |= test;
/* from rte_ethdev.c */
priv = rte_zmalloc("ethdev private structure",
sizeof(*priv),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
ERROR("priv allocation failure");
err = ENOMEM;
goto port_error;
}
priv->ctx = ctx;
priv->device_attr = device_attr;
priv->port = port;
priv->pd = pd;
priv->mtu = ETHER_MTU;
#ifdef HAVE_EXP_QUERY_DEVICE
if (ibv_exp_query_device(ctx, &exp_device_attr)) {
ERROR("ibv_exp_query_device() failed");
goto port_error;
}
#ifdef RSS_SUPPORT
if ((exp_device_attr.exp_device_cap_flags &
IBV_EXP_DEVICE_QPG) &&
(exp_device_attr.exp_device_cap_flags &
IBV_EXP_DEVICE_UD_RSS) &&
(exp_device_attr.comp_mask &
IBV_EXP_DEVICE_ATTR_RSS_TBL_SZ) &&
(exp_device_attr.max_rss_tbl_sz > 0)) {
priv->hw_qpg = 1;
priv->hw_rss = 1;
priv->max_rss_tbl_sz = exp_device_attr.max_rss_tbl_sz;
} else {
priv->hw_qpg = 0;
priv->hw_rss = 0;
priv->max_rss_tbl_sz = 0;
}
priv->hw_tss = !!(exp_device_attr.exp_device_cap_flags &
IBV_EXP_DEVICE_UD_TSS);
DEBUG("device flags: %s%s%s",
(priv->hw_qpg ? "IBV_DEVICE_QPG " : ""),
(priv->hw_tss ? "IBV_DEVICE_TSS " : ""),
(priv->hw_rss ? "IBV_DEVICE_RSS " : ""));
if (priv->hw_rss)
DEBUG("maximum RSS indirection table size: %u",
exp_device_attr.max_rss_tbl_sz);
#endif /* RSS_SUPPORT */
priv->hw_csum =
((exp_device_attr.exp_device_cap_flags &
IBV_EXP_DEVICE_RX_CSUM_TCP_UDP_PKT) &&
(exp_device_attr.exp_device_cap_flags &
IBV_EXP_DEVICE_RX_CSUM_IP_PKT));
DEBUG("checksum offloading is %ssupported",
(priv->hw_csum ? "" : "not "));
priv->hw_csum_l2tun = !!(exp_device_attr.exp_device_cap_flags &
IBV_EXP_DEVICE_VXLAN_SUPPORT);
DEBUG("L2 tunnel checksum offloads are %ssupported",
(priv->hw_csum_l2tun ? "" : "not "));
#ifdef INLINE_RECV
priv->inl_recv_size = mlx4_getenv_int("MLX4_INLINE_RECV_SIZE");
if (priv->inl_recv_size) {
exp_device_attr.comp_mask =
IBV_EXP_DEVICE_ATTR_INLINE_RECV_SZ;
if (ibv_exp_query_device(ctx, &exp_device_attr)) {
INFO("Couldn't query device for inline-receive"
" capabilities.");
priv->inl_recv_size = 0;
} else {
if ((unsigned)exp_device_attr.inline_recv_sz <
priv->inl_recv_size) {
INFO("Max inline-receive (%d) <"
" requested inline-receive (%u)",
exp_device_attr.inline_recv_sz,
priv->inl_recv_size);
priv->inl_recv_size =
exp_device_attr.inline_recv_sz;
}
}
INFO("Set inline receive size to %u",
priv->inl_recv_size);
}
#endif /* INLINE_RECV */
#endif /* HAVE_EXP_QUERY_DEVICE */
(void)mlx4_getenv_int;
priv->vf = vf;
/* Configure the first MAC address by default. */
if (priv_get_mac(priv, &mac.addr_bytes)) {
ERROR("cannot get MAC address, is mlx4_en loaded?"
" (errno: %s)", strerror(errno));
goto port_error;
}
INFO("port %u MAC address is %02x:%02x:%02x:%02x:%02x:%02x",
priv->port,
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);
/* Register MAC and broadcast addresses. */
claim_zero(priv_mac_addr_add(priv, 0,
(const uint8_t (*)[ETHER_ADDR_LEN])
mac.addr_bytes));
claim_zero(priv_mac_addr_add(priv, (elemof(priv->mac) - 1),
&(const uint8_t [ETHER_ADDR_LEN])
{ "\xff\xff\xff\xff\xff\xff" }));
#ifndef NDEBUG
{
char ifname[IF_NAMESIZE];
if (priv_get_ifname(priv, &ifname) == 0)
DEBUG("port %u ifname is \"%s\"",
priv->port, ifname);
else
DEBUG("port %u ifname is unknown", priv->port);
}
#endif
/* Get actual MTU if possible. */
priv_get_mtu(priv, &priv->mtu);
DEBUG("port %u MTU is %u", priv->port, priv->mtu);
/* from rte_ethdev.c */
{
char name[RTE_ETH_NAME_MAX_LEN];
snprintf(name, sizeof(name), "%s port %u",
ibv_get_device_name(ibv_dev), port);
eth_dev = rte_eth_dev_allocate(name);
}
if (eth_dev == NULL) {
ERROR("can not allocate rte ethdev");
err = ENOMEM;
goto port_error;
}
/* Secondary processes have to use local storage for their
* private data as well as a copy of eth_dev->data, but this
* pointer must not be modified before burst functions are
* actually called. */
if (mlx4_is_secondary()) {
struct mlx4_secondary_data *sd =
&mlx4_secondary_data[eth_dev->data->port_id];
sd->primary_priv = eth_dev->data->dev_private;
if (sd->primary_priv == NULL) {
ERROR("no private data for port %u",
eth_dev->data->port_id);
err = EINVAL;
goto port_error;
}
sd->shared_dev_data = eth_dev->data;
rte_spinlock_init(&sd->lock);
memcpy(sd->data.name, sd->shared_dev_data->name,
sizeof(sd->data.name));
sd->data.dev_private = priv;
sd->data.rx_mbuf_alloc_failed = 0;
sd->data.mtu = ETHER_MTU;
sd->data.port_id = sd->shared_dev_data->port_id;
sd->data.mac_addrs = priv->mac;
eth_dev->tx_pkt_burst = mlx4_tx_burst_secondary_setup;
eth_dev->rx_pkt_burst = mlx4_rx_burst_secondary_setup;
} else {
eth_dev->data->dev_private = priv;
eth_dev->data->mac_addrs = priv->mac;
}
eth_dev->device = &pci_dev->device;
rte_eth_copy_pci_info(eth_dev, pci_dev);
eth_dev->driver = &mlx4_driver;
priv->dev = eth_dev;
eth_dev->dev_ops = &mlx4_dev_ops;
/* Bring Ethernet device up. */
DEBUG("forcing Ethernet interface up");
priv_set_flags(priv, ~IFF_UP, IFF_UP);
continue;
port_error:
rte_free(priv);
if (pd)
claim_zero(ibv_dealloc_pd(pd));
if (ctx)
claim_zero(ibv_close_device(ctx));
if (eth_dev)
rte_eth_dev_release_port(eth_dev);
break;
}
/*
* XXX if something went wrong in the loop above, there is a resource
* leak (ctx, pd, priv, dpdk ethdev) but we can do nothing about it as
* long as the dpdk does not provide a way to deallocate a ethdev and a
* way to enumerate the registered ethdevs to free the previous ones.
*/
/* no port found, complain */
if (!mlx4_dev[idx].ports) {
err = ENODEV;
goto error;
}
error:
if (attr_ctx)
claim_zero(ibv_close_device(attr_ctx));
if (list)
ibv_free_device_list(list);
assert(err >= 0);
return -err;
}
static const struct rte_pci_id mlx4_pci_id_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX3)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX3PRO)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX3VF)
},
{
.vendor_id = 0
}
};
static struct eth_driver mlx4_driver = {
.pci_drv = {
.driver = {
.name = MLX4_DRIVER_NAME
},
.id_table = mlx4_pci_id_map,
.probe = mlx4_pci_probe,
.drv_flags = RTE_PCI_DRV_INTR_LSC,
},
.dev_private_size = sizeof(struct priv)
};
/**
* Driver initialization routine.
*/
RTE_INIT(rte_mlx4_pmd_init);
static void
rte_mlx4_pmd_init(void)
{
RTE_BUILD_BUG_ON(sizeof(wr_id_t) != sizeof(uint64_t));
/*
* RDMAV_HUGEPAGES_SAFE tells ibv_fork_init() we intend to use
* huge pages. Calling ibv_fork_init() during init allows
* applications to use fork() safely for purposes other than
* using this PMD, which is not supported in forked processes.
*/
setenv("RDMAV_HUGEPAGES_SAFE", "1", 1);
ibv_fork_init();
rte_eal_pci_register(&mlx4_driver.pci_drv);
}
RTE_PMD_EXPORT_NAME(net_mlx4, __COUNTER__);
RTE_PMD_REGISTER_PCI_TABLE(net_mlx4, mlx4_pci_id_map);
RTE_PMD_REGISTER_KMOD_DEP(net_mlx4,
"* ib_uverbs & mlx4_en & mlx4_core & mlx4_ib");