numam-dpdk/drivers/net/mlx5/mlx5_rxtx.c
Viacheslav Ovsiienko 7593cf1d35 net/mlx5: fix legacy multi-packet write session
To provide the better PCIe bandwidth utilization the ConnectX-4LX
NIC supports the multi-packet write (MPW) sessions allowing to
pack multiple packets into one descriptor (WQE). This is legacy
feature and it has some limitations on the packets and data
description segments. To provide the best performance all inline
packets must be put into shared data segment and the total length
of MPW session must be limited. The limit is controlled with
txq_inline_mpw devarg.

Fixes: 82e75f8323 ("net/mlx5: fix legacy multi-packet Tx descriptors")
Cc: stable@dpdk.org

Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Matan Azrad <matan@mellanox.com>
2020-02-14 12:42:12 +01:00

5658 lines
165 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015-2019 Mellanox Technologies, Ltd
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5dv.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#include <rte_cycles.h>
#include <rte_flow.h>
#include <mlx5_devx_cmds.h>
#include <mlx5_prm.h>
#include <mlx5_common.h>
#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
/* TX burst subroutines return codes. */
enum mlx5_txcmp_code {
MLX5_TXCMP_CODE_EXIT = 0,
MLX5_TXCMP_CODE_ERROR,
MLX5_TXCMP_CODE_SINGLE,
MLX5_TXCMP_CODE_MULTI,
MLX5_TXCMP_CODE_TSO,
MLX5_TXCMP_CODE_EMPW,
};
/*
* These defines are used to configure Tx burst routine option set
* supported at compile time. The not specified options are optimized out
* out due to if conditions can be explicitly calculated at compile time.
* The offloads with bigger runtime check (require more CPU cycles to
* skip) overhead should have the bigger index - this is needed to
* select the better matching routine function if no exact match and
* some offloads are not actually requested.
*/
#define MLX5_TXOFF_CONFIG_MULTI (1u << 0) /* Multi-segment packets.*/
#define MLX5_TXOFF_CONFIG_TSO (1u << 1) /* TCP send offload supported.*/
#define MLX5_TXOFF_CONFIG_SWP (1u << 2) /* Tunnels/SW Parser offloads.*/
#define MLX5_TXOFF_CONFIG_CSUM (1u << 3) /* Check Sums offloaded. */
#define MLX5_TXOFF_CONFIG_INLINE (1u << 4) /* Data inlining supported. */
#define MLX5_TXOFF_CONFIG_VLAN (1u << 5) /* VLAN insertion supported.*/
#define MLX5_TXOFF_CONFIG_METADATA (1u << 6) /* Flow metadata. */
#define MLX5_TXOFF_CONFIG_EMPW (1u << 8) /* Enhanced MPW supported.*/
#define MLX5_TXOFF_CONFIG_MPW (1u << 9) /* Legacy MPW supported.*/
/* The most common offloads groups. */
#define MLX5_TXOFF_CONFIG_NONE 0
#define MLX5_TXOFF_CONFIG_FULL (MLX5_TXOFF_CONFIG_MULTI | \
MLX5_TXOFF_CONFIG_TSO | \
MLX5_TXOFF_CONFIG_SWP | \
MLX5_TXOFF_CONFIG_CSUM | \
MLX5_TXOFF_CONFIG_INLINE | \
MLX5_TXOFF_CONFIG_VLAN | \
MLX5_TXOFF_CONFIG_METADATA)
#define MLX5_TXOFF_CONFIG(mask) (olx & MLX5_TXOFF_CONFIG_##mask)
#define MLX5_TXOFF_DECL(func, olx) \
static uint16_t mlx5_tx_burst_##func(void *txq, \
struct rte_mbuf **pkts, \
uint16_t pkts_n) \
{ \
return mlx5_tx_burst_tmpl((struct mlx5_txq_data *)txq, \
pkts, pkts_n, (olx)); \
}
#define MLX5_TXOFF_INFO(func, olx) {mlx5_tx_burst_##func, olx},
static __rte_always_inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
static __rte_always_inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
static __rte_always_inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
static __rte_always_inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
static __rte_always_inline void
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx,
const unsigned int strd_n);
static int
mlx5_queue_state_modify(struct rte_eth_dev *dev,
struct mlx5_mp_arg_queue_state_modify *sm);
static inline void
mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *restrict tcp,
volatile struct mlx5_cqe *restrict cqe,
uint32_t phcsum);
static inline void
mlx5_lro_update_hdr(uint8_t *restrict padd,
volatile struct mlx5_cqe *restrict cqe,
uint32_t len);
uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
};
uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
uint64_t rte_net_mlx5_dynf_inline_mask;
#define PKT_TX_DYNF_NOINLINE rte_net_mlx5_dynf_inline_mask
/**
* Build a table to translate Rx completion flags to packet type.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*/
void
mlx5_set_ptype_table(void)
{
unsigned int i;
uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
/* Last entry must not be overwritten, reserved for errored packet. */
for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
(*p)[i] = RTE_PTYPE_UNKNOWN;
/*
* The index to the array should have:
* bit[1:0] = l3_hdr_type
* bit[4:2] = l4_hdr_type
* bit[5] = ip_frag
* bit[6] = tunneled
* bit[7] = outer_l3_type
*/
/* L2 */
(*p)[0x00] = RTE_PTYPE_L2_ETHER;
/* L3 */
(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
/* Fragmented */
(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
/* TCP */
(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
/* UDP */
(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
/* Repeat with outer_l3_type being set. Just in case. */
(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
/* Tunneled - L3 */
(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
/* Tunneled - Fragmented */
(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
/* Tunneled - TCP */
(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
/* Tunneled - UDP */
(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
}
/**
* Build a table to translate packet to checksum type of Verbs.
*/
void
mlx5_set_cksum_table(void)
{
unsigned int i;
uint8_t v;
/*
* The index should have:
* bit[0] = PKT_TX_TCP_SEG
* bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
* bit[4] = PKT_TX_IP_CKSUM
* bit[8] = PKT_TX_OUTER_IP_CKSUM
* bit[9] = tunnel
*/
for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
v = 0;
if (i & (1 << 9)) {
/* Tunneled packet. */
if (i & (1 << 8)) /* Outer IP. */
v |= MLX5_ETH_WQE_L3_CSUM;
if (i & (1 << 4)) /* Inner IP. */
v |= MLX5_ETH_WQE_L3_INNER_CSUM;
if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
v |= MLX5_ETH_WQE_L4_INNER_CSUM;
} else {
/* No tunnel. */
if (i & (1 << 4)) /* IP. */
v |= MLX5_ETH_WQE_L3_CSUM;
if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
v |= MLX5_ETH_WQE_L4_CSUM;
}
mlx5_cksum_table[i] = v;
}
}
/**
* Build a table to translate packet type of mbuf to SWP type of Verbs.
*/
void
mlx5_set_swp_types_table(void)
{
unsigned int i;
uint8_t v;
/*
* The index should have:
* bit[0:1] = PKT_TX_L4_MASK
* bit[4] = PKT_TX_IPV6
* bit[8] = PKT_TX_OUTER_IPV6
* bit[9] = PKT_TX_OUTER_UDP
*/
for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
v = 0;
if (i & (1 << 8))
v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
if (i & (1 << 9))
v |= MLX5_ETH_WQE_L4_OUTER_UDP;
if (i & (1 << 4))
v |= MLX5_ETH_WQE_L3_INNER_IPV6;
if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
v |= MLX5_ETH_WQE_L4_INNER_UDP;
mlx5_swp_types_table[i] = v;
}
}
/**
* Set Software Parser flags and offsets in Ethernet Segment of WQE.
* Flags must be preliminary initialized to zero.
*
* @param loc
* Pointer to burst routine local context.
* @param swp_flags
* Pointer to store Software Parser flags
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Software Parser offsets packed in dword.
* Software Parser flags are set by pointer.
*/
static __rte_always_inline uint32_t
txq_mbuf_to_swp(struct mlx5_txq_local *restrict loc,
uint8_t *swp_flags,
unsigned int olx)
{
uint64_t ol, tunnel;
unsigned int idx, off;
uint32_t set;
if (!MLX5_TXOFF_CONFIG(SWP))
return 0;
ol = loc->mbuf->ol_flags;
tunnel = ol & PKT_TX_TUNNEL_MASK;
/*
* Check whether Software Parser is required.
* Only customized tunnels may ask for.
*/
if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP))
return 0;
/*
* The index should have:
* bit[0:1] = PKT_TX_L4_MASK
* bit[4] = PKT_TX_IPV6
* bit[8] = PKT_TX_OUTER_IPV6
* bit[9] = PKT_TX_OUTER_UDP
*/
idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52;
idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0;
*swp_flags = mlx5_swp_types_table[idx];
/*
* Set offsets for SW parser. Since ConnectX-5, SW parser just
* complements HW parser. SW parser starts to engage only if HW parser
* can't reach a header. For the older devices, HW parser will not kick
* in if any of SWP offsets is set. Therefore, all of the L3 offsets
* should be set regardless of HW offload.
*/
off = loc->mbuf->outer_l2_len;
if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT)
off += sizeof(struct rte_vlan_hdr);
set = (off >> 1) << 8; /* Outer L3 offset. */
off += loc->mbuf->outer_l3_len;
if (tunnel == PKT_TX_TUNNEL_UDP)
set |= off >> 1; /* Outer L4 offset. */
if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */
const uint64_t csum = ol & PKT_TX_L4_MASK;
off += loc->mbuf->l2_len;
set |= (off >> 1) << 24; /* Inner L3 offset. */
if (csum == PKT_TX_TCP_CKSUM ||
csum == PKT_TX_UDP_CKSUM ||
(MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) {
off += loc->mbuf->l3_len;
set |= (off >> 1) << 16; /* Inner L4 offset. */
}
}
set = rte_cpu_to_le_32(set);
return set;
}
/**
* Convert the Checksum offloads to Verbs.
*
* @param buf
* Pointer to the mbuf.
*
* @return
* Converted checksum flags.
*/
static __rte_always_inline uint8_t
txq_ol_cksum_to_cs(struct rte_mbuf *buf)
{
uint32_t idx;
uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
/*
* The index should have:
* bit[0] = PKT_TX_TCP_SEG
* bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
* bit[4] = PKT_TX_IP_CKSUM
* bit[8] = PKT_TX_OUTER_IP_CKSUM
* bit[9] = tunnel
*/
idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
return mlx5_cksum_table[idx];
}
/**
* Internal function to compute the number of used descriptors in an RX queue
*
* @param rxq
* The Rx queue.
*
* @return
* The number of used rx descriptor.
*/
static uint32_t
rx_queue_count(struct mlx5_rxq_data *rxq)
{
struct rxq_zip *zip = &rxq->zip;
volatile struct mlx5_cqe *cqe;
const unsigned int cqe_n = (1 << rxq->cqe_n);
const unsigned int cqe_cnt = cqe_n - 1;
unsigned int cq_ci;
unsigned int used;
/* if we are processing a compressed cqe */
if (zip->ai) {
used = zip->cqe_cnt - zip->ca;
cq_ci = zip->cq_ci;
} else {
used = 0;
cq_ci = rxq->cq_ci;
}
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
int8_t op_own;
unsigned int n;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
n = rte_be_to_cpu_32(cqe->byte_cnt);
else
n = 1;
cq_ci += n;
used += n;
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
}
used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
return used;
}
/**
* DPDK callback to check the status of a rx descriptor.
*
* @param rx_queue
* The Rx queue.
* @param[in] offset
* The index of the descriptor in the ring.
*
* @return
* The status of the tx descriptor.
*/
int
mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct mlx5_rxq_data *rxq = rx_queue;
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
if (dev->rx_pkt_burst != mlx5_rx_burst) {
rte_errno = ENOTSUP;
return -rte_errno;
}
if (offset >= (1 << rxq->elts_n)) {
rte_errno = EINVAL;
return -rte_errno;
}
if (offset < rx_queue_count(rxq))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
/**
* DPDK callback to get the RX queue information
*
* @param dev
* Pointer to the device structure.
*
* @param rx_queue_id
* Rx queue identificator.
*
* @param qinfo
* Pointer to the RX queue information structure.
*
* @return
* None.
*/
void
mlx5_rxq_info_get(struct rte_eth_dev *dev, uint16_t rx_queue_id,
struct rte_eth_rxq_info *qinfo)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq = (*priv->rxqs)[rx_queue_id];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
if (!rxq)
return;
qinfo->mp = mlx5_rxq_mprq_enabled(&rxq_ctrl->rxq) ?
rxq->mprq_mp : rxq->mp;
qinfo->conf.rx_thresh.pthresh = 0;
qinfo->conf.rx_thresh.hthresh = 0;
qinfo->conf.rx_thresh.wthresh = 0;
qinfo->conf.rx_free_thresh = rxq->rq_repl_thresh;
qinfo->conf.rx_drop_en = 1;
qinfo->conf.rx_deferred_start = rxq_ctrl ? 0 : 1;
qinfo->conf.offloads = dev->data->dev_conf.rxmode.offloads;
qinfo->scattered_rx = dev->data->scattered_rx;
qinfo->nb_desc = 1 << rxq->elts_n;
}
/**
* DPDK callback to get the RX packet burst mode information
*
* @param dev
* Pointer to the device structure.
*
* @param rx_queue_id
* Rx queue identificatior.
*
* @param mode
* Pointer to the burts mode information.
*
* @return
* 0 as success, -EINVAL as failure.
*/
int
mlx5_rx_burst_mode_get(struct rte_eth_dev *dev,
uint16_t rx_queue_id __rte_unused,
struct rte_eth_burst_mode *mode)
{
eth_rx_burst_t pkt_burst = dev->rx_pkt_burst;
if (pkt_burst == mlx5_rx_burst) {
snprintf(mode->info, sizeof(mode->info), "%s", "Scalar");
} else if (pkt_burst == mlx5_rx_burst_mprq) {
snprintf(mode->info, sizeof(mode->info), "%s", "Multi-Packet RQ");
} else if (pkt_burst == mlx5_rx_burst_vec) {
#if defined RTE_ARCH_X86_64
snprintf(mode->info, sizeof(mode->info), "%s", "Vector SSE");
#elif defined RTE_ARCH_ARM64
snprintf(mode->info, sizeof(mode->info), "%s", "Vector Neon");
#elif defined RTE_ARCH_PPC_64
snprintf(mode->info, sizeof(mode->info), "%s", "Vector AltiVec");
#else
return -EINVAL;
#endif
} else {
return -EINVAL;
}
return 0;
}
/**
* DPDK callback to get the number of used descriptors in a RX queue
*
* @param dev
* Pointer to the device structure.
*
* @param rx_queue_id
* The Rx queue.
*
* @return
* The number of used rx descriptor.
* -EINVAL if the queue is invalid
*/
uint32_t
mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq;
if (dev->rx_pkt_burst != mlx5_rx_burst) {
rte_errno = ENOTSUP;
return -rte_errno;
}
rxq = (*priv->rxqs)[rx_queue_id];
if (!rxq) {
rte_errno = EINVAL;
return -rte_errno;
}
return rx_queue_count(rxq);
}
#define MLX5_SYSTEM_LOG_DIR "/var/log"
/**
* Dump debug information to log file.
*
* @param fname
* The file name.
* @param hex_title
* If not NULL this string is printed as a header to the output
* and the output will be in hexadecimal view.
* @param buf
* This is the buffer address to print out.
* @param len
* The number of bytes to dump out.
*/
void
mlx5_dump_debug_information(const char *fname, const char *hex_title,
const void *buf, unsigned int hex_len)
{
FILE *fd;
MKSTR(path, "%s/%s", MLX5_SYSTEM_LOG_DIR, fname);
fd = fopen(path, "a+");
if (!fd) {
DRV_LOG(WARNING, "cannot open %s for debug dump", path);
MKSTR(path2, "./%s", fname);
fd = fopen(path2, "a+");
if (!fd) {
DRV_LOG(ERR, "cannot open %s for debug dump", path2);
return;
}
DRV_LOG(INFO, "New debug dump in file %s", path2);
} else {
DRV_LOG(INFO, "New debug dump in file %s", path);
}
if (hex_title)
rte_hexdump(fd, hex_title, buf, hex_len);
else
fprintf(fd, "%s", (const char *)buf);
fprintf(fd, "\n\n\n");
fclose(fd);
}
/**
* Move QP from error state to running state and initialize indexes.
*
* @param txq_ctrl
* Pointer to TX queue control structure.
*
* @return
* 0 on success, else -1.
*/
static int
tx_recover_qp(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_mp_arg_queue_state_modify sm = {
.is_wq = 0,
.queue_id = txq_ctrl->txq.idx,
};
if (mlx5_queue_state_modify(ETH_DEV(txq_ctrl->priv), &sm))
return -1;
txq_ctrl->txq.wqe_ci = 0;
txq_ctrl->txq.wqe_pi = 0;
txq_ctrl->txq.elts_comp = 0;
return 0;
}
/* Return 1 if the error CQE is signed otherwise, sign it and return 0. */
static int
check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe)
{
static const uint8_t magic[] = "seen";
int ret = 1;
unsigned int i;
for (i = 0; i < sizeof(magic); ++i)
if (!ret || err_cqe->rsvd1[i] != magic[i]) {
ret = 0;
err_cqe->rsvd1[i] = magic[i];
}
return ret;
}
/**
* Handle error CQE.
*
* @param txq
* Pointer to TX queue structure.
* @param error_cqe
* Pointer to the error CQE.
*
* @return
* Negative value if queue recovery failed, otherwise
* the error completion entry is handled successfully.
*/
static int
mlx5_tx_error_cqe_handle(struct mlx5_txq_data *restrict txq,
volatile struct mlx5_err_cqe *err_cqe)
{
if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) {
const uint16_t wqe_m = ((1 << txq->wqe_n) - 1);
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
uint16_t new_wqe_pi = rte_be_to_cpu_16(err_cqe->wqe_counter);
int seen = check_err_cqe_seen(err_cqe);
if (!seen && txq_ctrl->dump_file_n <
txq_ctrl->priv->config.max_dump_files_num) {
MKSTR(err_str, "Unexpected CQE error syndrome "
"0x%02x CQN = %u SQN = %u wqe_counter = %u "
"wq_ci = %u cq_ci = %u", err_cqe->syndrome,
txq->cqe_s, txq->qp_num_8s >> 8,
rte_be_to_cpu_16(err_cqe->wqe_counter),
txq->wqe_ci, txq->cq_ci);
MKSTR(name, "dpdk_mlx5_port_%u_txq_%u_index_%u_%u",
PORT_ID(txq_ctrl->priv), txq->idx,
txq_ctrl->dump_file_n, (uint32_t)rte_rdtsc());
mlx5_dump_debug_information(name, NULL, err_str, 0);
mlx5_dump_debug_information(name, "MLX5 Error CQ:",
(const void *)((uintptr_t)
txq->cqes),
sizeof(*err_cqe) *
(1 << txq->cqe_n));
mlx5_dump_debug_information(name, "MLX5 Error SQ:",
(const void *)((uintptr_t)
txq->wqes),
MLX5_WQE_SIZE *
(1 << txq->wqe_n));
txq_ctrl->dump_file_n++;
}
if (!seen)
/*
* Count errors in WQEs units.
* Later it can be improved to count error packets,
* for example, by SQ parsing to find how much packets
* should be counted for each WQE.
*/
txq->stats.oerrors += ((txq->wqe_ci & wqe_m) -
new_wqe_pi) & wqe_m;
if (tx_recover_qp(txq_ctrl)) {
/* Recovering failed - retry later on the same WQE. */
return -1;
}
/* Release all the remaining buffers. */
txq_free_elts(txq_ctrl);
}
return 0;
}
/**
* Translate RX completion flags to packet type.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] cqe
* Pointer to CQE.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
{
uint8_t idx;
uint8_t pinfo = cqe->pkt_info;
uint16_t ptype = cqe->hdr_type_etc;
/*
* The index to the array should have:
* bit[1:0] = l3_hdr_type
* bit[4:2] = l4_hdr_type
* bit[5] = ip_frag
* bit[6] = tunneled
* bit[7] = outer_l3_type
*/
idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
}
/**
* Initialize Rx WQ and indexes.
*
* @param[in] rxq
* Pointer to RX queue structure.
*/
void
mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
{
const unsigned int wqe_n = 1 << rxq->elts_n;
unsigned int i;
for (i = 0; (i != wqe_n); ++i) {
volatile struct mlx5_wqe_data_seg *scat;
uintptr_t addr;
uint32_t byte_count;
if (mlx5_rxq_mprq_enabled(rxq)) {
struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
scat = &((volatile struct mlx5_wqe_mprq *)
rxq->wqes)[i].dseg;
addr = (uintptr_t)mlx5_mprq_buf_addr(buf,
1 << rxq->strd_num_n);
byte_count = (1 << rxq->strd_sz_n) *
(1 << rxq->strd_num_n);
} else {
struct rte_mbuf *buf = (*rxq->elts)[i];
scat = &((volatile struct mlx5_wqe_data_seg *)
rxq->wqes)[i];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
byte_count = DATA_LEN(buf);
}
/* scat->addr must be able to store a pointer. */
MLX5_ASSERT(sizeof(scat->addr) >= sizeof(uintptr_t));
*scat = (struct mlx5_wqe_data_seg){
.addr = rte_cpu_to_be_64(addr),
.byte_count = rte_cpu_to_be_32(byte_count),
.lkey = mlx5_rx_addr2mr(rxq, addr),
};
}
rxq->consumed_strd = 0;
rxq->decompressed = 0;
rxq->rq_pi = 0;
rxq->zip = (struct rxq_zip){
.ai = 0,
};
/* Update doorbell counter. */
rxq->rq_ci = wqe_n >> rxq->sges_n;
rte_cio_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
}
/**
* Modify a Verbs/DevX queue state.
* This must be called from the primary process.
*
* @param dev
* Pointer to Ethernet device.
* @param sm
* State modify request parameters.
*
* @return
* 0 in case of success else non-zero value and rte_errno is set.
*/
int
mlx5_queue_state_modify_primary(struct rte_eth_dev *dev,
const struct mlx5_mp_arg_queue_state_modify *sm)
{
int ret;
struct mlx5_priv *priv = dev->data->dev_private;
if (sm->is_wq) {
struct mlx5_rxq_data *rxq = (*priv->rxqs)[sm->queue_id];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
if (rxq_ctrl->obj->type == MLX5_RXQ_OBJ_TYPE_IBV) {
struct ibv_wq_attr mod = {
.attr_mask = IBV_WQ_ATTR_STATE,
.wq_state = sm->state,
};
ret = mlx5_glue->modify_wq(rxq_ctrl->obj->wq, &mod);
} else { /* rxq_ctrl->obj->type == MLX5_RXQ_OBJ_TYPE_DEVX_RQ. */
struct mlx5_devx_modify_rq_attr rq_attr;
memset(&rq_attr, 0, sizeof(rq_attr));
if (sm->state == IBV_WQS_RESET) {
rq_attr.rq_state = MLX5_RQC_STATE_ERR;
rq_attr.state = MLX5_RQC_STATE_RST;
} else if (sm->state == IBV_WQS_RDY) {
rq_attr.rq_state = MLX5_RQC_STATE_RST;
rq_attr.state = MLX5_RQC_STATE_RDY;
} else if (sm->state == IBV_WQS_ERR) {
rq_attr.rq_state = MLX5_RQC_STATE_RDY;
rq_attr.state = MLX5_RQC_STATE_ERR;
}
ret = mlx5_devx_cmd_modify_rq(rxq_ctrl->obj->rq,
&rq_attr);
}
if (ret) {
DRV_LOG(ERR, "Cannot change Rx WQ state to %u - %s",
sm->state, strerror(errno));
rte_errno = errno;
return ret;
}
} else {
struct mlx5_txq_data *txq = (*priv->txqs)[sm->queue_id];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
struct ibv_qp_attr mod = {
.qp_state = IBV_QPS_RESET,
.port_num = (uint8_t)priv->ibv_port,
};
struct ibv_qp *qp = txq_ctrl->obj->qp;
ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR, "Cannot change the Tx QP state to RESET "
"%s", strerror(errno));
rte_errno = errno;
return ret;
}
mod.qp_state = IBV_QPS_INIT;
ret = mlx5_glue->modify_qp(qp, &mod,
(IBV_QP_STATE | IBV_QP_PORT));
if (ret) {
DRV_LOG(ERR, "Cannot change Tx QP state to INIT %s",
strerror(errno));
rte_errno = errno;
return ret;
}
mod.qp_state = IBV_QPS_RTR;
ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR, "Cannot change Tx QP state to RTR %s",
strerror(errno));
rte_errno = errno;
return ret;
}
mod.qp_state = IBV_QPS_RTS;
ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR, "Cannot change Tx QP state to RTS %s",
strerror(errno));
rte_errno = errno;
return ret;
}
}
return 0;
}
/**
* Modify a Verbs queue state.
*
* @param dev
* Pointer to Ethernet device.
* @param sm
* State modify request parameters.
*
* @return
* 0 in case of success else non-zero value.
*/
static int
mlx5_queue_state_modify(struct rte_eth_dev *dev,
struct mlx5_mp_arg_queue_state_modify *sm)
{
int ret = 0;
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
ret = mlx5_queue_state_modify_primary(dev, sm);
break;
case RTE_PROC_SECONDARY:
ret = mlx5_mp_req_queue_state_modify(dev, sm);
break;
default:
break;
}
return ret;
}
/**
* Handle a Rx error.
* The function inserts the RQ state to reset when the first error CQE is
* shown, then drains the CQ by the caller function loop. When the CQ is empty,
* it moves the RQ state to ready and initializes the RQ.
* Next CQE identification and error counting are in the caller responsibility.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] vec
* 1 when called from vectorized Rx burst, need to prepare mbufs for the RQ.
* 0 when called from non-vectorized Rx burst.
*
* @return
* -1 in case of recovery error, otherwise the CQE status.
*/
int
mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t vec)
{
const uint16_t cqe_n = 1 << rxq->cqe_n;
const uint16_t cqe_mask = cqe_n - 1;
const unsigned int wqe_n = 1 << rxq->elts_n;
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
union {
volatile struct mlx5_cqe *cqe;
volatile struct mlx5_err_cqe *err_cqe;
} u = {
.cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
};
struct mlx5_mp_arg_queue_state_modify sm;
int ret;
switch (rxq->err_state) {
case MLX5_RXQ_ERR_STATE_NO_ERROR:
rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
/* Fall-through */
case MLX5_RXQ_ERR_STATE_NEED_RESET:
sm.is_wq = 1;
sm.queue_id = rxq->idx;
sm.state = IBV_WQS_RESET;
if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
return -1;
if (rxq_ctrl->dump_file_n <
rxq_ctrl->priv->config.max_dump_files_num) {
MKSTR(err_str, "Unexpected CQE error syndrome "
"0x%02x CQN = %u RQN = %u wqe_counter = %u"
" rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
rxq->cqn, rxq_ctrl->wqn,
rte_be_to_cpu_16(u.err_cqe->wqe_counter),
rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
mlx5_dump_debug_information(name, NULL, err_str, 0);
mlx5_dump_debug_information(name, "MLX5 Error CQ:",
(const void *)((uintptr_t)
rxq->cqes),
sizeof(*u.cqe) * cqe_n);
mlx5_dump_debug_information(name, "MLX5 Error RQ:",
(const void *)((uintptr_t)
rxq->wqes),
16 * wqe_n);
rxq_ctrl->dump_file_n++;
}
rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
/* Fall-through */
case MLX5_RXQ_ERR_STATE_NEED_READY:
ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
if (ret == MLX5_CQE_STATUS_HW_OWN) {
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_cio_wmb();
/*
* The RQ consumer index must be zeroed while moving
* from RESET state to RDY state.
*/
*rxq->rq_db = rte_cpu_to_be_32(0);
rte_cio_wmb();
sm.is_wq = 1;
sm.queue_id = rxq->idx;
sm.state = IBV_WQS_RDY;
if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
&sm))
return -1;
if (vec) {
const uint16_t q_mask = wqe_n - 1;
uint16_t elt_idx;
struct rte_mbuf **elt;
int i;
unsigned int n = wqe_n - (rxq->rq_ci -
rxq->rq_pi);
for (i = 0; i < (int)n; ++i) {
elt_idx = (rxq->rq_ci + i) & q_mask;
elt = &(*rxq->elts)[elt_idx];
*elt = rte_mbuf_raw_alloc(rxq->mp);
if (!*elt) {
for (i--; i >= 0; --i) {
elt_idx = (rxq->rq_ci +
i) & q_mask;
elt = &(*rxq->elts)
[elt_idx];
rte_pktmbuf_free_seg
(*elt);
}
return -1;
}
}
for (i = 0; i < (int)wqe_n; ++i) {
elt = &(*rxq->elts)[i];
DATA_LEN(*elt) =
(uint16_t)((*elt)->buf_len -
rte_pktmbuf_headroom(*elt));
}
/* Padding with a fake mbuf for vec Rx. */
for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
(*rxq->elts)[wqe_n + i] =
&rxq->fake_mbuf;
}
mlx5_rxq_initialize(rxq);
rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
}
return ret;
default:
return -1;
}
}
/**
* Get size of the next packet for a given CQE. For compressed CQEs, the
* consumer index is updated only once all packets of the current one have
* been processed.
*
* @param rxq
* Pointer to RX queue.
* @param cqe
* CQE to process.
* @param[out] mcqe
* Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
* written.
*
* @return
* 0 in case of empty CQE, otherwise the packet size in bytes.
*/
static inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
{
struct rxq_zip *zip = &rxq->zip;
uint16_t cqe_n = cqe_cnt + 1;
int len;
uint16_t idx, end;
do {
len = 0;
/* Process compressed data in the CQE and mini arrays. */
if (zip->ai) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[zip->ca &
cqe_cnt].pkt_info);
len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
*mcqe = &(*mc)[zip->ai & 7];
if ((++zip->ai & 7) == 0) {
/* Invalidate consumed CQEs */
idx = zip->ca;
end = zip->na;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
/*
* Increment consumer index to skip the number
* of CQEs consumed. Hardware leaves holes in
* the CQ ring for software use.
*/
zip->ca = zip->na;
zip->na += 8;
}
if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
/* Invalidate the rest */
idx = zip->ca;
end = zip->cq_ci;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
rxq->cq_ci = zip->cq_ci;
zip->ai = 0;
}
/*
* No compressed data, get next CQE and verify if it is
* compressed.
*/
} else {
int ret;
int8_t op_own;
ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
rxq->err_state)) {
ret = mlx5_rx_err_handle(rxq, 0);
if (ret == MLX5_CQE_STATUS_HW_OWN ||
ret == -1)
return 0;
} else {
return 0;
}
}
++rxq->cq_ci;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)
[rxq->cq_ci &
cqe_cnt].pkt_info);
/* Fix endianness. */
zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
/*
* Current mini array position is the one
* returned by check_cqe64().
*
* If completion comprises several mini arrays,
* as a special case the second one is located
* 7 CQEs after the initial CQE instead of 8
* for subsequent ones.
*/
zip->ca = rxq->cq_ci;
zip->na = zip->ca + 7;
/* Compute the next non compressed CQE. */
--rxq->cq_ci;
zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
/* Get packet size to return. */
len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
*mcqe = &(*mc)[0];
zip->ai = 1;
/* Prefetch all to be invalidated */
idx = zip->ca;
end = zip->cq_ci;
while (idx != end) {
rte_prefetch0(&(*rxq->cqes)[(idx) &
cqe_cnt]);
++idx;
}
} else {
len = rte_be_to_cpu_32(cqe->byte_cnt);
}
}
if (unlikely(rxq->err_state)) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
++rxq->stats.idropped;
} else {
return len;
}
} while (1);
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
{
uint32_t ol_flags = 0;
uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
ol_flags =
TRANSPOSE(flags,
MLX5_CQE_RX_L3_HDR_VALID,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(flags,
MLX5_CQE_RX_L4_HDR_VALID,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* Fill in mbuf fields from RX completion flags.
* Note that pkt->ol_flags should be initialized outside of this function.
*
* @param rxq
* Pointer to RX queue.
* @param pkt
* mbuf to fill.
* @param cqe
* CQE to process.
* @param rss_hash_res
* Packet RSS Hash result.
*/
static inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
{
/* Update packet information. */
pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
if (rss_hash_res && rxq->rss_hash) {
pkt->hash.rss = rss_hash_res;
pkt->ol_flags |= PKT_RX_RSS_HASH;
}
if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
pkt->ol_flags |= PKT_RX_FDIR;
if (cqe->sop_drop_qpn !=
rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
uint32_t mark = cqe->sop_drop_qpn;
pkt->ol_flags |= PKT_RX_FDIR_ID;
pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
}
}
if (rte_flow_dynf_metadata_avail() && cqe->flow_table_metadata) {
pkt->ol_flags |= PKT_RX_DYNF_METADATA;
*RTE_FLOW_DYNF_METADATA(pkt) = cqe->flow_table_metadata;
}
if (rxq->csum)
pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
if (rxq->vlan_strip &&
(cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
}
if (rxq->hw_timestamp) {
pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
pkt->ol_flags |= PKT_RX_TIMESTAMP;
}
}
/**
* DPDK callback for RX.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_rxq_data *rxq = dpdk_rxq;
const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
const unsigned int sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
volatile struct mlx5_cqe *cqe =
&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
unsigned int i = 0;
unsigned int rq_ci = rxq->rq_ci << sges_n;
int len = 0; /* keep its value across iterations. */
while (pkts_n) {
unsigned int idx = rq_ci & wqe_cnt;
volatile struct mlx5_wqe_data_seg *wqe =
&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
struct rte_mbuf *rep = (*rxq->elts)[idx];
volatile struct mlx5_mini_cqe8 *mcqe = NULL;
uint32_t rss_hash_res;
if (pkt)
NEXT(seg) = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(cqe);
rte_prefetch0(wqe);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* no buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
MLX5_ASSERT(pkt != (*rxq->elts)[idx]);
rep = NEXT(pkt);
NEXT(pkt) = NULL;
NB_SEGS(pkt) = 1;
rte_mbuf_raw_free(pkt);
pkt = rep;
}
break;
}
if (!pkt) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
if (!len) {
rte_mbuf_raw_free(rep);
break;
}
pkt = seg;
MLX5_ASSERT(len >= (rxq->crc_present << 2));
pkt->ol_flags &= EXT_ATTACHED_MBUF;
/* If compressed, take hash result from mini-CQE. */
rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
cqe->rx_hash_res :
mcqe->rx_hash_result);
rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
if (rxq->crc_present)
len -= RTE_ETHER_CRC_LEN;
PKT_LEN(pkt) = len;
if (cqe->lro_num_seg > 1) {
mlx5_lro_update_hdr
(rte_pktmbuf_mtod(pkt, uint8_t *), cqe,
len);
pkt->ol_flags |= PKT_RX_LRO;
pkt->tso_segsz = len / cqe->lro_num_seg;
}
}
DATA_LEN(rep) = DATA_LEN(seg);
PKT_LEN(rep) = PKT_LEN(seg);
SET_DATA_OFF(rep, DATA_OFF(seg));
PORT(rep) = PORT(seg);
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
/* If there's only one MR, no need to replace LKey in WQE. */
if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
if (len > DATA_LEN(seg)) {
len -= DATA_LEN(seg);
++NB_SEGS(pkt);
++rq_ci;
continue;
}
DATA_LEN(seg) = len;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_cio_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Update LRO packet TCP header.
* The HW LRO feature doesn't update the TCP header after coalescing the
* TCP segments but supplies information in CQE to fill it by SW.
*
* @param tcp
* Pointer to the TCP header.
* @param cqe
* Pointer to the completion entry..
* @param phcsum
* The L3 pseudo-header checksum.
*/
static inline void
mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *restrict tcp,
volatile struct mlx5_cqe *restrict cqe,
uint32_t phcsum)
{
uint8_t l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) &
MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
/*
* The HW calculates only the TCP payload checksum, need to complete
* the TCP header checksum and the L3 pseudo-header checksum.
*/
uint32_t csum = phcsum + cqe->csum;
if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK ||
l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) {
tcp->tcp_flags |= RTE_TCP_ACK_FLAG;
tcp->recv_ack = cqe->lro_ack_seq_num;
tcp->rx_win = cqe->lro_tcp_win;
}
if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK)
tcp->tcp_flags |= RTE_TCP_PSH_FLAG;
tcp->cksum = 0;
csum += rte_raw_cksum(tcp, (tcp->data_off & 0xF) * 4);
csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff);
csum = (~csum) & 0xffff;
if (csum == 0)
csum = 0xffff;
tcp->cksum = csum;
}
/**
* Update LRO packet headers.
* The HW LRO feature doesn't update the L3/TCP headers after coalescing the
* TCP segments but supply information in CQE to fill it by SW.
*
* @param padd
* The packet address.
* @param cqe
* Pointer to the completion entry..
* @param len
* The packet length.
*/
static inline void
mlx5_lro_update_hdr(uint8_t *restrict padd,
volatile struct mlx5_cqe *restrict cqe,
uint32_t len)
{
union {
struct rte_ether_hdr *eth;
struct rte_vlan_hdr *vlan;
struct rte_ipv4_hdr *ipv4;
struct rte_ipv6_hdr *ipv6;
struct rte_tcp_hdr *tcp;
uint8_t *hdr;
} h = {
.hdr = padd,
};
uint16_t proto = h.eth->ether_type;
uint32_t phcsum;
h.eth++;
while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
proto = h.vlan->eth_proto;
h.vlan++;
}
if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
h.ipv4->time_to_live = cqe->lro_min_ttl;
h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd));
h.ipv4->hdr_checksum = 0;
h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4);
phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0);
h.ipv4++;
} else {
h.ipv6->hop_limits = cqe->lro_min_ttl;
h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) -
sizeof(*h.ipv6));
phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0);
h.ipv6++;
}
mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum);
}
void
mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
{
struct mlx5_mprq_buf *buf = opaque;
if (rte_atomic16_read(&buf->refcnt) == 1) {
rte_mempool_put(buf->mp, buf);
} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
rte_atomic16_set(&buf->refcnt, 1);
rte_mempool_put(buf->mp, buf);
}
}
void
mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
{
mlx5_mprq_buf_free_cb(NULL, buf);
}
static inline void
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx,
const unsigned int strd_n)
{
struct mlx5_mprq_buf *rep = rxq->mprq_repl;
volatile struct mlx5_wqe_data_seg *wqe =
&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
void *addr;
MLX5_ASSERT(rep != NULL);
/* Replace MPRQ buf. */
(*rxq->mprq_bufs)[rq_idx] = rep;
/* Replace WQE. */
addr = mlx5_mprq_buf_addr(rep, strd_n);
wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
/* If there's only one MR, no need to replace LKey in WQE. */
if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
/* Stash a mbuf for next replacement. */
if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
rxq->mprq_repl = rep;
else
rxq->mprq_repl = NULL;
}
/**
* DPDK callback for RX with Multi-Packet RQ support.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_rxq_data *rxq = dpdk_rxq;
const unsigned int strd_n = 1 << rxq->strd_num_n;
const unsigned int strd_sz = 1 << rxq->strd_sz_n;
const unsigned int strd_shift =
MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
unsigned int i = 0;
uint32_t rq_ci = rxq->rq_ci;
uint16_t consumed_strd = rxq->consumed_strd;
uint16_t headroom_sz = rxq->strd_headroom_en * RTE_PKTMBUF_HEADROOM;
struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
while (i < pkts_n) {
struct rte_mbuf *pkt;
void *addr;
int ret;
unsigned int len;
uint16_t strd_cnt;
uint16_t strd_idx;
uint32_t offset;
uint32_t byte_cnt;
volatile struct mlx5_mini_cqe8 *mcqe = NULL;
uint32_t rss_hash_res = 0;
uint8_t lro_num_seg;
if (consumed_strd == strd_n) {
/* Replace WQE only if the buffer is still in use. */
if (rte_atomic16_read(&buf->refcnt) > 1) {
mprq_buf_replace(rxq, rq_ci & wq_mask, strd_n);
/* Release the old buffer. */
mlx5_mprq_buf_free(buf);
} else if (unlikely(rxq->mprq_repl == NULL)) {
struct mlx5_mprq_buf *rep;
/*
* Currently, the MPRQ mempool is out of buffer
* and doing memcpy regardless of the size of Rx
* packet. Retry allocation to get back to
* normal.
*/
if (!rte_mempool_get(rxq->mprq_mp,
(void **)&rep))
rxq->mprq_repl = rep;
}
/* Advance to the next WQE. */
consumed_strd = 0;
++rq_ci;
buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
}
cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
if (!ret)
break;
byte_cnt = ret;
strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
MLX5_MPRQ_STRIDE_NUM_SHIFT;
MLX5_ASSERT(strd_cnt);
consumed_strd += strd_cnt;
if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
continue;
if (mcqe == NULL) {
rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
} else {
/* mini-CQE for MPRQ doesn't have hash result. */
strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
}
MLX5_ASSERT(strd_idx < strd_n);
MLX5_ASSERT(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) &
wq_mask));
lro_num_seg = cqe->lro_num_seg;
/*
* Currently configured to receive a packet per a stride. But if
* MTU is adjusted through kernel interface, device could
* consume multiple strides without raising an error. In this
* case, the packet should be dropped because it is bigger than
* the max_rx_pkt_len.
*/
if (unlikely(!lro_num_seg && strd_cnt > 1)) {
++rxq->stats.idropped;
continue;
}
pkt = rte_pktmbuf_alloc(rxq->mp);
if (unlikely(pkt == NULL)) {
++rxq->stats.rx_nombuf;
break;
}
len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
MLX5_ASSERT((int)len >= (rxq->crc_present << 2));
if (rxq->crc_present)
len -= RTE_ETHER_CRC_LEN;
offset = strd_idx * strd_sz + strd_shift;
addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf, strd_n), offset);
/*
* Memcpy packets to the target mbuf if:
* - The size of packet is smaller than mprq_max_memcpy_len.
* - Out of buffer in the Mempool for Multi-Packet RQ.
*/
if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
/*
* When memcpy'ing packet due to out-of-buffer, the
* packet must be smaller than the target mbuf.
*/
if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
rte_pktmbuf_free_seg(pkt);
++rxq->stats.idropped;
continue;
}
rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
DATA_LEN(pkt) = len;
} else {
rte_iova_t buf_iova;
struct rte_mbuf_ext_shared_info *shinfo;
uint16_t buf_len = strd_cnt * strd_sz;
void *buf_addr;
/* Increment the refcnt of the whole chunk. */
rte_atomic16_add_return(&buf->refcnt, 1);
MLX5_ASSERT((uint16_t)rte_atomic16_read(&buf->refcnt) <=
strd_n + 1);
buf_addr = RTE_PTR_SUB(addr, headroom_sz);
/*
* MLX5 device doesn't use iova but it is necessary in a
* case where the Rx packet is transmitted via a
* different PMD.
*/
buf_iova = rte_mempool_virt2iova(buf) +
RTE_PTR_DIFF(buf_addr, buf);
shinfo = &buf->shinfos[strd_idx];
rte_mbuf_ext_refcnt_set(shinfo, 1);
/*
* EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
* attaching the stride to mbuf and more offload flags
* will be added below by calling rxq_cq_to_mbuf().
* Other fields will be overwritten.
*/
rte_pktmbuf_attach_extbuf(pkt, buf_addr, buf_iova,
buf_len, shinfo);
/* Set mbuf head-room. */
pkt->data_off = headroom_sz;
MLX5_ASSERT(pkt->ol_flags == EXT_ATTACHED_MBUF);
/*
* Prevent potential overflow due to MTU change through
* kernel interface.
*/
if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
rte_pktmbuf_free_seg(pkt);
++rxq->stats.idropped;
continue;
}
DATA_LEN(pkt) = len;
/*
* LRO packet may consume all the stride memory, in this
* case packet head-room space is not guaranteed so must
* to add an empty mbuf for the head-room.
*/
if (!rxq->strd_headroom_en) {
struct rte_mbuf *headroom_mbuf =
rte_pktmbuf_alloc(rxq->mp);
if (unlikely(headroom_mbuf == NULL)) {
rte_pktmbuf_free_seg(pkt);
++rxq->stats.rx_nombuf;
break;
}
PORT(pkt) = rxq->port_id;
NEXT(headroom_mbuf) = pkt;
pkt = headroom_mbuf;
NB_SEGS(pkt) = 2;
}
}
rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
if (lro_num_seg > 1) {
mlx5_lro_update_hdr(addr, cqe, len);
pkt->ol_flags |= PKT_RX_LRO;
pkt->tso_segsz = strd_sz;
}
PKT_LEN(pkt) = len;
PORT(pkt) = rxq->port_id;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
++i;
}
/* Update the consumer indexes. */
rxq->consumed_strd = consumed_strd;
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
if (rq_ci != rxq->rq_ci) {
rxq->rq_ci = rq_ci;
rte_cio_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
removed_tx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
rte_mb();
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
removed_rx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
rte_mb();
return 0;
}
/*
* Vectorized Rx/Tx routines are not compiled in when required vector
* instructions are not supported on a target architecture. The following null
* stubs are needed for linkage when those are not included outside of this file
* (e.g. mlx5_rxtx_vec_sse.c for x86).
*/
__rte_weak uint16_t
mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
__rte_weak int
mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
{
return -ENOTSUP;
}
__rte_weak int
mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
{
return -ENOTSUP;
}
/**
* Free the mbufs from the linear array of pointers.
*
* @param pkts
* Pointer to array of packets to be free.
* @param pkts_n
* Number of packets to be freed.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_free_mbuf(struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
struct rte_mempool *pool = NULL;
struct rte_mbuf **p_free = NULL;
struct rte_mbuf *mbuf;
unsigned int n_free = 0;
/*
* The implemented algorithm eliminates
* copying pointers to temporary array
* for rte_mempool_put_bulk() calls.
*/
MLX5_ASSERT(pkts);
MLX5_ASSERT(pkts_n);
for (;;) {
for (;;) {
/*
* Decrement mbuf reference counter, detach
* indirect and external buffers if needed.
*/
mbuf = rte_pktmbuf_prefree_seg(*pkts);
if (likely(mbuf != NULL)) {
MLX5_ASSERT(mbuf == *pkts);
if (likely(n_free != 0)) {
if (unlikely(pool != mbuf->pool))
/* From different pool. */
break;
} else {
/* Start new scan array. */
pool = mbuf->pool;
p_free = pkts;
}
++n_free;
++pkts;
--pkts_n;
if (unlikely(pkts_n == 0)) {
mbuf = NULL;
break;
}
} else {
/*
* This happens if mbuf is still referenced.
* We can't put it back to the pool, skip.
*/
++pkts;
--pkts_n;
if (unlikely(n_free != 0))
/* There is some array to free.*/
break;
if (unlikely(pkts_n == 0))
/* Last mbuf, nothing to free. */
return;
}
}
for (;;) {
/*
* This loop is implemented to avoid multiple
* inlining of rte_mempool_put_bulk().
*/
MLX5_ASSERT(pool);
MLX5_ASSERT(p_free);
MLX5_ASSERT(n_free);
/*
* Free the array of pre-freed mbufs
* belonging to the same memory pool.
*/
rte_mempool_put_bulk(pool, (void *)p_free, n_free);
if (unlikely(mbuf != NULL)) {
/* There is the request to start new scan. */
pool = mbuf->pool;
p_free = pkts++;
n_free = 1;
--pkts_n;
if (likely(pkts_n != 0))
break;
/*
* This is the last mbuf to be freed.
* Do one more loop iteration to complete.
* This is rare case of the last unique mbuf.
*/
mbuf = NULL;
continue;
}
if (likely(pkts_n == 0))
return;
n_free = 0;
break;
}
}
}
/**
* Free the mbuf from the elts ring buffer till new tail.
*
* @param txq
* Pointer to Tx queue structure.
* @param tail
* Index in elts to free up to, becomes new elts tail.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_free_elts(struct mlx5_txq_data *restrict txq,
uint16_t tail,
unsigned int olx __rte_unused)
{
uint16_t n_elts = tail - txq->elts_tail;
MLX5_ASSERT(n_elts);
MLX5_ASSERT(n_elts <= txq->elts_s);
/*
* Implement a loop to support ring buffer wraparound
* with single inlining of mlx5_tx_free_mbuf().
*/
do {
unsigned int part;
part = txq->elts_s - (txq->elts_tail & txq->elts_m);
part = RTE_MIN(part, n_elts);
MLX5_ASSERT(part);
MLX5_ASSERT(part <= txq->elts_s);
mlx5_tx_free_mbuf(&txq->elts[txq->elts_tail & txq->elts_m],
part, olx);
txq->elts_tail += part;
n_elts -= part;
} while (n_elts);
}
/**
* Store the mbuf being sent into elts ring buffer.
* On Tx completion these mbufs will be freed.
*
* @param txq
* Pointer to Tx queue structure.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_copy_elts(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
unsigned int part;
struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts;
MLX5_ASSERT(pkts);
MLX5_ASSERT(pkts_n);
part = txq->elts_s - (txq->elts_head & txq->elts_m);
MLX5_ASSERT(part);
MLX5_ASSERT(part <= txq->elts_s);
/* This code is a good candidate for vectorizing with SIMD. */
rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)),
(void *)pkts,
RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *));
txq->elts_head += pkts_n;
if (unlikely(part < pkts_n))
/* The copy is wrapping around the elts array. */
rte_memcpy((void *)elts, (void *)(pkts + part),
(pkts_n - part) * sizeof(struct rte_mbuf *));
}
/**
* Update completion queue consuming index via doorbell
* and flush the completed data buffers.
*
* @param txq
* Pointer to TX queue structure.
* @param valid CQE pointer
* if not NULL update txq->wqe_pi and flush the buffers
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_comp_flush(struct mlx5_txq_data *restrict txq,
volatile struct mlx5_cqe *last_cqe,
unsigned int olx __rte_unused)
{
if (likely(last_cqe != NULL)) {
uint16_t tail;
txq->wqe_pi = rte_be_to_cpu_16(last_cqe->wqe_counter);
tail = txq->fcqs[(txq->cq_ci - 1) & txq->cqe_m];
if (likely(tail != txq->elts_tail)) {
mlx5_tx_free_elts(txq, tail, olx);
MLX5_ASSERT(tail == txq->elts_tail);
}
}
}
/**
* Manage TX completions. This routine checks the CQ for
* arrived CQEs, deduces the last accomplished WQE in SQ,
* updates SQ producing index and frees all completed mbufs.
*
* @param txq
* Pointer to TX queue structure.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* NOTE: not inlined intentionally, it makes tx_burst
* routine smaller, simple and faster - from experiments.
*/
static void
mlx5_tx_handle_completion(struct mlx5_txq_data *restrict txq,
unsigned int olx __rte_unused)
{
unsigned int count = MLX5_TX_COMP_MAX_CQE;
volatile struct mlx5_cqe *last_cqe = NULL;
uint16_t ci = txq->cq_ci;
int ret;
static_assert(MLX5_CQE_STATUS_HW_OWN < 0, "Must be negative value");
static_assert(MLX5_CQE_STATUS_SW_OWN < 0, "Must be negative value");
do {
volatile struct mlx5_cqe *cqe;
cqe = &txq->cqes[ci & txq->cqe_m];
ret = check_cqe(cqe, txq->cqe_s, ci);
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (likely(ret != MLX5_CQE_STATUS_ERR)) {
/* No new CQEs in completion queue. */
MLX5_ASSERT(ret == MLX5_CQE_STATUS_HW_OWN);
break;
}
/*
* Some error occurred, try to restart.
* We have no barrier after WQE related Doorbell
* written, make sure all writes are completed
* here, before we might perform SQ reset.
*/
rte_wmb();
txq->cq_ci = ci;
ret = mlx5_tx_error_cqe_handle
(txq, (volatile struct mlx5_err_cqe *)cqe);
if (unlikely(ret < 0)) {
/*
* Some error occurred on queue error
* handling, we do not advance the index
* here, allowing to retry on next call.
*/
return;
}
/*
* We are going to fetch all entries with
* MLX5_CQE_SYNDROME_WR_FLUSH_ERR status.
* The send queue is supposed to be empty.
*/
++ci;
txq->cq_pi = ci;
last_cqe = NULL;
continue;
}
/* Normal transmit completion. */
MLX5_ASSERT(ci != txq->cq_pi);
MLX5_ASSERT((txq->fcqs[ci & txq->cqe_m] >> 16) ==
cqe->wqe_counter);
++ci;
last_cqe = cqe;
/*
* We have to restrict the amount of processed CQEs
* in one tx_burst routine call. The CQ may be large
* and many CQEs may be updated by the NIC in one
* transaction. Buffers freeing is time consuming,
* multiple iterations may introduce significant
* latency.
*/
if (likely(--count == 0))
break;
} while (true);
if (likely(ci != txq->cq_ci)) {
/*
* Update completion queue consuming index
* and ring doorbell to notify hardware.
*/
rte_compiler_barrier();
txq->cq_ci = ci;
*txq->cq_db = rte_cpu_to_be_32(ci);
mlx5_tx_comp_flush(txq, last_cqe, olx);
}
}
/**
* Check if the completion request flag should be set in the last WQE.
* Both pushed mbufs and WQEs are monitored and the completion request
* flag is set if any of thresholds is reached.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_request_completion(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
uint16_t head = txq->elts_head;
unsigned int part;
part = MLX5_TXOFF_CONFIG(INLINE) ?
0 : loc->pkts_sent - loc->pkts_copy;
head += part;
if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH ||
(MLX5_TXOFF_CONFIG(INLINE) &&
(uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres)) {
volatile struct mlx5_wqe *last = loc->wqe_last;
txq->elts_comp = head;
if (MLX5_TXOFF_CONFIG(INLINE))
txq->wqe_comp = txq->wqe_ci;
/* Request unconditional completion on last WQE. */
last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET);
/* Save elts_head in dedicated free on completion queue. */
#ifdef RTE_LIBRTE_MLX5_DEBUG
txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head |
(last->cseg.opcode >> 8) << 16;
#else
txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head;
#endif
/* A CQE slot must always be available. */
MLX5_ASSERT((txq->cq_pi - txq->cq_ci) <= txq->cqe_s);
}
}
/**
* DPDK callback to check the status of a tx descriptor.
*
* @param tx_queue
* The tx queue.
* @param[in] offset
* The index of the descriptor in the ring.
*
* @return
* The status of the tx descriptor.
*/
int
mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct mlx5_txq_data *restrict txq = tx_queue;
uint16_t used;
mlx5_tx_handle_completion(txq, 0);
used = txq->elts_head - txq->elts_tail;
if (offset < used)
return RTE_ETH_TX_DESC_FULL;
return RTE_ETH_TX_DESC_DONE;
}
/**
* Build the Control Segment with specified opcode:
* - MLX5_OPCODE_SEND
* - MLX5_OPCODE_ENHANCED_MPSW
* - MLX5_OPCODE_TSO
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Control Segment.
* @param ds
* Supposed length of WQE in segments.
* @param opcode
* SQ WQE opcode to put into Control Segment.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_cseg_init(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe *restrict wqe,
unsigned int ds,
unsigned int opcode,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_cseg *restrict cs = &wqe->cseg;
/* For legacy MPW replace the EMPW by TSO with modifier. */
if (MLX5_TXOFF_CONFIG(MPW) && opcode == MLX5_OPCODE_ENHANCED_MPSW)
opcode = MLX5_OPCODE_TSO | MLX5_OPC_MOD_MPW << 24;
cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode);
cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
}
/**
* Build the Ethernet Segment without inlined data.
* Supports Software Parser, Checksums and VLAN
* insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_eseg_none(struct mlx5_txq_data *restrict txq __rte_unused,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
es->flags = rte_cpu_to_le_32(csum);
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
/* Engage VLAN tag insertion feature if requested. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
/*
* We should get here only if device support
* this feature correctly.
*/
MLX5_ASSERT(txq->vlan_en);
es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT |
loc->mbuf->vlan_tci);
} else {
es->inline_hdr = RTE_BE32(0);
}
}
/**
* Build the Ethernet Segment with minimal inlined data
* of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is
* used to fill the gap in single WQEBB WQEs.
* Supports Software Parser, Checksums and VLAN
* insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_eseg_dmin(struct mlx5_txq_data *restrict txq __rte_unused,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *psrc, *pdst;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
es->flags = rte_cpu_to_le_32(csum);
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(rte_v128u32_t)),
"invalid Ethernet Segment data size");
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(struct rte_vlan_hdr) +
2 * RTE_ETHER_ADDR_LEN),
"invalid Ethernet Segment data size");
psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE);
es->inline_data = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
pdst = (uint8_t *)(es + 1);
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
/* Insert VLAN ethertype + VLAN tag. */
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/* Copy the rest two bytes from packet data. */
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
} else {
/* Fill the gap in the title WQEBB with inline data. */
rte_mov16(pdst, psrc);
}
}
/**
* Build the Ethernet Segment with entire packet
* data inlining. Checks the boundary of WQEBB and
* ring buffer wrapping, supports Software Parser,
* Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param inlen
* Length of data to inline (VLAN included, if any).
* @param tso
* TSO flag, set mss field from the packet.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment (aligned and wrapped around).
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_data(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *psrc, *pdst;
unsigned int part;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
if (tso) {
csum <<= 24;
csum |= loc->mbuf->tso_segsz;
es->flags = rte_cpu_to_be_32(csum);
} else {
es->flags = rte_cpu_to_le_32(csum);
}
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(rte_v128u32_t)),
"invalid Ethernet Segment data size");
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(struct rte_vlan_hdr) +
2 * RTE_ETHER_ADDR_LEN),
"invalid Ethernet Segment data size");
psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
es->inline_data = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
pdst = (uint8_t *)(es + 1);
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
/* Insert VLAN ethertype + VLAN tag. */
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/* Copy the rest two bytes from packet data. */
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
} else {
/* Fill the gap in the title WQEBB with inline data. */
rte_mov16(pdst, psrc);
psrc += sizeof(rte_v128u32_t);
}
pdst = (uint8_t *)(es + 2);
MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
inlen -= MLX5_ESEG_MIN_INLINE_SIZE;
if (!inlen) {
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
return (struct mlx5_wqe_dseg *)pdst;
}
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, inlen);
do {
rte_memcpy(pdst, psrc, part);
inlen -= part;
if (likely(!inlen)) {
/*
* If return value is not used by the caller
* the code below will be optimized out.
*/
pdst += part;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
pdst = (uint8_t *)txq->wqes;
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
psrc += part;
part = inlen;
} while (true);
}
/**
* Copy data from chain of mbuf to the specified linear buffer.
* Checksums and VLAN insertion Tx offload features. If data
* from some mbuf copied completely this mbuf is freed. Local
* structure is used to keep the byte stream state.
*
* @param pdst
* Pointer to the destination linear buffer.
* @param loc
* Pointer to burst routine local context.
* @param len
* Length of data to be copied.
* @param must
* Length of data to be copied ignoring no inline hint.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Number of actual copied data bytes. This is always greater than or
* equal to must parameter and might be lesser than len in no inline
* hint flag is encountered.
*/
static __rte_always_inline unsigned int
mlx5_tx_mseg_memcpy(uint8_t *pdst,
struct mlx5_txq_local *restrict loc,
unsigned int len,
unsigned int must,
unsigned int olx __rte_unused)
{
struct rte_mbuf *mbuf;
unsigned int part, dlen, copy = 0;
uint8_t *psrc;
MLX5_ASSERT(len);
MLX5_ASSERT(must <= len);
do {
/* Allow zero length packets, must check first. */
dlen = rte_pktmbuf_data_len(loc->mbuf);
if (dlen <= loc->mbuf_off) {
/* Exhausted packet, just free. */
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
loc->mbuf_off = 0;
MLX5_ASSERT(loc->mbuf_nseg > 1);
MLX5_ASSERT(loc->mbuf);
--loc->mbuf_nseg;
if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
unsigned int diff;
if (copy >= must) {
/*
* We already copied the minimal
* requested amount of data.
*/
return copy;
}
diff = must - copy;
if (diff <= rte_pktmbuf_data_len(loc->mbuf)) {
/*
* Copy only the minimal required
* part of the data buffer.
*/
len = diff;
}
}
continue;
}
dlen -= loc->mbuf_off;
psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
loc->mbuf_off);
part = RTE_MIN(len, dlen);
rte_memcpy(pdst, psrc, part);
copy += part;
loc->mbuf_off += part;
len -= part;
if (!len) {
if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) {
loc->mbuf_off = 0;
/* Exhausted packet, just free. */
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
loc->mbuf_off = 0;
MLX5_ASSERT(loc->mbuf_nseg >= 1);
--loc->mbuf_nseg;
}
return copy;
}
pdst += part;
} while (true);
}
/**
* Build the Ethernet Segment with inlined data from
* multi-segment packet. Checks the boundary of WQEBB
* and ring buffer wrapping, supports Software Parser,
* Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param inlen
* Length of data to inline (VLAN included, if any).
* @param tso
* TSO flag, set mss field from the packet.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment (aligned and
* possible NOT wrapped around - caller should do
* wrapping check on its own).
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_mdat(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *pdst;
unsigned int part, tlen = 0;
/*
* Calculate and set check sum flags first, uint32_t field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
if (tso) {
csum <<= 24;
csum |= loc->mbuf->tso_segsz;
es->flags = rte_cpu_to_be_32(csum);
} else {
es->flags = rte_cpu_to_le_32(csum);
}
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(rte_v128u32_t)),
"invalid Ethernet Segment data size");
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(struct rte_vlan_hdr) +
2 * RTE_ETHER_ADDR_LEN),
"invalid Ethernet Segment data size");
MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
pdst = (uint8_t *)&es->inline_data;
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
mlx5_tx_mseg_memcpy(pdst, loc,
2 * RTE_ETHER_ADDR_LEN,
2 * RTE_ETHER_ADDR_LEN, olx);
pdst += 2 * RTE_ETHER_ADDR_LEN;
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
tlen += 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr);
}
MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, inlen - tlen);
MLX5_ASSERT(part);
do {
unsigned int copy;
/*
* Copying may be interrupted inside the routine
* if run into no inline hint flag.
*/
copy = tlen >= txq->inlen_mode ? 0 : (txq->inlen_mode - tlen);
copy = mlx5_tx_mseg_memcpy(pdst, loc, part, copy, olx);
tlen += copy;
if (likely(inlen <= tlen) || copy < part) {
es->inline_hdr_sz = rte_cpu_to_be_16(tlen);
pdst += copy;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
part = inlen - tlen;
} while (true);
}
/**
* Build the Data Segment of pointer type.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_dseg_ptr(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
MLX5_ASSERT(len);
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
}
/**
* Build the Data Segment of pointer type or inline
* if data length is less than buffer in minimal
* Data Segment size.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_dseg_iptr(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
uintptr_t dst, src;
MLX5_ASSERT(len);
if (len > MLX5_DSEG_MIN_INLINE_SIZE) {
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
return;
}
dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
/* Unrolled implementation of generic rte_memcpy. */
dst = (uintptr_t)&dseg->inline_data[0];
src = (uintptr_t)buf;
if (len & 0x08) {
#ifdef RTE_ARCH_STRICT_ALIGN
MLX5_ASSERT(dst == RTE_PTR_ALIGN(dst, sizeof(uint32_t)));
*(uint32_t *)dst = *(unaligned_uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
*(uint32_t *)dst = *(unaligned_uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
#else
*(uint64_t *)dst = *(unaligned_uint64_t *)src;
dst += sizeof(uint64_t);
src += sizeof(uint64_t);
#endif
}
if (len & 0x04) {
*(uint32_t *)dst = *(unaligned_uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
}
if (len & 0x02) {
*(uint16_t *)dst = *(unaligned_uint16_t *)src;
dst += sizeof(uint16_t);
src += sizeof(uint16_t);
}
if (len & 0x01)
*(uint8_t *)dst = *(uint8_t *)src;
}
/**
* Build the Data Segment of inlined data from single
* segment packet, no VLAN insertion.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment after inlined data.
* Ring buffer wraparound check is needed. We do not
* do it here because it may not be needed for the
* last packet in the eMPW session.
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
unsigned int part;
uint8_t *pdst;
if (!MLX5_TXOFF_CONFIG(MPW)) {
/* Store the descriptor byte counter for eMPW sessions. */
dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
pdst = &dseg->inline_data[0];
} else {
/* The entire legacy MPW session counter is stored on close. */
pdst = (uint8_t *)dseg;
}
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, len);
do {
rte_memcpy(pdst, buf, part);
len -= part;
if (likely(!len)) {
pdst += part;
if (!MLX5_TXOFF_CONFIG(MPW))
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
/* Note: no final wraparound check here. */
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
buf += part;
part = len;
} while (true);
}
/**
* Build the Data Segment of inlined data from single
* segment packet with VLAN insertion.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to the dseg fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment after inlined data.
* Ring buffer wraparound check is needed.
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_vlan(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
unsigned int part;
uint8_t *pdst;
MLX5_ASSERT(len > MLX5_ESEG_MIN_INLINE_SIZE);
static_assert(MLX5_DSEG_MIN_INLINE_SIZE ==
(2 * RTE_ETHER_ADDR_LEN),
"invalid Data Segment data size");
if (!MLX5_TXOFF_CONFIG(MPW)) {
/* Store the descriptor byte counter for eMPW sessions. */
dseg->bcount = rte_cpu_to_be_32
((len + sizeof(struct rte_vlan_hdr)) |
MLX5_ETH_WQE_DATA_INLINE);
pdst = &dseg->inline_data[0];
} else {
/* The entire legacy MPW session counter is stored on close. */
pdst = (uint8_t *)dseg;
}
memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE);
buf += MLX5_DSEG_MIN_INLINE_SIZE;
pdst += MLX5_DSEG_MIN_INLINE_SIZE;
len -= MLX5_DSEG_MIN_INLINE_SIZE;
/* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
pdst = (uint8_t *)txq->wqes;
*(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, len);
do {
rte_memcpy(pdst, buf, part);
len -= part;
if (likely(!len)) {
pdst += part;
if (!MLX5_TXOFF_CONFIG(MPW))
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
/* Note: no final wraparound check here. */
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
buf += part;
part = len;
} while (true);
}
/**
* Build the Ethernet Segment with optionally inlined data with
* VLAN insertion and following Data Segments (if any) from
* multi-segment packet. Used by ordinary send and TSO.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet/Data Segments.
* @param vlan
* Length of VLAN header to insert, 0 means no VLAN insertion.
* @param inlen
* Data length to inline. For TSO this parameter specifies
* exact value, for ordinary send routine can be aligned by
* caller to provide better WQE space saving and data buffer
* start address alignment. This length includes VLAN header
* being inserted.
* @param tso
* Zero means ordinary send, inlined data can be extended,
* otherwise this is TSO, inlined data length is fixed.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Actual size of built WQE in segments.
*/
static __rte_always_inline unsigned int
mlx5_tx_mseg_build(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_dseg *restrict dseg;
unsigned int ds;
MLX5_ASSERT((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen);
loc->mbuf_nseg = NB_SEGS(loc->mbuf);
loc->mbuf_off = 0;
dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx);
if (!loc->mbuf_nseg)
goto dseg_done;
/*
* There are still some mbuf remaining, not inlined.
* The first mbuf may be partially inlined and we
* must process the possible non-zero data offset.
*/
if (loc->mbuf_off) {
unsigned int dlen;
uint8_t *dptr;
/*
* Exhausted packets must be dropped before.
* Non-zero offset means there are some data
* remained in the packet.
*/
MLX5_ASSERT(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf));
MLX5_ASSERT(rte_pktmbuf_data_len(loc->mbuf));
dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
loc->mbuf_off);
dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off;
/*
* Build the pointer/minimal data Data Segment.
* Do ring buffer wrapping check in advance.
*/
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx);
/* Store the mbuf to be freed on completion. */
MLX5_ASSERT(loc->elts_free);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++dseg;
if (--loc->mbuf_nseg == 0)
goto dseg_done;
loc->mbuf = loc->mbuf->next;
loc->mbuf_off = 0;
}
do {
if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
struct rte_mbuf *mbuf;
/* Zero length segment found, just skip. */
mbuf = loc->mbuf;
loc->mbuf = loc->mbuf->next;
rte_pktmbuf_free_seg(mbuf);
if (--loc->mbuf_nseg == 0)
break;
} else {
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
mlx5_tx_dseg_iptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
MLX5_ASSERT(loc->elts_free);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++dseg;
if (--loc->mbuf_nseg == 0)
break;
loc->mbuf = loc->mbuf->next;
}
} while (true);
dseg_done:
/* Calculate actual segments used from the dseg pointer. */
if ((uintptr_t)wqe < (uintptr_t)dseg)
ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE;
else
ds = (((uintptr_t)dseg - (uintptr_t)wqe) +
txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE;
return ds;
}
/**
* Tx one packet function for multi-segment TSO. Supports all
* types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs,
* sends one packet per WQE.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_tso(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
struct mlx5_wqe *restrict wqe;
unsigned int ds, dlen, inlen, ntcp, vlan = 0;
/*
* Calculate data length to be inlined to estimate
* the required space in WQE ring buffer.
*/
dlen = rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
vlan = sizeof(struct rte_vlan_hdr);
inlen = loc->mbuf->l2_len + vlan +
loc->mbuf->l3_len + loc->mbuf->l4_len;
if (unlikely((!inlen || !loc->mbuf->tso_segsz)))
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len;
/* Packet must contain all TSO headers. */
if (unlikely(inlen > MLX5_MAX_TSO_HEADER ||
inlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
inlen > (dlen + vlan)))
return MLX5_TXCMP_CODE_ERROR;
MLX5_ASSERT(inlen >= txq->inlen_mode);
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Data Segments of pointer/min inline type
*/
ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) /
loc->mbuf->tso_segsz;
/*
* One will be added for mbuf itself
* at the end of the mlx5_tx_burst from
* loc->pkts_sent field.
*/
--ntcp;
txq->stats.opackets += ntcp;
txq->stats.obytes += dlen + vlan + ntcp * inlen;
#endif
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx);
ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx);
wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx one packet function for multi-segment SEND. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
* sends one packet per WQE, without any data inlining in
* Ethernet Segment.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_send(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe *restrict wqe;
unsigned int ds, nseg;
MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
/*
* No inline at all, it means the CPU cycles saving
* is prioritized at configuration, we should not
* copy any packet data to WQE.
*/
nseg = NB_SEGS(loc->mbuf);
ds = 2 + nseg;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
/*
* Some Tx offloads may cause an error if
* packet is not long enough, check against
* assumed minimal length.
*/
if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
txq->stats.obytes += sizeof(struct rte_vlan_hdr);
#endif
/*
* SEND WQE, one WQEBB:
* - Control Segment, SEND opcode
* - Ethernet Segment, optional VLAN, no inline
* - Data Segments, pointer only type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_none(txq, loc, wqe, olx);
dseg = &wqe->dseg[0];
do {
if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
struct rte_mbuf *mbuf;
/*
* Zero length segment found, have to
* correct total size of WQE in segments.
* It is supposed to be rare occasion, so
* in normal case (no zero length segments)
* we avoid extra writing to the Control
* Segment.
*/
--ds;
wqe->cseg.sq_ds -= RTE_BE32(1);
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
if (--nseg == 0)
break;
} else {
mlx5_tx_dseg_ptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
if (--nseg == 0)
break;
++dseg;
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
loc->mbuf = loc->mbuf->next;
}
} while (true);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx one packet function for multi-segment SEND. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
* sends one packet per WQE, with data inlining in
* Ethernet Segment and minimal Data Segments.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_inline(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
struct mlx5_wqe *restrict wqe;
unsigned int ds, inlen, dlen, vlan = 0;
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
/*
* First calculate data length to be inlined
* to estimate the required space for WQE.
*/
dlen = rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
vlan = sizeof(struct rte_vlan_hdr);
inlen = dlen + vlan;
/* Check against minimal length. */
if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
MLX5_ASSERT(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
if (inlen > txq->inlen_send ||
loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
struct rte_mbuf *mbuf;
unsigned int nxlen;
uintptr_t start;
/*
* Packet length exceeds the allowed inline
* data length, check whether the minimal
* inlining is required.
*/
if (txq->inlen_mode) {
MLX5_ASSERT(txq->inlen_mode >=
MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(txq->inlen_mode <= txq->inlen_send);
inlen = txq->inlen_mode;
} else {
if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE ||
!vlan || txq->vlan_en) {
/*
* VLAN insertion will be done inside by HW.
* It is not utmost effective - VLAN flag is
* checked twice, but we should proceed the
* inlining length correctly and take into
* account the VLAN header being inserted.
*/
return mlx5_tx_packet_multi_send
(txq, loc, olx);
}
inlen = MLX5_ESEG_MIN_INLINE_SIZE;
}
/*
* Now we know the minimal amount of data is requested
* to inline. Check whether we should inline the buffers
* from the chain beginning to eliminate some mbufs.
*/
mbuf = loc->mbuf;
nxlen = rte_pktmbuf_data_len(mbuf);
if (unlikely(nxlen <= txq->inlen_send)) {
/* We can inline first mbuf at least. */
if (nxlen < inlen) {
unsigned int smlen;
/* Scan mbufs till inlen filled. */
do {
smlen = nxlen;
mbuf = NEXT(mbuf);
MLX5_ASSERT(mbuf);
nxlen = rte_pktmbuf_data_len(mbuf);
nxlen += smlen;
} while (unlikely(nxlen < inlen));
if (unlikely(nxlen > txq->inlen_send)) {
/* We cannot inline entire mbuf. */
smlen = inlen - smlen;
start = rte_pktmbuf_mtod_offset
(mbuf, uintptr_t, smlen);
goto do_align;
}
}
do {
inlen = nxlen;
mbuf = NEXT(mbuf);
/* There should be not end of packet. */
MLX5_ASSERT(mbuf);
nxlen = inlen + rte_pktmbuf_data_len(mbuf);
} while (unlikely(nxlen < txq->inlen_send));
}
start = rte_pktmbuf_mtod(mbuf, uintptr_t);
/*
* Check whether we can do inline to align start
* address of data buffer to cacheline.
*/
do_align:
start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1);
if (unlikely(start)) {
start += inlen;
if (start <= txq->inlen_send)
inlen = start;
}
}
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Data Segments of pointer/min inline type
*
* Estimate the number of Data Segments conservatively,
* supposing no any mbufs is being freed during inlining.
*/
MLX5_ASSERT(inlen <= txq->inlen_send);
ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
txq->stats.obytes += dlen + vlan;
#endif
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx);
ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx);
wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx burst function for multi-segment packets. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs,
* sends one packet per WQE. Function stops sending if it
* encounters the single-segment packet.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered.
* Local context variables updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_mseg(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
enum mlx5_txcmp_code ret;
MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
/*
* Estimate the number of free elts quickly but
* conservatively. Some segment may be fully inlined
* and freed, ignore this here - precise estimation
* is costly.
*/
if (loc->elts_free < NB_SEGS(loc->mbuf))
return MLX5_TXCMP_CODE_EXIT;
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) {
/* Proceed with multi-segment TSO. */
ret = mlx5_tx_packet_multi_tso(txq, loc, olx);
} else if (MLX5_TXOFF_CONFIG(INLINE)) {
/* Proceed with multi-segment SEND with inlining. */
ret = mlx5_tx_packet_multi_inline(txq, loc, olx);
} else {
/* Proceed with multi-segment SEND w/o inlining. */
ret = mlx5_tx_packet_multi_send(txq, loc, olx);
}
if (ret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (ret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
/* WQE is built, go to the next packet. */
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
if (likely(NB_SEGS(loc->mbuf) > 1))
continue;
/* Here ends the series of multi-segment packets. */
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
return MLX5_TXCMP_CODE_TSO;
return MLX5_TXCMP_CODE_SINGLE;
}
MLX5_ASSERT(false);
}
/**
* Tx burst function for single-segment packets with TSO.
* Supports all types of Tx offloads, except multi-packets.
* Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE.
* Function stops sending if it encounters the multi-segment
* packet or packet without TSO requested.
*
* The routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head if inline
* offloads is requested due to possible early freeing
* of the inlined mbufs (can not store pkts array in elts
* as a batch).
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* Local context variables updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_tso(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe *restrict wqe;
unsigned int ds, dlen, hlen, ntcp, vlan = 0;
uint8_t *dptr;
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
dlen = rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
vlan = sizeof(struct rte_vlan_hdr);
}
/*
* First calculate the WQE size to check
* whether we have enough space in ring buffer.
*/
hlen = loc->mbuf->l2_len + vlan +
loc->mbuf->l3_len + loc->mbuf->l4_len;
if (unlikely((!hlen || !loc->mbuf->tso_segsz)))
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
hlen += loc->mbuf->outer_l2_len +
loc->mbuf->outer_l3_len;
/* Segment must contain all TSO headers. */
if (unlikely(hlen > MLX5_MAX_TSO_HEADER ||
hlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
hlen > (dlen + vlan)))
return MLX5_TXCMP_CODE_ERROR;
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Finishing Data Segment of pointer type
*/
ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (loc->wqe_free < ((ds + 3) / 4))
return MLX5_TXCMP_CODE_EXIT;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
ntcp = (dlen + vlan - hlen +
loc->mbuf->tso_segsz - 1) /
loc->mbuf->tso_segsz;
/*
* One will be added for mbuf itself at the end
* of the mlx5_tx_burst from loc->pkts_sent field.
*/
--ntcp;
txq->stats.opackets += ntcp;
txq->stats.obytes += dlen + vlan + ntcp * hlen;
#endif
/*
* Build the TSO WQE:
* - Control Segment
* - Ethernet Segment with hlen bytes inlined
* - Data Segment of pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds,
MLX5_OPCODE_TSO, olx);
dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan;
dlen -= hlen - vlan;
mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
/*
* WQE is built, update the loop parameters
* and go to the next packet.
*/
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
if (MLX5_TXOFF_CONFIG(INLINE))
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
if (MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc->mbuf) > 1))
return MLX5_TXCMP_CODE_MULTI;
if (likely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
return MLX5_TXCMP_CODE_SINGLE;
/* Continue with the next TSO packet. */
}
MLX5_ASSERT(false);
}
/**
* Analyze the packet and select the best method to send.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
* @param newp
* The predefined flag whether do complete check for
* multi-segment packets and TSO.
*
* @return
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND.
* MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_able_to_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx,
bool newp)
{
/* Check for multi-segment packet. */
if (newp &&
MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc->mbuf) > 1))
return MLX5_TXCMP_CODE_MULTI;
/* Check for TSO packet. */
if (newp &&
MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
return MLX5_TXCMP_CODE_TSO;
/* Check if eMPW is enabled at all. */
if (!MLX5_TXOFF_CONFIG(EMPW))
return MLX5_TXCMP_CODE_SINGLE;
/* Check if eMPW can be engaged. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) &&
(!MLX5_TXOFF_CONFIG(INLINE) ||
unlikely((rte_pktmbuf_data_len(loc->mbuf) +
sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) {
/*
* eMPW does not support VLAN insertion offload,
* we have to inline the entire packet but
* packet is too long for inlining.
*/
return MLX5_TXCMP_CODE_SINGLE;
}
return MLX5_TXCMP_CODE_EMPW;
}
/**
* Check the next packet attributes to match with the eMPW batch ones.
* In addition, for legacy MPW the packet length is checked either.
*
* @param txq
* Pointer to TX queue structure.
* @param es
* Pointer to Ethernet Segment of eMPW batch.
* @param loc
* Pointer to burst routine local context.
* @param dlen
* Length of previous packet in MPW descriptor.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline bool
mlx5_tx_match_empw(struct mlx5_txq_data *restrict txq __rte_unused,
struct mlx5_wqe_eseg *restrict es,
struct mlx5_txq_local *restrict loc,
uint32_t dlen,
unsigned int olx)
{
uint8_t swp_flags = 0;
/* Compare the checksum flags, if any. */
if (MLX5_TXOFF_CONFIG(CSUM) &&
txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags)
return false;
/* Compare the Software Parser offsets and flags. */
if (MLX5_TXOFF_CONFIG(SWP) &&
(es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) ||
es->swp_flags != swp_flags))
return false;
/* Fill metadata field if needed. */
if (MLX5_TXOFF_CONFIG(METADATA) &&
es->metadata != (loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0))
return false;
/* Legacy MPW can send packets with the same lengt only. */
if (MLX5_TXOFF_CONFIG(MPW) &&
dlen != rte_pktmbuf_data_len(loc->mbuf))
return false;
/* There must be no VLAN packets in eMPW loop. */
if (MLX5_TXOFF_CONFIG(VLAN))
MLX5_ASSERT(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT));
return true;
}
/*
* Update send loop variables and WQE for eMPW loop
* without data inlining. Number of Data Segments is
* equal to the number of sent packets.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param ds
* Number of packets/Data Segments/Packets.
* @param slen
* Accumulated statistics, bytes sent
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline void
mlx5_tx_sdone_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int ds,
unsigned int slen,
unsigned int olx __rte_unused)
{
MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#else
(void)slen;
#endif
loc->elts_free -= ds;
loc->pkts_sent += ds;
ds += 2;
loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
}
/*
* Update send loop variables and WQE for eMPW loop
* with data inlining. Gets the size of pushed descriptors
* and data to the WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param len
* Total size of descriptor/data in bytes.
* @param slen
* Accumulated statistics, data bytes sent.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline void
mlx5_tx_idone_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int len,
unsigned int slen,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_dseg *dseg = &loc->wqe_last->dseg[0];
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#else
(void)slen;
#endif
if (MLX5_TXOFF_CONFIG(MPW) && dseg->bcount == RTE_BE32(0)) {
/*
* If the legacy MPW session contains the inline packets
* we should set the only inline data segment length
* and align the total length to the segment size.
*/
MLX5_ASSERT(len > sizeof(dseg->bcount));
dseg->bcount = rte_cpu_to_be_32((len - sizeof(dseg->bcount)) |
MLX5_ETH_WQE_DATA_INLINE);
len = (len + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE + 2;
} else {
/*
* The session is not legacy MPW or contains the
* data buffer pointer segments.
*/
MLX5_ASSERT((len % MLX5_WSEG_SIZE) == 0);
len = len / MLX5_WSEG_SIZE + 2;
}
loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len);
txq->wqe_ci += (len + 3) / 4;
loc->wqe_free -= (len + 3) / 4;
}
/**
* The set of Tx burst functions for single-segment packets
* without TSO and with Multi-Packet Writing feature support.
* Supports all types of Tx offloads, except multi-packets
* and TSO.
*
* Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends
* as many packet per WQE as it can. If eMPW is not configured
* or packet can not be sent with eMPW (VLAN insertion) the
* ordinary SEND opcode is used and only one packet placed
* in WQE.
*
* Functions stop sending if it encounters the multi-segment
* packet or packet with TSO requested.
*
* The routines are responsible for storing processed mbuf
* into elts ring buffer and update elts_head if inlining
* offload is requested. Otherwise the copying mbufs to elts
* can be postponed and completed at the end of burst routine.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO packet encountered.
* MLX5_TXCMP_CODE_SINGLE - used inside functions set.
* MLX5_TXCMP_CODE_EMPW - used inside functions set.
*
* Local context variables updated.
*
*
* The routine sends packets with MLX5_OPCODE_EMPW
* without inlining, this is dedicated optimized branch.
* No VLAN insertion is supported.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_simple(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with eMPW opcode
* without data inlining.
*/
MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe_eseg *restrict eseg;
enum mlx5_txcmp_code ret;
unsigned int part, loop;
unsigned int slen = 0;
next_empw:
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
part = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
MLX5_MPW_MAX_PACKETS :
MLX5_EMPW_MAX_PACKETS);
if (unlikely(loc->elts_free < part)) {
/* We have no enough elts to save all mbufs. */
if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS))
return MLX5_TXCMP_CODE_EXIT;
/* But we still able to send at least minimal eMPW. */
part = loc->elts_free;
}
/* Check whether we have enough WQEs */
if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) {
if (unlikely(loc->wqe_free <
((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
part = (loc->wqe_free * 4) - 2;
}
if (likely(part > 1))
rte_prefetch0(*pkts);
loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
/*
* Build eMPW title WQEBB:
* - Control Segment, eMPW opcode
* - Ethernet Segment, no inline
*/
mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2,
MLX5_OPCODE_ENHANCED_MPSW, olx);
mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
olx & ~MLX5_TXOFF_CONFIG_VLAN);
eseg = &loc->wqe_last->eseg;
dseg = &loc->wqe_last->dseg[0];
loop = part;
/* Store the packet length for legacy MPW. */
if (MLX5_TXOFF_CONFIG(MPW))
eseg->mss = rte_cpu_to_be_16
(rte_pktmbuf_data_len(loc->mbuf));
for (;;) {
uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += dlen;
#endif
mlx5_tx_dseg_ptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
dlen, olx);
if (unlikely(--loop == 0))
break;
loc->mbuf = *pkts++;
if (likely(loop > 1))
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
/*
* Unroll the completion code to avoid
* returning variable value - it results in
* unoptimized sequent checking in caller.
*/
if (ret == MLX5_TXCMP_CODE_MULTI) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_MULTI;
}
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (ret == MLX5_TXCMP_CODE_TSO) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_TSO;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_SINGLE;
}
if (ret != MLX5_TXCMP_CODE_EMPW) {
MLX5_ASSERT(false);
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/*
* Check whether packet parameters coincide
* within assumed eMPW batch:
* - check sum settings
* - metadata value
* - software parser settings
* - packets length (legacy MPW only)
*/
if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx)) {
MLX5_ASSERT(loop);
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
pkts_n -= part;
goto next_empw;
}
/* Packet attributes match, continue the same eMPW. */
++dseg;
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
}
/* eMPW is built successfully, update loop parameters. */
MLX5_ASSERT(!loop);
MLX5_ASSERT(pkts_n >= part);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#endif
loc->elts_free -= part;
loc->pkts_sent += part;
txq->wqe_ci += (2 + part + 3) / 4;
loc->wqe_free -= (2 + part + 3) / 4;
pkts_n -= part;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
if (unlikely(ret != MLX5_TXCMP_CODE_EMPW))
return ret;
/* Continue sending eMPW batches. */
}
MLX5_ASSERT(false);
}
/**
* The routine sends packets with MLX5_OPCODE_EMPW
* with inlining, optionally supports VLAN insertion.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_inline(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with eMPW opcode
* with data inlining.
*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe_eseg *restrict eseg;
enum mlx5_txcmp_code ret;
unsigned int room, part, nlim;
unsigned int slen = 0;
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
/*
* Limits the amount of packets in one WQE
* to improve CQE latency generation.
*/
nlim = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
MLX5_MPW_INLINE_MAX_PACKETS :
MLX5_EMPW_MAX_PACKETS);
/* Check whether we have minimal amount WQEs */
if (unlikely(loc->wqe_free <
((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
if (likely(pkts_n > 1))
rte_prefetch0(*pkts);
loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
/*
* Build eMPW title WQEBB:
* - Control Segment, eMPW opcode, zero DS
* - Ethernet Segment, no inline
*/
mlx5_tx_cseg_init(txq, loc, loc->wqe_last, 0,
MLX5_OPCODE_ENHANCED_MPSW, olx);
mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
olx & ~MLX5_TXOFF_CONFIG_VLAN);
eseg = &loc->wqe_last->eseg;
dseg = &loc->wqe_last->dseg[0];
/* Store the packet length for legacy MPW. */
if (MLX5_TXOFF_CONFIG(MPW))
eseg->mss = rte_cpu_to_be_16
(rte_pktmbuf_data_len(loc->mbuf));
room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE,
loc->wqe_free) * MLX5_WQE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE;
/* Limit the room for legacy MPW sessions for performance. */
if (MLX5_TXOFF_CONFIG(MPW))
room = RTE_MIN(room,
RTE_MAX(txq->inlen_empw +
sizeof(dseg->bcount) +
(MLX5_TXOFF_CONFIG(VLAN) ?
sizeof(struct rte_vlan_hdr) : 0),
MLX5_MPW_INLINE_MAX_PACKETS *
MLX5_WQE_DSEG_SIZE));
/* Build WQE till we have space, packets and resources. */
part = room;
for (;;) {
uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
unsigned int tlen;
MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
MLX5_ASSERT((room % MLX5_WQE_DSEG_SIZE) == 0);
MLX5_ASSERT((uintptr_t)dseg < (uintptr_t)txq->wqes_end);
/*
* Some Tx offloads may cause an error if
* packet is not long enough, check against
* assumed minimal length.
*/
if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) {
part -= room;
if (unlikely(!part))
return MLX5_TXCMP_CODE_ERROR;
/*
* We have some successfully built
* packet Data Segments to send.
*/
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/* Inline or not inline - that's the Question. */
if (dlen > txq->inlen_empw ||
loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE)
goto pointer_empw;
if (MLX5_TXOFF_CONFIG(MPW)) {
tlen = dlen;
if (part == room) {
/* Open new inline MPW session. */
tlen += sizeof(dseg->bcount);
dseg->bcount = RTE_BE32(0);
dseg = RTE_PTR_ADD
(dseg, sizeof(dseg->bcount));
} else {
/*
* No pointer and inline descriptor
* intermix for legacy MPW sessions.
*/
if (loc->wqe_last->dseg[0].bcount)
break;
}
} else {
tlen = sizeof(dseg->bcount) + dlen;
}
/* Inline entire packet, optional VLAN insertion. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
/*
* The packet length must be checked in
* mlx5_tx_able_to_empw() and packet
* fits into inline length guaranteed.
*/
MLX5_ASSERT((dlen +
sizeof(struct rte_vlan_hdr)) <=
txq->inlen_empw);
tlen += sizeof(struct rte_vlan_hdr);
if (room < tlen)
break;
dseg = mlx5_tx_dseg_vlan(txq, loc, dseg,
dptr, dlen, olx);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += sizeof(struct rte_vlan_hdr);
#endif
} else {
if (room < tlen)
break;
dseg = mlx5_tx_dseg_empw(txq, loc, dseg,
dptr, dlen, olx);
}
if (!MLX5_TXOFF_CONFIG(MPW))
tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE);
MLX5_ASSERT(room >= tlen);
room -= tlen;
/*
* Packet data are completely inlined,
* free the packet immediately.
*/
rte_pktmbuf_free_seg(loc->mbuf);
goto next_mbuf;
pointer_empw:
/*
* No pointer and inline descriptor
* intermix for legacy MPW sessions.
*/
if (MLX5_TXOFF_CONFIG(MPW) &&
part != room &&
loc->wqe_last->dseg[0].bcount == RTE_BE32(0))
break;
/*
* Not inlinable VLAN packets are
* proceeded outside of this routine.
*/
MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
if (MLX5_TXOFF_CONFIG(VLAN))
MLX5_ASSERT(!(loc->mbuf->ol_flags &
PKT_TX_VLAN_PKT));
mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
/* We have to store mbuf in elts.*/
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
room -= MLX5_WQE_DSEG_SIZE;
/* Ring buffer wraparound is checked at the loop end.*/
++dseg;
next_mbuf:
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += dlen;
#endif
loc->pkts_sent++;
loc->elts_free--;
pkts_n--;
if (unlikely(!pkts_n || !loc->elts_free)) {
/*
* We have no resources/packets to
* continue build descriptors.
*/
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_EXIT;
}
loc->mbuf = *pkts++;
if (likely(pkts_n > 1))
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
/*
* Unroll the completion code to avoid
* returning variable value - it results in
* unoptimized sequent checking in caller.
*/
if (ret == MLX5_TXCMP_CODE_MULTI) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_MULTI;
}
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (ret == MLX5_TXCMP_CODE_TSO) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_TSO;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_SINGLE;
}
if (ret != MLX5_TXCMP_CODE_EMPW) {
MLX5_ASSERT(false);
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/* Check if we have minimal room left. */
nlim--;
if (unlikely(!nlim || room < MLX5_WQE_DSEG_SIZE))
break;
/*
* Check whether packet parameters coincide
* within assumed eMPW batch:
* - check sum settings
* - metadata value
* - software parser settings
* - packets length (legacy MPW only)
*/
if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx))
break;
/* Packet attributes match, continue the same eMPW. */
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
}
/*
* We get here to close an existing eMPW
* session and start the new one.
*/
MLX5_ASSERT(pkts_n);
part -= room;
if (unlikely(!part))
return MLX5_TXCMP_CODE_EXIT;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
/* Continue the loop with new eMPW session. */
}
MLX5_ASSERT(false);
}
/**
* The routine sends packets with ordinary MLX5_OPCODE_SEND.
* Data inlining and VLAN insertion are supported.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single_send(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with SEND opcode.
*/
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe *restrict wqe;
enum mlx5_txcmp_code ret;
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (MLX5_TXOFF_CONFIG(INLINE)) {
unsigned int inlen, vlan = 0;
inlen = rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
vlan = sizeof(struct rte_vlan_hdr);
inlen += vlan;
static_assert((sizeof(struct rte_vlan_hdr) +
sizeof(struct rte_ether_hdr)) ==
MLX5_ESEG_MIN_INLINE_SIZE,
"invalid min inline data size");
}
/*
* If inlining is enabled at configuration time
* the limit must be not less than minimal size.
* Otherwise we would do extra check for data
* size to avoid crashes due to length overflow.
*/
MLX5_ASSERT(txq->inlen_send >=
MLX5_ESEG_MIN_INLINE_SIZE);
if (inlen <= txq->inlen_send) {
unsigned int seg_n, wqe_n;
rte_prefetch0(rte_pktmbuf_mtod
(loc->mbuf, uint8_t *));
/* Check against minimal length. */
if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags &
PKT_TX_DYNF_NOINLINE) {
/*
* The hint flag not to inline packet
* data is set. Check whether we can
* follow the hint.
*/
if ((!MLX5_TXOFF_CONFIG(EMPW) &&
txq->inlen_mode) ||
(MLX5_TXOFF_CONFIG(MPW) &&
txq->inlen_mode)) {
/*
* The hardware requires the
* minimal inline data header.
*/
goto single_min_inline;
}
if (MLX5_TXOFF_CONFIG(VLAN) &&
vlan && !txq->vlan_en) {
/*
* We must insert VLAN tag
* by software means.
*/
goto single_part_inline;
}
goto single_no_inline;
}
/*
* Completely inlined packet data WQE:
* - Control Segment, SEND opcode
* - Ethernet Segment, no VLAN insertion
* - Data inlined, VLAN optionally inserted
* - Alignment to MLX5_WSEG_SIZE
* Have to estimate amount of WQEBBs
*/
seg_n = (inlen + 3 * MLX5_WSEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
/* Check if there are enough WQEBBs. */
wqe_n = (seg_n + 3) / 4;
if (wqe_n > loc->wqe_free)
return MLX5_TXCMP_CODE_EXIT;
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, seg_n,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_data(txq, loc, wqe,
vlan, inlen, 0, olx);
txq->wqe_ci += wqe_n;
loc->wqe_free -= wqe_n;
/*
* Packet data are completely inlined,
* free the packet immediately.
*/
rte_pktmbuf_free_seg(loc->mbuf);
} else if ((!MLX5_TXOFF_CONFIG(EMPW) ||
MLX5_TXOFF_CONFIG(MPW)) &&
txq->inlen_mode) {
/*
* If minimal inlining is requested the eMPW
* feature should be disabled due to data is
* inlined into Ethernet Segment, which can
* not contain inlined data for eMPW due to
* segment shared for all packets.
*/
struct mlx5_wqe_dseg *restrict dseg;
unsigned int ds;
uint8_t *dptr;
/*
* The inline-mode settings require
* to inline the specified amount of
* data bytes to the Ethernet Segment.
* We should check the free space in
* WQE ring buffer to inline partially.
*/
single_min_inline:
MLX5_ASSERT(txq->inlen_send >= txq->inlen_mode);
MLX5_ASSERT(inlen > txq->inlen_mode);
MLX5_ASSERT(txq->inlen_mode >=
MLX5_ESEG_MIN_INLINE_SIZE);
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Finishing Data Segment of pointer type
*/
ds = (MLX5_WQE_CSEG_SIZE +
MLX5_WQE_ESEG_SIZE +
MLX5_WQE_DSEG_SIZE +
txq->inlen_mode -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WQE_DSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (loc->wqe_free < ((ds + 3) / 4))
return MLX5_TXCMP_CODE_EXIT;
/*
* Build the ordinary SEND WQE:
* - Control Segment
* - Ethernet Segment, inline inlen_mode bytes
* - Data Segment of pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds,
MLX5_OPCODE_SEND, olx);
dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan,
txq->inlen_mode,
0, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
txq->inlen_mode - vlan;
inlen -= txq->inlen_mode;
mlx5_tx_dseg_ptr(txq, loc, dseg,
dptr, inlen, olx);
/*
* WQE is built, update the loop parameters
* and got to the next packet.
*/
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* We have to store mbuf in elts.*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
txq->elts[txq->elts_head++ & txq->elts_m] =
loc->mbuf;
--loc->elts_free;
} else {
uint8_t *dptr;
unsigned int dlen;
/*
* Partially inlined packet data WQE, we have
* some space in title WQEBB, we can fill it
* with some packet data. It takes one WQEBB,
* it is available, no extra space check:
* - Control Segment, SEND opcode
* - Ethernet Segment, no VLAN insertion
* - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data
* - Data Segment, pointer type
*
* We also get here if VLAN insertion is not
* supported by HW, the inline is enabled.
*/
single_part_inline:
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 4,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
MLX5_ESEG_MIN_INLINE_SIZE - vlan;
/*
* The length check is performed above, by
* comparing with txq->inlen_send. We should
* not get overflow here.
*/
MLX5_ASSERT(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE;
mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1],
dptr, dlen, olx);
++txq->wqe_ci;
--loc->wqe_free;
/* We have to store mbuf in elts.*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
txq->elts[txq->elts_head++ & txq->elts_m] =
loc->mbuf;
--loc->elts_free;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += vlan +
rte_pktmbuf_data_len(loc->mbuf);
#endif
} else {
/*
* No inline at all, it means the CPU cycles saving
* is prioritized at configuration, we should not
* copy any packet data to WQE.
*
* SEND WQE, one WQEBB:
* - Control Segment, SEND opcode
* - Ethernet Segment, optional VLAN, no inline
* - Data Segment, pointer type
*/
single_no_inline:
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 3,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_none(txq, loc, wqe, olx);
mlx5_tx_dseg_ptr
(txq, loc, &wqe->dseg[0],
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
++txq->wqe_ci;
--loc->wqe_free;
/*
* We should not store mbuf pointer in elts
* if no inlining is configured, this is done
* by calling routine in a batch copy.
*/
MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
--loc->elts_free;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
txq->stats.obytes +=
sizeof(struct rte_vlan_hdr);
#endif
}
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE))
return ret;
}
MLX5_ASSERT(false);
}
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
enum mlx5_txcmp_code ret;
ret = mlx5_tx_able_to_empw(txq, loc, olx, false);
if (ret == MLX5_TXCMP_CODE_SINGLE)
goto ordinary_send;
MLX5_ASSERT(ret == MLX5_TXCMP_CODE_EMPW);
for (;;) {
/* Optimize for inline/no inline eMPW send. */
ret = (MLX5_TXOFF_CONFIG(INLINE)) ?
mlx5_tx_burst_empw_inline
(txq, pkts, pkts_n, loc, olx) :
mlx5_tx_burst_empw_simple
(txq, pkts, pkts_n, loc, olx);
if (ret != MLX5_TXCMP_CODE_SINGLE)
return ret;
/* The resources to send one packet should remain. */
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
ordinary_send:
ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx);
MLX5_ASSERT(ret != MLX5_TXCMP_CODE_SINGLE);
if (ret != MLX5_TXCMP_CODE_EMPW)
return ret;
/* The resources to send one packet should remain. */
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
}
}
/**
* DPDK Tx callback template. This is configured template
* used to generate routines optimized for specified offload setup.
* One of this generated functions is chosen at SQ configuration
* time.
*
* @param txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param olx
* Configured offloads mask, presents the bits of MLX5_TXOFF_CONFIG_xxx
* values. Should be static to take compile time static configuration
* advantages.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static __rte_always_inline uint16_t
mlx5_tx_burst_tmpl(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
uint16_t pkts_n,
unsigned int olx)
{
struct mlx5_txq_local loc;
enum mlx5_txcmp_code ret;
unsigned int part;
MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
if (unlikely(!pkts_n))
return 0;
loc.pkts_sent = 0;
loc.pkts_copy = 0;
loc.wqe_last = NULL;
send_loop:
loc.pkts_loop = loc.pkts_sent;
/*
* Check if there are some CQEs, if any:
* - process an encountered errors
* - process the completed WQEs
* - free related mbufs
* - doorbell the NIC about processed CQEs
*/
rte_prefetch0(*(pkts + loc.pkts_sent));
mlx5_tx_handle_completion(txq, olx);
/*
* Calculate the number of available resources - elts and WQEs.
* There are two possible different scenarios:
* - no data inlining into WQEs, one WQEBB may contains upto
* four packets, in this case elts become scarce resource
* - data inlining into WQEs, one packet may require multiple
* WQEBBs, the WQEs become the limiting factor.
*/
MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
loc.elts_free = txq->elts_s -
(uint16_t)(txq->elts_head - txq->elts_tail);
MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
loc.wqe_free = txq->wqe_s -
(uint16_t)(txq->wqe_ci - txq->wqe_pi);
if (unlikely(!loc.elts_free || !loc.wqe_free))
goto burst_exit;
for (;;) {
/*
* Fetch the packet from array. Usually this is
* the first packet in series of multi/single
* segment packets.
*/
loc.mbuf = *(pkts + loc.pkts_sent);
/* Dedicated branch for multi-segment packets. */
if (MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc.mbuf) > 1)) {
/*
* Multi-segment packet encountered.
* Hardware is able to process it only
* with SEND/TSO opcodes, one packet
* per WQE, do it in dedicated routine.
*/
enter_send_multi:
MLX5_ASSERT(loc.pkts_sent >= loc.pkts_copy);
part = loc.pkts_sent - loc.pkts_copy;
if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
/*
* There are some single-segment mbufs not
* stored in elts. The mbufs must be in the
* same order as WQEs, so we must copy the
* mbufs to elts here, before the coming
* multi-segment packet mbufs is appended.
*/
mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy,
part, olx);
loc.pkts_copy = loc.pkts_sent;
}
MLX5_ASSERT(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx);
if (!MLX5_TXOFF_CONFIG(INLINE))
loc.pkts_copy = loc.pkts_sent;
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT) {
/*
* The routine returns this code when
* all packets are sent or there is no
* enough resources to complete request.
*/
break;
}
if (ret == MLX5_TXCMP_CODE_ERROR) {
/*
* The routine returns this code when
* some error in the incoming packets
* format occurred.
*/
txq->stats.oerrors++;
break;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
/*
* The single-segment packet was encountered
* in the array, try to send it with the
* best optimized way, possible engaging eMPW.
*/
goto enter_send_single;
}
if (MLX5_TXOFF_CONFIG(TSO) &&
ret == MLX5_TXCMP_CODE_TSO) {
/*
* The single-segment TSO packet was
* encountered in the array.
*/
goto enter_send_tso;
}
/* We must not get here. Something is going wrong. */
MLX5_ASSERT(false);
txq->stats.oerrors++;
break;
}
/* Dedicated branch for single-segment TSO packets. */
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) {
/*
* TSO might require special way for inlining
* (dedicated parameters) and is sent with
* MLX5_OPCODE_TSO opcode only, provide this
* in dedicated branch.
*/
enter_send_tso:
MLX5_ASSERT(NB_SEGS(loc.mbuf) == 1);
MLX5_ASSERT(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx);
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT)
break;
if (ret == MLX5_TXCMP_CODE_ERROR) {
txq->stats.oerrors++;
break;
}
if (ret == MLX5_TXCMP_CODE_SINGLE)
goto enter_send_single;
if (MLX5_TXOFF_CONFIG(MULTI) &&
ret == MLX5_TXCMP_CODE_MULTI) {
/*
* The multi-segment packet was
* encountered in the array.
*/
goto enter_send_multi;
}
/* We must not get here. Something is going wrong. */
MLX5_ASSERT(false);
txq->stats.oerrors++;
break;
}
/*
* The dedicated branch for the single-segment packets
* without TSO. Often these ones can be sent using
* MLX5_OPCODE_EMPW with multiple packets in one WQE.
* The routine builds the WQEs till it encounters
* the TSO or multi-segment packet (in case if these
* offloads are requested at SQ configuration time).
*/
enter_send_single:
MLX5_ASSERT(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx);
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT)
break;
if (ret == MLX5_TXCMP_CODE_ERROR) {
txq->stats.oerrors++;
break;
}
if (MLX5_TXOFF_CONFIG(MULTI) &&
ret == MLX5_TXCMP_CODE_MULTI) {
/*
* The multi-segment packet was
* encountered in the array.
*/
goto enter_send_multi;
}
if (MLX5_TXOFF_CONFIG(TSO) &&
ret == MLX5_TXCMP_CODE_TSO) {
/*
* The single-segment TSO packet was
* encountered in the array.
*/
goto enter_send_tso;
}
/* We must not get here. Something is going wrong. */
MLX5_ASSERT(false);
txq->stats.oerrors++;
break;
}
/*
* Main Tx loop is completed, do the rest:
* - set completion request if thresholds are reached
* - doorbell the hardware
* - copy the rest of mbufs to elts (if any)
*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE) ||
loc.pkts_sent >= loc.pkts_copy);
/* Take a shortcut if nothing is sent. */
if (unlikely(loc.pkts_sent == loc.pkts_loop))
goto burst_exit;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, &loc, olx);
/*
* Ring QP doorbell immediately after WQE building completion
* to improve latencies. The pure software related data treatment
* can be completed after doorbell. Tx CQEs for this SQ are
* processed in this thread only by the polling.
*
* The rdma core library can map doorbell register in two ways,
* depending on the environment variable "MLX5_SHUT_UP_BF":
*
* - as regular cached memory, the variable is either missing or
* set to zero. This type of mapping may cause the significant
* doorbell register writing latency and requires explicit
* memory write barrier to mitigate this issue and prevent
* write combining.
*
* - as non-cached memory, the variable is present and set to
* not "0" value. This type of mapping may cause performance
* impact under heavy loading conditions but the explicit write
* memory barrier is not required and it may improve core
* performance.
*
* - the legacy behaviour (prior 19.08 release) was to use some
* heuristics to decide whether write memory barrier should
* be performed. This behavior is supported with specifying
* tx_db_nc=2, write barrier is skipped if application
* provides the full recommended burst of packets, it
* supposes the next packets are coming and the write barrier
* will be issued on the next burst (after descriptor writing,
* at least).
*/
mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, !txq->db_nc &&
(!txq->db_heu || pkts_n % MLX5_TX_DEFAULT_BURST));
/* Not all of the mbufs may be stored into elts yet. */
part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent - loc.pkts_copy;
if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
/*
* There are some single-segment mbufs not stored in elts.
* It can be only if the last packet was single-segment.
* The copying is gathered into one place due to it is
* a good opportunity to optimize that with SIMD.
* Unfortunately if inlining is enabled the gaps in
* pointer array may happen due to early freeing of the
* inlined mbufs.
*/
mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx);
loc.pkts_copy = loc.pkts_sent;
}
MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
if (pkts_n > loc.pkts_sent) {
/*
* If burst size is large there might be no enough CQE
* fetched from completion queue and no enough resources
* freed to send all the packets.
*/
goto send_loop;
}
burst_exit:
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += loc.pkts_sent;
#endif
return loc.pkts_sent;
}
/* Generate routines with Enhanced Multi-Packet Write support. */
MLX5_TXOFF_DECL(full_empw,
MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(none_empw,
MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(md_empw,
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mt_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mtsc_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mti_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mtv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mtiv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(sc_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(sci_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(scv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(sciv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(i_empw,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(v_empw,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(iv_empw,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
/* Generate routines without Enhanced Multi-Packet Write support. */
MLX5_TXOFF_DECL(full,
MLX5_TXOFF_CONFIG_FULL)
MLX5_TXOFF_DECL(none,
MLX5_TXOFF_CONFIG_NONE)
MLX5_TXOFF_DECL(md,
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mt,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mtsc,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mti,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mtv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mtiv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(sc,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(sci,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(scv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(sciv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(i,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(v,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(iv,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
/*
* Generate routines with Legacy Multi-Packet Write support.
* This mode is supported by ConnectX-4LX only and imposes
* offload limitations, not supported:
* - ACL/Flows (metadata are becoming meaningless)
* - WQE Inline headers
* - SRIOV (E-Switch offloads)
* - VLAN insertion
* - tunnel encapsulation/decapsulation
* - TSO
*/
MLX5_TXOFF_DECL(none_mpw,
MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW)
MLX5_TXOFF_DECL(mci_mpw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW)
MLX5_TXOFF_DECL(mc_mpw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW)
MLX5_TXOFF_DECL(i_mpw,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW)
/*
* Array of declared and compiled Tx burst function and corresponding
* supported offloads set. The array is used to select the Tx burst
* function for specified offloads set at Tx queue configuration time.
*/
const struct {
eth_tx_burst_t func;
unsigned int olx;
} txoff_func[] = {
MLX5_TXOFF_INFO(full_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(none_empw,
MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(md_empw,
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mt_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mtsc_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mti_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mtv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mtiv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(sc_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(sci_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(scv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(sciv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(i_empw,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(v_empw,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(iv_empw,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(full,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(none,
MLX5_TXOFF_CONFIG_NONE)
MLX5_TXOFF_INFO(md,
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mt,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mtsc,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mti,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mtv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mtiv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(sc,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(sci,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(scv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(sciv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(i,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(v,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(iv,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(none_mpw,
MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW)
MLX5_TXOFF_INFO(mci_mpw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW)
MLX5_TXOFF_INFO(mc_mpw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_EMPW | MLX5_TXOFF_CONFIG_MPW)
MLX5_TXOFF_INFO(i_mpw,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW)
};
/**
* Configure the Tx function to use. The routine checks configured
* Tx offloads for the device and selects appropriate Tx burst
* routine. There are multiple Tx burst routines compiled from
* the same template in the most optimal way for the dedicated
* Tx offloads set.
*
* @param dev
* Pointer to private data structure.
*
* @return
* Pointer to selected Tx burst function.
*/
eth_tx_burst_t
mlx5_select_tx_function(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_config *config = &priv->config;
uint64_t tx_offloads = dev->data->dev_conf.txmode.offloads;
unsigned int diff = 0, olx = 0, i, m;
static_assert(MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE <=
MLX5_DSEG_MAX, "invalid WQE max size");
static_assert(MLX5_WQE_CSEG_SIZE == MLX5_WSEG_SIZE,
"invalid WQE Control Segment size");
static_assert(MLX5_WQE_ESEG_SIZE == MLX5_WSEG_SIZE,
"invalid WQE Ethernet Segment size");
static_assert(MLX5_WQE_DSEG_SIZE == MLX5_WSEG_SIZE,
"invalid WQE Data Segment size");
static_assert(MLX5_WQE_SIZE == 4 * MLX5_WSEG_SIZE,
"invalid WQE size");
MLX5_ASSERT(priv);
if (tx_offloads & DEV_TX_OFFLOAD_MULTI_SEGS) {
/* We should support Multi-Segment Packets. */
olx |= MLX5_TXOFF_CONFIG_MULTI;
}
if (tx_offloads & (DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO)) {
/* We should support TCP Send Offload. */
olx |= MLX5_TXOFF_CONFIG_TSO;
}
if (tx_offloads & (DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
/* We should support Software Parser for Tunnels. */
olx |= MLX5_TXOFF_CONFIG_SWP;
}
if (tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
/* We should support IP/TCP/UDP Checksums. */
olx |= MLX5_TXOFF_CONFIG_CSUM;
}
if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT) {
/* We should support VLAN insertion. */
olx |= MLX5_TXOFF_CONFIG_VLAN;
}
if (priv->txqs_n && (*priv->txqs)[0]) {
struct mlx5_txq_data *txd = (*priv->txqs)[0];
if (txd->inlen_send) {
/*
* Check the data inline requirements. Data inline
* is enabled on per device basis, we can check
* the first Tx queue only.
*
* If device does not support VLAN insertion in WQE
* and some queues are requested to perform VLAN
* insertion offload than inline must be enabled.
*/
olx |= MLX5_TXOFF_CONFIG_INLINE;
}
}
if (config->mps == MLX5_MPW_ENHANCED &&
config->txq_inline_min <= 0) {
/*
* The NIC supports Enhanced Multi-Packet Write
* and does not require minimal inline data.
*/
olx |= MLX5_TXOFF_CONFIG_EMPW;
}
if (rte_flow_dynf_metadata_avail()) {
/* We should support Flow metadata. */
olx |= MLX5_TXOFF_CONFIG_METADATA;
}
if (config->mps == MLX5_MPW) {
/*
* The NIC supports Legacy Multi-Packet Write.
* The MLX5_TXOFF_CONFIG_MPW controls the
* descriptor building method in combination
* with MLX5_TXOFF_CONFIG_EMPW.
*/
if (!(olx & (MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)))
olx |= MLX5_TXOFF_CONFIG_EMPW |
MLX5_TXOFF_CONFIG_MPW;
}
/*
* Scan the routines table to find the minimal
* satisfying routine with requested offloads.
*/
m = RTE_DIM(txoff_func);
for (i = 0; i < RTE_DIM(txoff_func); i++) {
unsigned int tmp;
tmp = txoff_func[i].olx;
if (tmp == olx) {
/* Meets requested offloads exactly.*/
m = i;
break;
}
if ((tmp & olx) != olx) {
/* Does not meet requested offloads at all. */
continue;
}
if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_EMPW)
/* Do not enable eMPW if not configured. */
continue;
if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_INLINE)
/* Do not enable inlining if not configured. */
continue;
/*
* Some routine meets the requirements.
* Check whether it has minimal amount
* of not requested offloads.
*/
tmp = __builtin_popcountl(tmp & ~olx);
if (m >= RTE_DIM(txoff_func) || tmp < diff) {
/* First or better match, save and continue. */
m = i;
diff = tmp;
continue;
}
if (tmp == diff) {
tmp = txoff_func[i].olx ^ txoff_func[m].olx;
if (__builtin_ffsl(txoff_func[i].olx & ~tmp) <
__builtin_ffsl(txoff_func[m].olx & ~tmp)) {
/* Lighter not requested offload. */
m = i;
}
}
}
if (m >= RTE_DIM(txoff_func)) {
DRV_LOG(DEBUG, "port %u has no selected Tx function"
" for requested offloads %04X",
dev->data->port_id, olx);
return NULL;
}
DRV_LOG(DEBUG, "port %u has selected Tx function"
" supporting offloads %04X/%04X",
dev->data->port_id, olx, txoff_func[m].olx);
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MULTI)
DRV_LOG(DEBUG, "\tMULTI (multi segment)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TSO)
DRV_LOG(DEBUG, "\tTSO (TCP send offload)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_SWP)
DRV_LOG(DEBUG, "\tSWP (software parser)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_CSUM)
DRV_LOG(DEBUG, "\tCSUM (checksum offload)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_INLINE)
DRV_LOG(DEBUG, "\tINLIN (inline data)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_VLAN)
DRV_LOG(DEBUG, "\tVLANI (VLAN insertion)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_METADATA)
DRV_LOG(DEBUG, "\tMETAD (tx Flow metadata)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_EMPW) {
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MPW)
DRV_LOG(DEBUG, "\tMPW (Legacy MPW)");
else
DRV_LOG(DEBUG, "\tEMPW (Enhanced MPW)");
}
return txoff_func[m].func;
}
/**
* DPDK callback to get the TX queue information
*
* @param dev
* Pointer to the device structure.
*
* @param tx_queue_id
* Tx queue identificator.
*
* @param qinfo
* Pointer to the TX queue information structure.
*
* @return
* None.
*/
void
mlx5_txq_info_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
struct rte_eth_txq_info *qinfo)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[tx_queue_id];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
if (!txq)
return;
qinfo->nb_desc = txq->elts_s;
qinfo->conf.tx_thresh.pthresh = 0;
qinfo->conf.tx_thresh.hthresh = 0;
qinfo->conf.tx_thresh.wthresh = 0;
qinfo->conf.tx_rs_thresh = 0;
qinfo->conf.tx_free_thresh = 0;
qinfo->conf.tx_deferred_start = txq_ctrl ? 0 : 1;
qinfo->conf.offloads = dev->data->dev_conf.txmode.offloads;
}
/**
* DPDK callback to get the TX packet burst mode information
*
* @param dev
* Pointer to the device structure.
*
* @param tx_queue_id
* Tx queue identificatior.
*
* @param mode
* Pointer to the burts mode information.
*
* @return
* 0 as success, -EINVAL as failure.
*/
int
mlx5_tx_burst_mode_get(struct rte_eth_dev *dev,
uint16_t tx_queue_id __rte_unused,
struct rte_eth_burst_mode *mode)
{
eth_tx_burst_t pkt_burst = dev->tx_pkt_burst;
unsigned int i, olx;
for (i = 0; i < RTE_DIM(txoff_func); i++) {
if (pkt_burst == txoff_func[i].func) {
olx = txoff_func[i].olx;
snprintf(mode->info, sizeof(mode->info),
"%s%s%s%s%s%s%s%s",
(olx & MLX5_TXOFF_CONFIG_EMPW) ?
((olx & MLX5_TXOFF_CONFIG_MPW) ?
"Legacy MPW" : "Enhanced MPW") : "No MPW",
(olx & MLX5_TXOFF_CONFIG_MULTI) ?
" + MULTI" : "",
(olx & MLX5_TXOFF_CONFIG_TSO) ?
" + TSO" : "",
(olx & MLX5_TXOFF_CONFIG_SWP) ?
" + SWP" : "",
(olx & MLX5_TXOFF_CONFIG_CSUM) ?
" + CSUM" : "",
(olx & MLX5_TXOFF_CONFIG_INLINE) ?
" + INLINE" : "",
(olx & MLX5_TXOFF_CONFIG_VLAN) ?
" + VLAN" : "",
(olx & MLX5_TXOFF_CONFIG_METADATA) ?
" + METADATA" : "");
return 0;
}
}
return -EINVAL;
}