numam-dpdk/lib/librte_vhost/virtio_net.c
Maxime Coquelin fb3815cc61 vhost: handle virtually non-contiguous buffers in Rx-mrg
This patch enables the handling of buffers non-contiguous in
process virtual address space in the enqueue path when mergeable
buffers are used.

When virtio-net header doesn't fit in a single chunck, it is
computed in a local variable and copied to the buffer chuncks
afterwards.

For packet content, the copy length is limited to the chunck
size, next chuncks VAs being fetched afterward.

This issue has been assigned CVE-2018-1059.

Signed-off-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2018-04-23 17:12:13 +02:00

1645 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdint.h>
#include <stdbool.h>
#include <linux/virtio_net.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_vhost.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_arp.h>
#include <rte_spinlock.h>
#include <rte_malloc.h>
#include "iotlb.h"
#include "vhost.h"
#define MAX_PKT_BURST 32
#define MAX_BATCH_LEN 256
static bool
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
{
return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
}
static __rte_always_inline struct vring_desc *
alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct vring_desc *desc)
{
struct vring_desc *idesc;
uint64_t src, dst;
uint64_t len, remain = desc->len;
uint64_t desc_addr = desc->addr;
idesc = rte_malloc(__func__, desc->len, 0);
if (unlikely(!idesc))
return 0;
dst = (uint64_t)(uintptr_t)idesc;
while (remain) {
len = remain;
src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
VHOST_ACCESS_RO);
if (unlikely(!src || !len)) {
rte_free(idesc);
return 0;
}
rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
remain -= len;
dst += len;
desc_addr += len;
}
return idesc;
}
static __rte_always_inline void
free_ind_table(struct vring_desc *idesc)
{
rte_free(idesc);
}
static __rte_always_inline void
do_flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint16_t to, uint16_t from, uint16_t size)
{
rte_memcpy(&vq->used->ring[to],
&vq->shadow_used_ring[from],
size * sizeof(struct vring_used_elem));
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[to]),
size * sizeof(struct vring_used_elem));
}
static __rte_always_inline void
flush_shadow_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
if (used_idx + vq->shadow_used_idx <= vq->size) {
do_flush_shadow_used_ring(dev, vq, used_idx, 0,
vq->shadow_used_idx);
} else {
uint16_t size;
/* update used ring interval [used_idx, vq->size] */
size = vq->size - used_idx;
do_flush_shadow_used_ring(dev, vq, used_idx, 0, size);
/* update the left half used ring interval [0, left_size] */
do_flush_shadow_used_ring(dev, vq, 0, size,
vq->shadow_used_idx - size);
}
vq->last_used_idx += vq->shadow_used_idx;
rte_smp_wmb();
*(volatile uint16_t *)&vq->used->idx += vq->shadow_used_idx;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
}
static __rte_always_inline void
update_shadow_used_ring(struct vhost_virtqueue *vq,
uint16_t desc_idx, uint16_t len)
{
uint16_t i = vq->shadow_used_idx++;
vq->shadow_used_ring[i].id = desc_idx;
vq->shadow_used_ring[i].len = len;
}
static inline void
do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
struct batch_copy_elem *elem = vq->batch_copy_elems;
uint16_t count = vq->batch_copy_nb_elems;
int i;
for (i = 0; i < count; i++) {
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
vhost_log_write(dev, elem[i].log_addr, elem[i].len);
PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
}
}
static inline void
do_data_copy_dequeue(struct vhost_virtqueue *vq)
{
struct batch_copy_elem *elem = vq->batch_copy_elems;
uint16_t count = vq->batch_copy_nb_elems;
int i;
for (i = 0; i < count; i++)
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
}
/* avoid write operation when necessary, to lessen cache issues */
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
if ((var) != (val)) \
(var) = (val); \
} while (0)
static void
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
{
uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
if (m_buf->ol_flags & PKT_TX_TCP_SEG)
csum_l4 |= PKT_TX_TCP_CKSUM;
if (csum_l4) {
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
switch (csum_l4) {
case PKT_TX_TCP_CKSUM:
net_hdr->csum_offset = (offsetof(struct tcp_hdr,
cksum));
break;
case PKT_TX_UDP_CKSUM:
net_hdr->csum_offset = (offsetof(struct udp_hdr,
dgram_cksum));
break;
case PKT_TX_SCTP_CKSUM:
net_hdr->csum_offset = (offsetof(struct sctp_hdr,
cksum));
break;
}
} else {
ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
}
/* IP cksum verification cannot be bypassed, then calculate here */
if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
struct ipv4_hdr *ipv4_hdr;
ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct ipv4_hdr *,
m_buf->l2_len);
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
}
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
if (m_buf->ol_flags & PKT_TX_IPV4)
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
else
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
+ m_buf->l4_len;
} else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
net_hdr->gso_size = m_buf->tso_segsz;
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
m_buf->l4_len;
} else {
ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
}
}
static __rte_always_inline int
copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct vring_desc *descs, struct rte_mbuf *m,
uint16_t desc_idx, uint32_t size)
{
uint32_t desc_avail, desc_offset;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
uint64_t desc_chunck_len;
struct vring_desc *desc;
uint64_t desc_addr, desc_gaddr;
/* A counter to avoid desc dead loop chain */
uint16_t nr_desc = 1;
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
uint16_t copy_nb = vq->batch_copy_nb_elems;
int error = 0;
desc = &descs[desc_idx];
desc_chunck_len = desc->len;
desc_gaddr = desc->addr;
desc_addr = vhost_iova_to_vva(dev, vq, desc_gaddr,
&desc_chunck_len, VHOST_ACCESS_RW);
/*
* Checking of 'desc_addr' placed outside of 'unlikely' macro to avoid
* performance issue with some versions of gcc (4.8.4 and 5.3.0) which
* otherwise stores offset on the stack instead of in a register.
*/
if (unlikely(desc->len < dev->vhost_hlen) || !desc_addr) {
error = -1;
goto out;
}
rte_prefetch0((void *)(uintptr_t)desc_addr);
if (likely(desc_chunck_len >= dev->vhost_hlen)) {
virtio_enqueue_offload(m,
(struct virtio_net_hdr *)(uintptr_t)desc_addr);
PRINT_PACKET(dev, (uintptr_t)desc_addr, dev->vhost_hlen, 0);
vhost_log_write(dev, desc_gaddr, dev->vhost_hlen);
} else {
struct virtio_net_hdr vnet_hdr;
uint64_t remain = dev->vhost_hlen;
uint64_t len;
uint64_t src = (uint64_t)(uintptr_t)&vnet_hdr, dst;
uint64_t guest_addr = desc_gaddr;
virtio_enqueue_offload(m, &vnet_hdr);
while (remain) {
len = remain;
dst = vhost_iova_to_vva(dev, vq, guest_addr,
&len, VHOST_ACCESS_RW);
if (unlikely(!dst || !len)) {
error = -1;
goto out;
}
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src, len);
PRINT_PACKET(dev, (uintptr_t)dst, (uint32_t)len, 0);
vhost_log_write(dev, guest_addr, len);
remain -= len;
guest_addr += len;
dst += len;
}
}
desc_avail = desc->len - dev->vhost_hlen;
if (unlikely(desc_chunck_len < dev->vhost_hlen)) {
desc_chunck_len = desc_avail;
desc_gaddr = desc->addr + dev->vhost_hlen;
desc_addr = vhost_iova_to_vva(dev,
vq, desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RW);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
} else {
desc_offset = dev->vhost_hlen;
desc_chunck_len -= dev->vhost_hlen;
}
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current mbuf, fetch next */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
/* done with current desc buf, fetch next */
if (desc_avail == 0) {
if ((desc->flags & VRING_DESC_F_NEXT) == 0) {
/* Room in vring buffer is not enough */
error = -1;
goto out;
}
if (unlikely(desc->next >= size || ++nr_desc > size)) {
error = -1;
goto out;
}
desc = &descs[desc->next];
desc_chunck_len = desc->len;
desc_gaddr = desc->addr;
desc_addr = vhost_iova_to_vva(dev, vq, desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RW);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
desc_avail = desc->len;
} else if (unlikely(desc_chunck_len == 0)) {
desc_chunck_len = desc_avail;
desc_gaddr += desc_offset;
desc_addr = vhost_iova_to_vva(dev,
vq, desc_gaddr,
&desc_chunck_len, VHOST_ACCESS_RW);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
}
cpy_len = RTE_MIN(desc_chunck_len, mbuf_avail);
if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
rte_memcpy((void *)((uintptr_t)(desc_addr +
desc_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_write(dev, desc_gaddr + desc_offset, cpy_len);
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
cpy_len, 0);
} else {
batch_copy[copy_nb].dst =
(void *)((uintptr_t)(desc_addr + desc_offset));
batch_copy[copy_nb].src =
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
batch_copy[copy_nb].log_addr = desc_gaddr + desc_offset;
batch_copy[copy_nb].len = cpy_len;
copy_nb++;
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
desc_chunck_len -= cpy_len;
}
out:
vq->batch_copy_nb_elems = copy_nb;
return error;
}
/**
* This function adds buffers to the virtio devices RX virtqueue. Buffers can
* be received from the physical port or from another virtio device. A packet
* count is returned to indicate the number of packets that are successfully
* added to the RX queue. This function works when the mbuf is scattered, but
* it doesn't support the mergeable feature.
*/
static __rte_always_inline uint32_t
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint16_t avail_idx, free_entries, start_idx;
uint16_t desc_indexes[MAX_PKT_BURST];
struct vring_desc *descs;
uint16_t used_idx;
uint32_t i, sz;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
rte_spinlock_lock(&vq->access_lock);
if (unlikely(vq->enabled == 0))
goto out_access_unlock;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(vq->access_ok == 0)) {
if (unlikely(vring_translate(dev, vq) < 0)) {
count = 0;
goto out;
}
}
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
start_idx = vq->last_used_idx;
free_entries = avail_idx - start_idx;
count = RTE_MIN(count, free_entries);
count = RTE_MIN(count, (uint32_t)MAX_PKT_BURST);
if (count == 0)
goto out;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) start_idx %d | end_idx %d\n",
dev->vid, start_idx, start_idx + count);
vq->batch_copy_nb_elems = 0;
/* Retrieve all of the desc indexes first to avoid caching issues. */
rte_prefetch0(&vq->avail->ring[start_idx & (vq->size - 1)]);
for (i = 0; i < count; i++) {
used_idx = (start_idx + i) & (vq->size - 1);
desc_indexes[i] = vq->avail->ring[used_idx];
vq->used->ring[used_idx].id = desc_indexes[i];
vq->used->ring[used_idx].len = pkts[i]->pkt_len +
dev->vhost_hlen;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
rte_prefetch0(&vq->desc[desc_indexes[0]]);
for (i = 0; i < count; i++) {
struct vring_desc *idesc = NULL;
uint16_t desc_idx = desc_indexes[i];
int err;
if (vq->desc[desc_idx].flags & VRING_DESC_F_INDIRECT) {
uint64_t dlen = vq->desc[desc_idx].len;
descs = (struct vring_desc *)(uintptr_t)
vhost_iova_to_vva(dev,
vq, vq->desc[desc_idx].addr,
&dlen, VHOST_ACCESS_RO);
if (unlikely(!descs)) {
count = i;
break;
}
if (unlikely(dlen < vq->desc[desc_idx].len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idesc = alloc_copy_ind_table(dev, vq,
&vq->desc[desc_idx]);
if (unlikely(!idesc))
break;
descs = idesc;
}
desc_idx = 0;
sz = vq->desc[desc_idx].len / sizeof(*descs);
} else {
descs = vq->desc;
sz = vq->size;
}
err = copy_mbuf_to_desc(dev, vq, descs, pkts[i], desc_idx, sz);
if (unlikely(err)) {
count = i;
free_ind_table(idesc);
break;
}
if (i + 1 < count)
rte_prefetch0(&vq->desc[desc_indexes[i+1]]);
if (unlikely(!!idesc))
free_ind_table(idesc);
}
do_data_copy_enqueue(dev, vq);
rte_smp_wmb();
*(volatile uint16_t *)&vq->used->idx += count;
vq->last_used_idx += count;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
vhost_vring_call(dev, vq);
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
return count;
}
static __rte_always_inline int
fill_vec_buf(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t avail_idx, uint32_t *vec_idx,
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
uint16_t *desc_chain_len)
{
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
uint32_t vec_id = *vec_idx;
uint32_t len = 0;
uint64_t dlen;
struct vring_desc *descs = vq->desc;
struct vring_desc *idesc = NULL;
*desc_chain_head = idx;
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
dlen = vq->desc[idx].len;
descs = (struct vring_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
&dlen,
VHOST_ACCESS_RO);
if (unlikely(!descs))
return -1;
if (unlikely(dlen < vq->desc[idx].len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idesc = alloc_copy_ind_table(dev, vq, &vq->desc[idx]);
if (unlikely(!idesc))
return -1;
descs = idesc;
}
idx = 0;
}
while (1) {
if (unlikely(vec_id >= BUF_VECTOR_MAX || idx >= vq->size)) {
free_ind_table(idesc);
return -1;
}
len += descs[idx].len;
buf_vec[vec_id].buf_addr = descs[idx].addr;
buf_vec[vec_id].buf_len = descs[idx].len;
buf_vec[vec_id].desc_idx = idx;
vec_id++;
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
break;
idx = descs[idx].next;
}
*desc_chain_len = len;
*vec_idx = vec_id;
if (unlikely(!!idesc))
free_ind_table(idesc);
return 0;
}
/*
* Returns -1 on fail, 0 on success
*/
static inline int
reserve_avail_buf_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t size, struct buf_vector *buf_vec,
uint16_t *num_buffers, uint16_t avail_head)
{
uint16_t cur_idx;
uint32_t vec_idx = 0;
uint16_t tries = 0;
uint16_t head_idx = 0;
uint16_t len = 0;
*num_buffers = 0;
cur_idx = vq->last_avail_idx;
while (size > 0) {
if (unlikely(cur_idx == avail_head))
return -1;
if (unlikely(fill_vec_buf(dev, vq, cur_idx, &vec_idx, buf_vec,
&head_idx, &len) < 0))
return -1;
len = RTE_MIN(len, size);
update_shadow_used_ring(vq, head_idx, len);
size -= len;
cur_idx++;
tries++;
*num_buffers += 1;
/*
* if we tried all available ring items, and still
* can't get enough buf, it means something abnormal
* happened.
*/
if (unlikely(tries >= vq->size))
return -1;
}
return 0;
}
static __rte_always_inline int
copy_mbuf_to_desc_mergeable(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct rte_mbuf *m, struct buf_vector *buf_vec,
uint16_t num_buffers)
{
uint32_t vec_idx = 0;
uint64_t desc_addr, desc_gaddr;
uint32_t mbuf_offset, mbuf_avail;
uint32_t desc_offset, desc_avail;
uint32_t cpy_len;
uint64_t desc_chunck_len;
uint64_t hdr_addr, hdr_phys_addr;
struct rte_mbuf *hdr_mbuf;
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
uint16_t copy_nb = vq->batch_copy_nb_elems;
int error = 0;
if (unlikely(m == NULL)) {
error = -1;
goto out;
}
desc_chunck_len = buf_vec[vec_idx].buf_len;
desc_gaddr = buf_vec[vec_idx].buf_addr;
desc_addr = vhost_iova_to_vva(dev, vq,
desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RW);
if (buf_vec[vec_idx].buf_len < dev->vhost_hlen || !desc_addr) {
error = -1;
goto out;
}
hdr_mbuf = m;
hdr_addr = desc_addr;
if (unlikely(desc_chunck_len < dev->vhost_hlen))
hdr = &tmp_hdr;
else
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
hdr_phys_addr = desc_gaddr;
rte_prefetch0((void *)(uintptr_t)hdr_addr);
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) RX: num merge buffers %d\n",
dev->vid, num_buffers);
desc_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
if (unlikely(desc_chunck_len < dev->vhost_hlen)) {
desc_chunck_len = desc_avail;
desc_gaddr += dev->vhost_hlen;
desc_addr = vhost_iova_to_vva(dev, vq,
desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RW);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
} else {
desc_offset = dev->vhost_hlen;
desc_chunck_len -= dev->vhost_hlen;
}
mbuf_avail = rte_pktmbuf_data_len(m);
mbuf_offset = 0;
while (mbuf_avail != 0 || m->next != NULL) {
/* done with current desc buf, get the next one */
if (desc_avail == 0) {
vec_idx++;
desc_chunck_len = buf_vec[vec_idx].buf_len;
desc_gaddr = buf_vec[vec_idx].buf_addr;
desc_addr =
vhost_iova_to_vva(dev, vq,
desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RW);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
/* Prefetch buffer address. */
rte_prefetch0((void *)(uintptr_t)desc_addr);
desc_offset = 0;
desc_avail = buf_vec[vec_idx].buf_len;
} else if (unlikely(desc_chunck_len == 0)) {
desc_chunck_len = desc_avail;
desc_gaddr += desc_offset;
desc_addr = vhost_iova_to_vva(dev, vq,
desc_gaddr,
&desc_chunck_len, VHOST_ACCESS_RW);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
}
/* done with current mbuf, get the next one */
if (mbuf_avail == 0) {
m = m->next;
mbuf_offset = 0;
mbuf_avail = rte_pktmbuf_data_len(m);
}
if (hdr_addr) {
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
ASSIGN_UNLESS_EQUAL(hdr->num_buffers, num_buffers);
if (unlikely(hdr == &tmp_hdr)) {
uint64_t len;
uint64_t remain = dev->vhost_hlen;
uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
uint64_t guest_addr = hdr_phys_addr;
while (remain) {
len = remain;
dst = vhost_iova_to_vva(dev, vq,
guest_addr, &len,
VHOST_ACCESS_RW);
if (unlikely(!dst || !len)) {
error = -1;
goto out;
}
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src,
len);
PRINT_PACKET(dev, (uintptr_t)dst,
(uint32_t)len, 0);
vhost_log_write(dev, guest_addr, len);
remain -= len;
guest_addr += len;
dst += len;
}
} else {
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
dev->vhost_hlen, 0);
vhost_log_write(dev, hdr_phys_addr,
dev->vhost_hlen);
}
hdr_addr = 0;
}
cpy_len = RTE_MIN(desc_chunck_len, mbuf_avail);
if (likely(cpy_len > MAX_BATCH_LEN || copy_nb >= vq->size)) {
rte_memcpy((void *)((uintptr_t)(desc_addr +
desc_offset)),
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
cpy_len);
vhost_log_write(dev, desc_gaddr + desc_offset, cpy_len);
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
cpy_len, 0);
} else {
batch_copy[copy_nb].dst =
(void *)((uintptr_t)(desc_addr + desc_offset));
batch_copy[copy_nb].src =
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
batch_copy[copy_nb].log_addr = desc_gaddr + desc_offset;
batch_copy[copy_nb].len = cpy_len;
copy_nb++;
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_offset += cpy_len;
desc_chunck_len -= cpy_len;
}
out:
vq->batch_copy_nb_elems = copy_nb;
return error;
}
static __rte_always_inline uint32_t
virtio_dev_merge_rx(struct virtio_net *dev, uint16_t queue_id,
struct rte_mbuf **pkts, uint32_t count)
{
struct vhost_virtqueue *vq;
uint32_t pkt_idx = 0;
uint16_t num_buffers;
struct buf_vector buf_vec[BUF_VECTOR_MAX];
uint16_t avail_head;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
rte_spinlock_lock(&vq->access_lock);
if (unlikely(vq->enabled == 0))
goto out_access_unlock;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(vq->access_ok == 0))
if (unlikely(vring_translate(dev, vq) < 0))
goto out;
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
if (count == 0)
goto out;
vq->batch_copy_nb_elems = 0;
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
vq->shadow_used_idx = 0;
avail_head = *((volatile uint16_t *)&vq->avail->idx);
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
if (unlikely(reserve_avail_buf_mergeable(dev, vq,
pkt_len, buf_vec, &num_buffers,
avail_head) < 0)) {
VHOST_LOG_DEBUG(VHOST_DATA,
"(%d) failed to get enough desc from vring\n",
dev->vid);
vq->shadow_used_idx -= num_buffers;
break;
}
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) current index %d | end index %d\n",
dev->vid, vq->last_avail_idx,
vq->last_avail_idx + num_buffers);
if (copy_mbuf_to_desc_mergeable(dev, vq, pkts[pkt_idx],
buf_vec, num_buffers) < 0) {
vq->shadow_used_idx -= num_buffers;
break;
}
vq->last_avail_idx += num_buffers;
}
do_data_copy_enqueue(dev, vq);
if (likely(vq->shadow_used_idx)) {
flush_shadow_used_ring(dev, vq);
vhost_vring_call(dev, vq);
}
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
return pkt_idx;
}
uint16_t
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
RTE_LOG(ERR, VHOST_DATA,
"(%d) %s: built-in vhost net backend is disabled.\n",
dev->vid, __func__);
return 0;
}
if (dev->features & (1 << VIRTIO_NET_F_MRG_RXBUF))
return virtio_dev_merge_rx(dev, queue_id, pkts, count);
else
return virtio_dev_rx(dev, queue_id, pkts, count);
}
static inline bool
virtio_net_with_host_offload(struct virtio_net *dev)
{
if (dev->features &
((1ULL << VIRTIO_NET_F_CSUM) |
(1ULL << VIRTIO_NET_F_HOST_ECN) |
(1ULL << VIRTIO_NET_F_HOST_TSO4) |
(1ULL << VIRTIO_NET_F_HOST_TSO6) |
(1ULL << VIRTIO_NET_F_HOST_UFO)))
return true;
return false;
}
static void
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
{
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
void *l3_hdr = NULL;
struct ether_hdr *eth_hdr;
uint16_t ethertype;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
m->l2_len = sizeof(struct ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == ETHER_TYPE_VLAN) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
m->l2_len += sizeof(struct vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
l3_hdr = (char *)eth_hdr + m->l2_len;
switch (ethertype) {
case ETHER_TYPE_IPv4:
ipv4_hdr = l3_hdr;
*l4_proto = ipv4_hdr->next_proto_id;
m->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV4;
break;
case ETHER_TYPE_IPv6:
ipv6_hdr = l3_hdr;
*l4_proto = ipv6_hdr->proto;
m->l3_len = sizeof(struct ipv6_hdr);
*l4_hdr = (char *)l3_hdr + m->l3_len;
m->ol_flags |= PKT_TX_IPV6;
break;
default:
m->l3_len = 0;
*l4_proto = 0;
*l4_hdr = NULL;
break;
}
}
static __rte_always_inline void
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
{
uint16_t l4_proto = 0;
void *l4_hdr = NULL;
struct tcp_hdr *tcp_hdr = NULL;
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
return;
parse_ethernet(m, &l4_proto, &l4_hdr);
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
switch (hdr->csum_offset) {
case (offsetof(struct tcp_hdr, cksum)):
if (l4_proto == IPPROTO_TCP)
m->ol_flags |= PKT_TX_TCP_CKSUM;
break;
case (offsetof(struct udp_hdr, dgram_cksum)):
if (l4_proto == IPPROTO_UDP)
m->ol_flags |= PKT_TX_UDP_CKSUM;
break;
case (offsetof(struct sctp_hdr, cksum)):
if (l4_proto == IPPROTO_SCTP)
m->ol_flags |= PKT_TX_SCTP_CKSUM;
break;
default:
break;
}
}
}
if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
case VIRTIO_NET_HDR_GSO_TCPV4:
case VIRTIO_NET_HDR_GSO_TCPV6:
tcp_hdr = l4_hdr;
m->ol_flags |= PKT_TX_TCP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
break;
case VIRTIO_NET_HDR_GSO_UDP:
m->ol_flags |= PKT_TX_UDP_SEG;
m->tso_segsz = hdr->gso_size;
m->l4_len = sizeof(struct udp_hdr);
break;
default:
RTE_LOG(WARNING, VHOST_DATA,
"unsupported gso type %u.\n", hdr->gso_type);
break;
}
}
}
static __rte_always_inline void
put_zmbuf(struct zcopy_mbuf *zmbuf)
{
zmbuf->in_use = 0;
}
static __rte_always_inline int
copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
struct vring_desc *descs, uint16_t max_desc,
struct rte_mbuf *m, uint16_t desc_idx,
struct rte_mempool *mbuf_pool)
{
struct vring_desc *desc;
uint64_t desc_addr, desc_gaddr;
uint32_t desc_avail, desc_offset;
uint32_t mbuf_avail, mbuf_offset;
uint32_t cpy_len;
uint64_t desc_chunck_len;
struct rte_mbuf *cur = m, *prev = m;
struct virtio_net_hdr tmp_hdr;
struct virtio_net_hdr *hdr = NULL;
/* A counter to avoid desc dead loop chain */
uint32_t nr_desc = 1;
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
uint16_t copy_nb = vq->batch_copy_nb_elems;
int error = 0;
desc = &descs[desc_idx];
if (unlikely((desc->len < dev->vhost_hlen)) ||
(desc->flags & VRING_DESC_F_INDIRECT)) {
error = -1;
goto out;
}
desc_chunck_len = desc->len;
desc_gaddr = desc->addr;
desc_addr = vhost_iova_to_vva(dev,
vq, desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RO);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
if (virtio_net_with_host_offload(dev)) {
if (unlikely(desc_chunck_len < sizeof(struct virtio_net_hdr))) {
uint64_t len = desc_chunck_len;
uint64_t remain = sizeof(struct virtio_net_hdr);
uint64_t src = desc_addr;
uint64_t dst = (uint64_t)(uintptr_t)&tmp_hdr;
uint64_t guest_addr = desc_gaddr;
/*
* No luck, the virtio-net header doesn't fit
* in a contiguous virtual area.
*/
while (remain) {
len = remain;
src = vhost_iova_to_vva(dev, vq,
guest_addr, &len,
VHOST_ACCESS_RO);
if (unlikely(!src || !len)) {
error = -1;
goto out;
}
rte_memcpy((void *)(uintptr_t)dst,
(void *)(uintptr_t)src, len);
guest_addr += len;
remain -= len;
dst += len;
}
hdr = &tmp_hdr;
} else {
hdr = (struct virtio_net_hdr *)((uintptr_t)desc_addr);
rte_prefetch0(hdr);
}
}
/*
* A virtio driver normally uses at least 2 desc buffers
* for Tx: the first for storing the header, and others
* for storing the data.
*/
if (likely((desc->len == dev->vhost_hlen) &&
(desc->flags & VRING_DESC_F_NEXT) != 0)) {
desc = &descs[desc->next];
if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
error = -1;
goto out;
}
desc_chunck_len = desc->len;
desc_gaddr = desc->addr;
desc_addr = vhost_iova_to_vva(dev,
vq, desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RO);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
desc_avail = desc->len;
nr_desc += 1;
} else {
desc_avail = desc->len - dev->vhost_hlen;
if (unlikely(desc_chunck_len < dev->vhost_hlen)) {
desc_chunck_len = desc_avail;
desc_gaddr += dev->vhost_hlen;
desc_addr = vhost_iova_to_vva(dev,
vq, desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RO);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
} else {
desc_offset = dev->vhost_hlen;
desc_chunck_len -= dev->vhost_hlen;
}
}
rte_prefetch0((void *)(uintptr_t)(desc_addr + desc_offset));
PRINT_PACKET(dev, (uintptr_t)(desc_addr + desc_offset),
(uint32_t)desc_chunck_len, 0);
mbuf_offset = 0;
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
while (1) {
uint64_t hpa;
cpy_len = RTE_MIN(desc_chunck_len, mbuf_avail);
/*
* A desc buf might across two host physical pages that are
* not continuous. In such case (gpa_to_hpa returns 0), data
* will be copied even though zero copy is enabled.
*/
if (unlikely(dev->dequeue_zero_copy && (hpa = gpa_to_hpa(dev,
desc_gaddr + desc_offset, cpy_len)))) {
cur->data_len = cpy_len;
cur->data_off = 0;
cur->buf_addr = (void *)(uintptr_t)(desc_addr
+ desc_offset);
cur->buf_iova = hpa;
/*
* In zero copy mode, one mbuf can only reference data
* for one or partial of one desc buff.
*/
mbuf_avail = cpy_len;
} else {
if (likely(cpy_len > MAX_BATCH_LEN ||
copy_nb >= vq->size ||
(hdr && cur == m) ||
desc->len != desc_chunck_len)) {
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
mbuf_offset),
(void *)((uintptr_t)(desc_addr +
desc_offset)),
cpy_len);
} else {
batch_copy[copy_nb].dst =
rte_pktmbuf_mtod_offset(cur, void *,
mbuf_offset);
batch_copy[copy_nb].src =
(void *)((uintptr_t)(desc_addr +
desc_offset));
batch_copy[copy_nb].len = cpy_len;
copy_nb++;
}
}
mbuf_avail -= cpy_len;
mbuf_offset += cpy_len;
desc_avail -= cpy_len;
desc_chunck_len -= cpy_len;
desc_offset += cpy_len;
/* This desc reaches to its end, get the next one */
if (desc_avail == 0) {
if ((desc->flags & VRING_DESC_F_NEXT) == 0)
break;
if (unlikely(desc->next >= max_desc ||
++nr_desc > max_desc)) {
error = -1;
goto out;
}
desc = &descs[desc->next];
if (unlikely(desc->flags & VRING_DESC_F_INDIRECT)) {
error = -1;
goto out;
}
desc_chunck_len = desc->len;
desc_gaddr = desc->addr;
desc_addr = vhost_iova_to_vva(dev,
vq, desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RO);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
rte_prefetch0((void *)(uintptr_t)desc_addr);
desc_offset = 0;
desc_avail = desc->len;
PRINT_PACKET(dev, (uintptr_t)desc_addr,
(uint32_t)desc_chunck_len, 0);
} else if (unlikely(desc_chunck_len == 0)) {
desc_chunck_len = desc_avail;
desc_gaddr += desc_offset;
desc_addr = vhost_iova_to_vva(dev, vq,
desc_gaddr,
&desc_chunck_len,
VHOST_ACCESS_RO);
if (unlikely(!desc_addr)) {
error = -1;
goto out;
}
desc_offset = 0;
PRINT_PACKET(dev, (uintptr_t)desc_addr,
(uint32_t)desc_chunck_len, 0);
}
/*
* This mbuf reaches to its end, get a new one
* to hold more data.
*/
if (mbuf_avail == 0) {
cur = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(cur == NULL)) {
RTE_LOG(ERR, VHOST_DATA, "Failed to "
"allocate memory for mbuf.\n");
error = -1;
goto out;
}
if (unlikely(dev->dequeue_zero_copy))
rte_mbuf_refcnt_update(cur, 1);
prev->next = cur;
prev->data_len = mbuf_offset;
m->nb_segs += 1;
m->pkt_len += mbuf_offset;
prev = cur;
mbuf_offset = 0;
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
}
}
prev->data_len = mbuf_offset;
m->pkt_len += mbuf_offset;
if (hdr)
vhost_dequeue_offload(hdr, m);
out:
vq->batch_copy_nb_elems = copy_nb;
return error;
}
static __rte_always_inline void
update_used_ring(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t used_idx, uint32_t desc_idx)
{
vq->used->ring[used_idx].id = desc_idx;
vq->used->ring[used_idx].len = 0;
vhost_log_used_vring(dev, vq,
offsetof(struct vring_used, ring[used_idx]),
sizeof(vq->used->ring[used_idx]));
}
static __rte_always_inline void
update_used_idx(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint32_t count)
{
if (unlikely(count == 0))
return;
rte_smp_wmb();
rte_smp_rmb();
vq->used->idx += count;
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
sizeof(vq->used->idx));
vhost_vring_call(dev, vq);
}
static __rte_always_inline struct zcopy_mbuf *
get_zmbuf(struct vhost_virtqueue *vq)
{
uint16_t i;
uint16_t last;
int tries = 0;
/* search [last_zmbuf_idx, zmbuf_size) */
i = vq->last_zmbuf_idx;
last = vq->zmbuf_size;
again:
for (; i < last; i++) {
if (vq->zmbufs[i].in_use == 0) {
vq->last_zmbuf_idx = i + 1;
vq->zmbufs[i].in_use = 1;
return &vq->zmbufs[i];
}
}
tries++;
if (tries == 1) {
/* search [0, last_zmbuf_idx) */
i = 0;
last = vq->last_zmbuf_idx;
goto again;
}
return NULL;
}
static __rte_always_inline bool
mbuf_is_consumed(struct rte_mbuf *m)
{
while (m) {
if (rte_mbuf_refcnt_read(m) > 1)
return false;
m = m->next;
}
return true;
}
static __rte_always_inline void
restore_mbuf(struct rte_mbuf *m)
{
uint32_t mbuf_size, priv_size;
while (m) {
priv_size = rte_pktmbuf_priv_size(m->pool);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
/* start of buffer is after mbuf structure and priv data */
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m = m->next;
}
}
uint16_t
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
{
struct virtio_net *dev;
struct rte_mbuf *rarp_mbuf = NULL;
struct vhost_virtqueue *vq;
uint32_t desc_indexes[MAX_PKT_BURST];
uint32_t used_idx;
uint32_t i = 0;
uint16_t free_entries;
uint16_t avail_idx;
dev = get_device(vid);
if (!dev)
return 0;
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
RTE_LOG(ERR, VHOST_DATA,
"(%d) %s: built-in vhost net backend is disabled.\n",
dev->vid, __func__);
return 0;
}
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
RTE_LOG(ERR, VHOST_DATA, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, queue_id);
return 0;
}
vq = dev->virtqueue[queue_id];
if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
return 0;
if (unlikely(vq->enabled == 0))
goto out_access_unlock;
vq->batch_copy_nb_elems = 0;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_lock(vq);
if (unlikely(vq->access_ok == 0))
if (unlikely(vring_translate(dev, vq) < 0))
goto out;
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf, *next;
int nr_updated = 0;
for (zmbuf = TAILQ_FIRST(&vq->zmbuf_list);
zmbuf != NULL; zmbuf = next) {
next = TAILQ_NEXT(zmbuf, next);
if (mbuf_is_consumed(zmbuf->mbuf)) {
used_idx = vq->last_used_idx++ & (vq->size - 1);
update_used_ring(dev, vq, used_idx,
zmbuf->desc_idx);
nr_updated += 1;
TAILQ_REMOVE(&vq->zmbuf_list, zmbuf, next);
restore_mbuf(zmbuf->mbuf);
rte_pktmbuf_free(zmbuf->mbuf);
put_zmbuf(zmbuf);
vq->nr_zmbuf -= 1;
}
}
update_used_idx(dev, vq, nr_updated);
}
/*
* Construct a RARP broadcast packet, and inject it to the "pkts"
* array, to looks like that guest actually send such packet.
*
* Check user_send_rarp() for more information.
*
* broadcast_rarp shares a cacheline in the virtio_net structure
* with some fields that are accessed during enqueue and
* rte_atomic16_cmpset() causes a write if using cmpxchg. This could
* result in false sharing between enqueue and dequeue.
*
* Prevent unnecessary false sharing by reading broadcast_rarp first
* and only performing cmpset if the read indicates it is likely to
* be set.
*/
if (unlikely(rte_atomic16_read(&dev->broadcast_rarp) &&
rte_atomic16_cmpset((volatile uint16_t *)
&dev->broadcast_rarp.cnt, 1, 0))) {
rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
if (rarp_mbuf == NULL) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to make RARP packet.\n");
return 0;
}
count -= 1;
}
free_entries = *((volatile uint16_t *)&vq->avail->idx) -
vq->last_avail_idx;
if (free_entries == 0)
goto out;
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) %s\n", dev->vid, __func__);
/* Prefetch available and used ring */
avail_idx = vq->last_avail_idx & (vq->size - 1);
used_idx = vq->last_used_idx & (vq->size - 1);
rte_prefetch0(&vq->avail->ring[avail_idx]);
rte_prefetch0(&vq->used->ring[used_idx]);
count = RTE_MIN(count, MAX_PKT_BURST);
count = RTE_MIN(count, free_entries);
VHOST_LOG_DEBUG(VHOST_DATA, "(%d) about to dequeue %u buffers\n",
dev->vid, count);
/* Retrieve all of the head indexes first to avoid caching issues. */
for (i = 0; i < count; i++) {
avail_idx = (vq->last_avail_idx + i) & (vq->size - 1);
used_idx = (vq->last_used_idx + i) & (vq->size - 1);
desc_indexes[i] = vq->avail->ring[avail_idx];
if (likely(dev->dequeue_zero_copy == 0))
update_used_ring(dev, vq, used_idx, desc_indexes[i]);
}
/* Prefetch descriptor index. */
rte_prefetch0(&vq->desc[desc_indexes[0]]);
for (i = 0; i < count; i++) {
struct vring_desc *desc, *idesc = NULL;
uint16_t sz, idx;
uint64_t dlen;
int err;
if (likely(i + 1 < count))
rte_prefetch0(&vq->desc[desc_indexes[i + 1]]);
if (vq->desc[desc_indexes[i]].flags & VRING_DESC_F_INDIRECT) {
dlen = vq->desc[desc_indexes[i]].len;
desc = (struct vring_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq,
vq->desc[desc_indexes[i]].addr,
&dlen,
VHOST_ACCESS_RO);
if (unlikely(!desc))
break;
if (unlikely(dlen < vq->desc[desc_indexes[i]].len)) {
/*
* The indirect desc table is not contiguous
* in process VA space, we have to copy it.
*/
idesc = alloc_copy_ind_table(dev, vq,
&vq->desc[desc_indexes[i]]);
if (unlikely(!idesc))
break;
desc = idesc;
}
rte_prefetch0(desc);
sz = vq->desc[desc_indexes[i]].len / sizeof(*desc);
idx = 0;
} else {
desc = vq->desc;
sz = vq->size;
idx = desc_indexes[i];
}
pkts[i] = rte_pktmbuf_alloc(mbuf_pool);
if (unlikely(pkts[i] == NULL)) {
RTE_LOG(ERR, VHOST_DATA,
"Failed to allocate memory for mbuf.\n");
free_ind_table(idesc);
break;
}
err = copy_desc_to_mbuf(dev, vq, desc, sz, pkts[i], idx,
mbuf_pool);
if (unlikely(err)) {
rte_pktmbuf_free(pkts[i]);
free_ind_table(idesc);
break;
}
if (unlikely(dev->dequeue_zero_copy)) {
struct zcopy_mbuf *zmbuf;
zmbuf = get_zmbuf(vq);
if (!zmbuf) {
rte_pktmbuf_free(pkts[i]);
free_ind_table(idesc);
break;
}
zmbuf->mbuf = pkts[i];
zmbuf->desc_idx = desc_indexes[i];
/*
* Pin lock the mbuf; we will check later to see
* whether the mbuf is freed (when we are the last
* user) or not. If that's the case, we then could
* update the used ring safely.
*/
rte_mbuf_refcnt_update(pkts[i], 1);
vq->nr_zmbuf += 1;
TAILQ_INSERT_TAIL(&vq->zmbuf_list, zmbuf, next);
}
if (unlikely(!!idesc))
free_ind_table(idesc);
}
vq->last_avail_idx += i;
if (likely(dev->dequeue_zero_copy == 0)) {
do_data_copy_dequeue(vq);
vq->last_used_idx += i;
update_used_idx(dev, vq, i);
}
out:
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_rd_unlock(vq);
out_access_unlock:
rte_spinlock_unlock(&vq->access_lock);
if (unlikely(rarp_mbuf != NULL)) {
/*
* Inject it to the head of "pkts" array, so that switch's mac
* learning table will get updated first.
*/
memmove(&pkts[1], pkts, i * sizeof(struct rte_mbuf *));
pkts[0] = rarp_mbuf;
i += 1;
}
return i;
}