Bruce Richardson 4332beee95 mbuf: expand ol_flags field to 64-bits
The offload flags field (ol_flags) was 16-bits and had no further room
for expansion. This patch increases the field size to 64-bits, using up
the remaining reserved space in the single-cache-line mbuf.

NOTE: none of the values for existing flags have been changed, i.e. no
new numbers have been explicitly reserved between existing flag
definitions.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-09-17 18:53:40 +02:00

2307 lines
63 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_udp.h>
#include "i40e_logs.h"
#include "i40e/i40e_prototype.h"
#include "i40e/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#define I40E_MIN_RING_DESC 64
#define I40E_MAX_RING_DESC 4096
#define I40E_ALIGN 128
#define DEFAULT_TX_RS_THRESH 32
#define DEFAULT_TX_FREE_THRESH 32
#define I40E_MAX_PKT_TYPE 256
#define I40E_VLAN_TAG_SIZE 4
#define I40E_TX_MAX_BURST 32
#define I40E_DMA_MEM_ALIGN 4096
#define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
ETH_TXQ_FLAGS_NOOFFLOADS)
#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
#define RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb) \
(uint64_t) ((mb)->buf_physaddr + RTE_PKTMBUF_HEADROOM)
#define RTE_MBUF_DATA_DMA_ADDR(mb) \
((uint64_t)((mb)->buf_physaddr + (mb)->data_off))
static const struct rte_memzone *
i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
const char *ring_name,
uint16_t queue_id,
uint32_t ring_size,
int socket_id);
static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
/* Translate the rx descriptor status to pkt flags */
static inline uint64_t
i40e_rxd_status_to_pkt_flags(uint64_t qword)
{
uint64_t flags;
/* Check if VLAN packet */
flags = qword & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) ?
PKT_RX_VLAN_PKT : 0;
/* Check if RSS_HASH */
flags |= (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
return flags;
}
static inline uint64_t
i40e_rxd_error_to_pkt_flags(uint64_t qword)
{
uint64_t flags = 0;
uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
#define I40E_RX_ERR_BITS 0x3f
if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
return flags;
/* If RXE bit set, all other status bits are meaningless */
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
flags |= PKT_RX_MAC_ERR;
return flags;
}
/* If RECIPE bit set, all other status indications should be ignored */
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
flags |= PKT_RX_RECIP_ERR;
return flags;
}
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
flags |= PKT_RX_HBUF_OVERFLOW;
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
flags |= PKT_RX_IP_CKSUM_BAD;
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
flags |= PKT_RX_L4_CKSUM_BAD;
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
flags |= PKT_RX_EIP_CKSUM_BAD;
if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
flags |= PKT_RX_OVERSIZE;
return flags;
}
/* Translate pkt types to pkt flags */
static inline uint64_t
i40e_rxd_ptype_to_pkt_flags(uint64_t qword)
{
uint8_t ptype = (uint8_t)((qword & I40E_RXD_QW1_PTYPE_MASK) >>
I40E_RXD_QW1_PTYPE_SHIFT);
static const uint64_t ip_ptype_map[I40E_MAX_PKT_TYPE] = {
0, /* PTYPE 0 */
0, /* PTYPE 1 */
0, /* PTYPE 2 */
0, /* PTYPE 3 */
0, /* PTYPE 4 */
0, /* PTYPE 5 */
0, /* PTYPE 6 */
0, /* PTYPE 7 */
0, /* PTYPE 8 */
0, /* PTYPE 9 */
0, /* PTYPE 10 */
0, /* PTYPE 11 */
0, /* PTYPE 12 */
0, /* PTYPE 13 */
0, /* PTYPE 14 */
0, /* PTYPE 15 */
0, /* PTYPE 16 */
0, /* PTYPE 17 */
0, /* PTYPE 18 */
0, /* PTYPE 19 */
0, /* PTYPE 20 */
0, /* PTYPE 21 */
PKT_RX_IPV4_HDR, /* PTYPE 22 */
PKT_RX_IPV4_HDR, /* PTYPE 23 */
PKT_RX_IPV4_HDR, /* PTYPE 24 */
0, /* PTYPE 25 */
PKT_RX_IPV4_HDR, /* PTYPE 26 */
PKT_RX_IPV4_HDR, /* PTYPE 27 */
PKT_RX_IPV4_HDR, /* PTYPE 28 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 29 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 30 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 31 */
0, /* PTYPE 32 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 33 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 34 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 35 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 36 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 37 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 38 */
0, /* PTYPE 39 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 40 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 41 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 42 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 43 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 44 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 45 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 46 */
0, /* PTYPE 47 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 48 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 49 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 50 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 51 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 52 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 53 */
0, /* PTYPE 54 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 55 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 56 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 57 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 58 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 59 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 60 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 61 */
0, /* PTYPE 62 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 63 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 64 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 65 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 66 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 67 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 68 */
0, /* PTYPE 69 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 70 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 71 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 72 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 73 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 74 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 75 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 76 */
0, /* PTYPE 77 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 78 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 79 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 80 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 81 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 82 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 83 */
0, /* PTYPE 84 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 85 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 86 */
PKT_RX_IPV4_HDR_EXT, /* PTYPE 87 */
PKT_RX_IPV6_HDR, /* PTYPE 88 */
PKT_RX_IPV6_HDR, /* PTYPE 89 */
PKT_RX_IPV6_HDR, /* PTYPE 90 */
0, /* PTYPE 91 */
PKT_RX_IPV6_HDR, /* PTYPE 92 */
PKT_RX_IPV6_HDR, /* PTYPE 93 */
PKT_RX_IPV6_HDR, /* PTYPE 94 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 95 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 96 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 97 */
0, /* PTYPE 98 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 99 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 100 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 101 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 102 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 103 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 104 */
0, /* PTYPE 105 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 106 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 107 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 108 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 109 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 110 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 111 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 112 */
0, /* PTYPE 113 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 114 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 115 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 116 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 117 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 118 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 119 */
0, /* PTYPE 120 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 121 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 122 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 123 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 124 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 125 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 126 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 127 */
0, /* PTYPE 128 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 129 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 130 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 131 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 132 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 133 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 134 */
0, /* PTYPE 135 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 136 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 137 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 138 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 139 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 140 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 141 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 142 */
0, /* PTYPE 143 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 144 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 145 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 146 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 147 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 148 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 149 */
0, /* PTYPE 150 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 151 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 152 */
PKT_RX_IPV6_HDR_EXT, /* PTYPE 153 */
0, /* PTYPE 154 */
0, /* PTYPE 155 */
0, /* PTYPE 156 */
0, /* PTYPE 157 */
0, /* PTYPE 158 */
0, /* PTYPE 159 */
0, /* PTYPE 160 */
0, /* PTYPE 161 */
0, /* PTYPE 162 */
0, /* PTYPE 163 */
0, /* PTYPE 164 */
0, /* PTYPE 165 */
0, /* PTYPE 166 */
0, /* PTYPE 167 */
0, /* PTYPE 168 */
0, /* PTYPE 169 */
0, /* PTYPE 170 */
0, /* PTYPE 171 */
0, /* PTYPE 172 */
0, /* PTYPE 173 */
0, /* PTYPE 174 */
0, /* PTYPE 175 */
0, /* PTYPE 176 */
0, /* PTYPE 177 */
0, /* PTYPE 178 */
0, /* PTYPE 179 */
0, /* PTYPE 180 */
0, /* PTYPE 181 */
0, /* PTYPE 182 */
0, /* PTYPE 183 */
0, /* PTYPE 184 */
0, /* PTYPE 185 */
0, /* PTYPE 186 */
0, /* PTYPE 187 */
0, /* PTYPE 188 */
0, /* PTYPE 189 */
0, /* PTYPE 190 */
0, /* PTYPE 191 */
0, /* PTYPE 192 */
0, /* PTYPE 193 */
0, /* PTYPE 194 */
0, /* PTYPE 195 */
0, /* PTYPE 196 */
0, /* PTYPE 197 */
0, /* PTYPE 198 */
0, /* PTYPE 199 */
0, /* PTYPE 200 */
0, /* PTYPE 201 */
0, /* PTYPE 202 */
0, /* PTYPE 203 */
0, /* PTYPE 204 */
0, /* PTYPE 205 */
0, /* PTYPE 206 */
0, /* PTYPE 207 */
0, /* PTYPE 208 */
0, /* PTYPE 209 */
0, /* PTYPE 210 */
0, /* PTYPE 211 */
0, /* PTYPE 212 */
0, /* PTYPE 213 */
0, /* PTYPE 214 */
0, /* PTYPE 215 */
0, /* PTYPE 216 */
0, /* PTYPE 217 */
0, /* PTYPE 218 */
0, /* PTYPE 219 */
0, /* PTYPE 220 */
0, /* PTYPE 221 */
0, /* PTYPE 222 */
0, /* PTYPE 223 */
0, /* PTYPE 224 */
0, /* PTYPE 225 */
0, /* PTYPE 226 */
0, /* PTYPE 227 */
0, /* PTYPE 228 */
0, /* PTYPE 229 */
0, /* PTYPE 230 */
0, /* PTYPE 231 */
0, /* PTYPE 232 */
0, /* PTYPE 233 */
0, /* PTYPE 234 */
0, /* PTYPE 235 */
0, /* PTYPE 236 */
0, /* PTYPE 237 */
0, /* PTYPE 238 */
0, /* PTYPE 239 */
0, /* PTYPE 240 */
0, /* PTYPE 241 */
0, /* PTYPE 242 */
0, /* PTYPE 243 */
0, /* PTYPE 244 */
0, /* PTYPE 245 */
0, /* PTYPE 246 */
0, /* PTYPE 247 */
0, /* PTYPE 248 */
0, /* PTYPE 249 */
0, /* PTYPE 250 */
0, /* PTYPE 251 */
0, /* PTYPE 252 */
0, /* PTYPE 253 */
0, /* PTYPE 254 */
0, /* PTYPE 255 */
};
return ip_ptype_map[ptype];
}
static inline void
i40e_txd_enable_checksum(uint32_t ol_flags,
uint32_t *td_cmd,
uint32_t *td_offset,
uint8_t l2_len,
uint8_t l3_len)
{
if (!l2_len) {
PMD_DRV_LOG(DEBUG, "L2 length set to 0\n");
return;
}
*td_offset |= (l2_len >> 1) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
if (!l3_len) {
PMD_DRV_LOG(DEBUG, "L3 length set to 0\n");
return;
}
/* Enable L3 checksum offloads */
if (ol_flags & PKT_TX_IPV4_CSUM) {
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
*td_offset |= (l3_len >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (ol_flags & PKT_TX_IPV4) {
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
*td_offset |= (l3_len >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
} else if (ol_flags & PKT_TX_IPV6) {
*td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
*td_offset |= (l3_len >> 2) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
}
/* Enable L4 checksum offloads */
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
*td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case PKT_TX_SCTP_CKSUM:
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
*td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
case PKT_TX_UDP_CKSUM:
*td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
*td_offset |= (sizeof(struct udp_hdr) >> 2) <<
I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
break;
default:
break;
}
}
static inline struct rte_mbuf *
rte_rxmbuf_alloc(struct rte_mempool *mp)
{
struct rte_mbuf *m;
m = __rte_mbuf_raw_alloc(mp);
__rte_mbuf_sanity_check_raw(m, 0);
return m;
}
/* Construct the tx flags */
static inline uint64_t
i40e_build_ctob(uint32_t td_cmd,
uint32_t td_offset,
unsigned int size,
uint32_t td_tag)
{
return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
((uint64_t)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
((uint64_t)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
((uint64_t)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
}
static inline int
i40e_xmit_cleanup(struct i40e_tx_queue *txq)
{
struct i40e_tx_entry *sw_ring = txq->sw_ring;
volatile struct i40e_tx_desc *txd = txq->tx_ring;
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
uint16_t nb_tx_desc = txq->nb_tx_desc;
uint16_t desc_to_clean_to;
uint16_t nb_tx_to_clean;
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
if (desc_to_clean_to >= nb_tx_desc)
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))) {
PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
"(port=%d queue=%d)", desc_to_clean_to,
txq->port_id, txq->queue_id);
return -1;
}
if (last_desc_cleaned > desc_to_clean_to)
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
desc_to_clean_to);
else
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
last_desc_cleaned);
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
txq->last_desc_cleaned = desc_to_clean_to;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
return 0;
}
static inline int
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
#else
check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
#endif
{
int ret = 0;
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST))
ret = -EINVAL;
else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc))
ret = -EINVAL;
else if (!(rxq->nb_rx_desc % rxq->rx_free_thresh) == 0)
ret = -EINVAL;
else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
RTE_PMD_I40E_RX_MAX_BURST)))
ret = -EINVAL;
#else
ret = -EINVAL;
#endif
return ret;
}
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
#define I40E_LOOK_AHEAD 8
#if (I40E_LOOK_AHEAD != 8)
#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
#endif
static inline int
i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t pkt_len;
uint64_t qword1;
uint32_t rx_status;
int32_t s[I40E_LOOK_AHEAD], nb_dd;
int32_t i, j, nb_rx = 0;
uint64_t pkt_flags;
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
/* Make sure there is at least 1 packet to receive */
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/**
* Scan LOOK_AHEAD descriptors at a time to determine which
* descriptors reference packets that are ready to be received.
*/
for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
qword1 = rte_le_to_cpu_64(\
rxdp[j].wb.qword1.status_error_len);
s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
}
/* Compute how many status bits were set */
for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
mb = rxep[j].mbuf;
qword1 = rte_le_to_cpu_64(\
rxdp[j].wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->vlan_tci = rx_status &
(1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) ?
rte_le_to_cpu_16(\
rxdp[j].wb.qword0.lo_dword.l2tag1) : 0;
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
mb->ol_flags = pkt_flags;
if (pkt_flags & PKT_RX_RSS_HASH)
mb->hash.rss = rte_le_to_cpu_32(\
rxdp->wb.qword0.hi_dword.rss);
}
for (j = 0; j < I40E_LOOK_AHEAD; j++)
rxq->rx_stage[i + j] = rxep[j].mbuf;
if (nb_dd != I40E_LOOK_AHEAD)
break;
}
/* Clear software ring entries */
for (i = 0; i < nb_rx; i++)
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
return nb_rx;
}
static inline uint16_t
i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t i;
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
for (i = 0; i < nb_pkts; i++)
rx_pkts[i] = stage[i];
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
return nb_pkts;
}
static inline int
i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t alloc_idx, i;
uint64_t dma_addr;
int diag;
/* Allocate buffers in bulk */
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
(rxq->rx_free_thresh - 1));
rxep = &(rxq->sw_ring[alloc_idx]);
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
rxq->rx_free_thresh);
if (unlikely(diag != 0)) {
PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk\n");
return -ENOMEM;
}
rxdp = &rxq->rx_ring[alloc_idx];
for (i = 0; i < rxq->rx_free_thresh; i++) {
mb = rxep[i].mbuf;
rte_mbuf_refcnt_set(mb, 1);
mb->next = NULL;
mb->data_off = RTE_PKTMBUF_HEADROOM;
mb->nb_segs = 1;
mb->port = rxq->port_id;
dma_addr = rte_cpu_to_le_64(\
RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mb));
rxdp[i].read.hdr_addr = dma_addr;
rxdp[i].read.pkt_addr = dma_addr;
}
/* Update rx tail regsiter */
rte_wmb();
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
rxq->rx_free_trigger =
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
return 0;
}
static inline uint16_t
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
uint16_t nb_rx = 0;
if (!nb_pkts)
return 0;
if (rxq->rx_nb_avail)
return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
rxq->rx_next_avail = 0;
rxq->rx_nb_avail = nb_rx;
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
if (rxq->rx_tail > rxq->rx_free_trigger) {
if (i40e_rx_alloc_bufs(rxq) != 0) {
uint16_t i, j;
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
"port_id=%u, queue_id=%u\n",
rxq->port_id, rxq->queue_id);
rxq->rx_nb_avail = 0;
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
return 0;
}
}
if (rxq->rx_tail >= rxq->nb_rx_desc)
rxq->rx_tail = 0;
if (rxq->rx_nb_avail)
return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
return 0;
}
static uint16_t
i40e_recv_pkts_bulk_alloc(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_rx = 0, n, count;
if (unlikely(nb_pkts == 0))
return 0;
if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
while (nb_pkts) {
n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
nb_rx = (uint16_t)(nb_rx + count);
nb_pkts = (uint16_t)(nb_pkts - count);
if (count < n)
break;
}
return nb_rx;
}
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
uint16_t
i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq;
volatile union i40e_rx_desc *rx_ring;
volatile union i40e_rx_desc *rxdp;
union i40e_rx_desc rxd;
struct i40e_rx_entry *sw_ring;
struct i40e_rx_entry *rxe;
struct rte_mbuf *rxm;
struct rte_mbuf *nmb;
uint16_t nb_rx;
uint32_t rx_status;
uint64_t qword1;
uint16_t rx_packet_len;
uint16_t rx_id, nb_hold;
uint64_t dma_addr;
uint64_t pkt_flags;
nb_rx = 0;
nb_hold = 0;
rxq = rx_queue;
rx_id = rxq->rx_tail;
rx_ring = rxq->rx_ring;
sw_ring = rxq->sw_ring;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
>> I40E_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit first */
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
break;
nmb = rte_rxmbuf_alloc(rxq->mp);
if (unlikely(!nmb))
break;
rxd = *rxdp;
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (unlikely(rx_id == rxq->nb_rx_desc))
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(sw_ring[rx_id].mbuf);
/**
* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
rxdp->read.hdr_addr = dma_addr;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
rxm->nb_segs = 1;
rxm->next = NULL;
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
rxm->vlan_tci = rx_status &
(1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT) ?
rte_le_to_cpu_16(rxd.wb.qword0.lo_dword.l2tag1) : 0;
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
rxm->ol_flags = pkt_flags;
if (pkt_flags & PKT_RX_RSS_HASH)
rxm->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
rx_pkts[nb_rx++] = rxm;
}
rxq->rx_tail = rx_id;
/**
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the receive tail register of queue.
* Update that register with the value of the last processed RX
* descriptor minus 1.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
rx_id = (uint16_t) ((rx_id == 0) ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
uint16_t
i40e_recv_scattered_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
volatile union i40e_rx_desc *rxdp;
union i40e_rx_desc rxd;
struct i40e_rx_entry *sw_ring = rxq->sw_ring;
struct i40e_rx_entry *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
struct rte_mbuf *nmb, *rxm;
uint16_t rx_id = rxq->rx_tail;
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
uint32_t rx_status;
uint64_t qword1;
uint64_t dma_addr;
uint64_t pkt_flags;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
I40E_RXD_QW1_STATUS_SHIFT;
/* Check the DD bit */
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
break;
nmb = rte_rxmbuf_alloc(rxq->mp);
if (unlikely(!nmb))
break;
rxd = *rxdp;
nb_hold++;
rxe = &sw_ring[rx_id];
rx_id++;
if (rx_id == rxq->nb_rx_desc)
rx_id = 0;
/* Prefetch next mbuf */
rte_prefetch0(sw_ring[rx_id].mbuf);
/**
* When next RX descriptor is on a cache line boundary,
* prefetch the next 4 RX descriptors and next 8 pointers
* to mbufs.
*/
if ((rx_id & 0x3) == 0) {
rte_prefetch0(&rx_ring[rx_id]);
rte_prefetch0(&sw_ring[rx_id]);
}
rxm = rxe->mbuf;
rxe->mbuf = nmb;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(nmb));
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = dma_addr;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
/**
* If this is the first buffer of the received packet, set the
* pointer to the first mbuf of the packet and initialize its
* context. Otherwise, update the total length and the number
* of segments of the current scattered packet, and update the
* pointer to the last mbuf of the current packet.
*/
if (!first_seg) {
first_seg = rxm;
first_seg->nb_segs = 1;
first_seg->pkt_len = rx_packet_len;
} else {
first_seg->pkt_len =
(uint16_t)(first_seg->pkt_len +
rx_packet_len);
first_seg->nb_segs++;
last_seg->next = rxm;
}
/**
* If this is not the last buffer of the received packet,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
last_seg = rxm;
continue;
}
/**
* This is the last buffer of the received packet. If the CRC
* is not stripped by the hardware:
* - Subtract the CRC length from the total packet length.
* - If the last buffer only contains the whole CRC or a part
* of it, free the mbuf associated to the last buffer. If part
* of the CRC is also contained in the previous mbuf, subtract
* the length of that CRC part from the data length of the
* previous mbuf.
*/
rxm->next = NULL;
if (unlikely(rxq->crc_len > 0)) {
first_seg->pkt_len -= ETHER_CRC_LEN;
if (rx_packet_len <= ETHER_CRC_LEN) {
rte_pktmbuf_free_seg(rxm);
first_seg->nb_segs--;
last_seg->data_len =
(uint16_t)(last_seg->data_len -
(ETHER_CRC_LEN - rx_packet_len));
last_seg->next = NULL;
} else
rxm->data_len = (uint16_t)(rx_packet_len -
ETHER_CRC_LEN);
}
first_seg->port = rxq->port_id;
first_seg->vlan_tci = (rx_status &
(1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
rte_le_to_cpu_16(rxd.wb.qword0.lo_dword.l2tag1) : 0;
pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
pkt_flags |= i40e_rxd_ptype_to_pkt_flags(qword1);
first_seg->ol_flags = pkt_flags;
if (pkt_flags & PKT_RX_RSS_HASH)
rxm->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
first_seg->data_off));
rx_pkts[nb_rx++] = first_seg;
first_seg = NULL;
}
/* Record index of the next RX descriptor to probe. */
rxq->rx_tail = rx_id;
rxq->pkt_first_seg = first_seg;
rxq->pkt_last_seg = last_seg;
/**
* If the number of free RX descriptors is greater than the RX free
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
* register. Update the RDT with the value of the last processed RX
* descriptor minus 1, to guarantee that the RDT register is never
* equal to the RDH register, which creates a "full" ring situtation
* from the hardware point of view.
*/
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
if (nb_hold > rxq->rx_free_thresh) {
rx_id = (uint16_t)(rx_id == 0 ?
(rxq->nb_rx_desc - 1) : (rx_id - 1));
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
nb_hold = 0;
}
rxq->nb_rx_hold = nb_hold;
return nb_rx;
}
/* Check if the context descriptor is needed for TX offloading */
static inline uint16_t
i40e_calc_context_desc(uint64_t flags)
{
uint16_t mask = 0;
#ifdef RTE_LIBRTE_IEEE1588
mask |= PKT_TX_IEEE1588_TMST;
#endif
if (flags & mask)
return 1;
return 0;
}
uint16_t
i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct i40e_tx_queue *txq;
struct i40e_tx_entry *sw_ring;
struct i40e_tx_entry *txe, *txn;
volatile struct i40e_tx_desc *txd;
volatile struct i40e_tx_desc *txr;
struct rte_mbuf *tx_pkt;
struct rte_mbuf *m_seg;
uint16_t tx_id;
uint16_t nb_tx;
uint32_t td_cmd;
uint32_t td_offset;
uint32_t tx_flags;
uint32_t td_tag;
uint64_t ol_flags;
uint8_t l2_len;
uint8_t l3_len;
uint16_t nb_used;
uint16_t nb_ctx;
uint16_t tx_last;
uint16_t slen;
uint64_t buf_dma_addr;
txq = tx_queue;
sw_ring = txq->sw_ring;
txr = txq->tx_ring;
tx_id = txq->tx_tail;
txe = &sw_ring[tx_id];
/* Check if the descriptor ring needs to be cleaned. */
if ((txq->nb_tx_desc - txq->nb_tx_free) > txq->tx_free_thresh)
i40e_xmit_cleanup(txq);
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
td_cmd = 0;
td_tag = 0;
td_offset = 0;
tx_flags = 0;
tx_pkt = *tx_pkts++;
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
ol_flags = tx_pkt->ol_flags;
l2_len = tx_pkt->l2_len;
l3_len = tx_pkt->l3_len;
/* Calculate the number of context descriptors needed. */
nb_ctx = i40e_calc_context_desc(ol_flags);
/**
* The number of descriptors that must be allocated for
* a packet equals to the number of the segments of that
* packet plus 1 context descriptor if needed.
*/
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
tx_last = (uint16_t)(tx_id + nb_used - 1);
/* Circular ring */
if (tx_last >= txq->nb_tx_desc)
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
if (nb_used > txq->nb_tx_free) {
if (i40e_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
if (unlikely(nb_used > txq->tx_rs_thresh)) {
while (nb_used > txq->nb_tx_free) {
if (i40e_xmit_cleanup(txq) != 0) {
if (nb_tx == 0)
return 0;
goto end_of_tx;
}
}
}
}
/* Descriptor based VLAN insertion */
if (ol_flags & PKT_TX_VLAN_PKT) {
tx_flags |= tx_pkt->vlan_tci <<
I40E_TX_FLAG_L2TAG1_SHIFT;
tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
I40E_TX_FLAG_L2TAG1_SHIFT;
}
/* Always enable CRC offload insertion */
td_cmd |= I40E_TX_DESC_CMD_ICRC;
/* Enable checksum offloading */
i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
l2_len, l3_len);
if (unlikely(nb_ctx)) {
/* Setup TX context descriptor if required */
volatile struct i40e_tx_context_desc *ctx_txd =
(volatile struct i40e_tx_context_desc *)\
&txr[tx_id];
uint32_t cd_tunneling_params = 0;
uint16_t cd_l2tag2 = 0;
uint64_t cd_type_cmd_tso_mss =
I40E_TX_DESC_DTYPE_CONTEXT;
txn = &sw_ring[txe->next_id];
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
if (txe->mbuf != NULL) {
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = NULL;
}
#ifdef RTE_LIBRTE_IEEE1588
if (ol_flags & PKT_TX_IEEE1588_TMST)
cd_type_cmd_tso_mss |=
((uint64_t)I40E_TX_CTX_DESC_TSYN <<
I40E_TXD_CTX_QW1_CMD_SHIFT);
#endif
ctx_txd->tunneling_params =
rte_cpu_to_le_32(cd_tunneling_params);
ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
ctx_txd->type_cmd_tso_mss =
rte_cpu_to_le_64(cd_type_cmd_tso_mss);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
}
m_seg = tx_pkt;
do {
txd = &txr[tx_id];
txn = &sw_ring[txe->next_id];
if (txe->mbuf)
rte_pktmbuf_free_seg(txe->mbuf);
txe->mbuf = m_seg;
/* Setup TX Descriptor */
slen = m_seg->data_len;
buf_dma_addr = RTE_MBUF_DATA_DMA_ADDR(m_seg);
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
td_offset, slen, td_tag);
txe->last_id = tx_last;
tx_id = txe->next_id;
txe = txn;
m_seg = m_seg->next;
} while (m_seg != NULL);
/* The last packet data descriptor needs End Of Packet (EOP) */
td_cmd |= I40E_TX_DESC_CMD_EOP;
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
PMD_TX_FREE_LOG(DEBUG,
"Setting RS bit on TXD id="
"%4u (port=%d queue=%d)",
tx_last, txq->port_id, txq->queue_id);
td_cmd |= I40E_TX_DESC_CMD_RS;
/* Update txq RS bit counters */
txq->nb_tx_used = 0;
}
txd->cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
I40E_TXD_QW1_CMD_SHIFT);
}
end_of_tx:
rte_wmb();
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
(unsigned) txq->port_id, (unsigned) txq->queue_id,
(unsigned) tx_id, (unsigned) nb_tx);
I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
txq->tx_tail = tx_id;
return nb_tx;
}
static inline int __attribute__((always_inline))
i40e_tx_free_bufs(struct i40e_tx_queue *txq)
{
struct i40e_tx_entry *txep;
uint16_t i;
if (!(txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)))
return 0;
txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
for (i = 0; i < txq->tx_rs_thresh; i++)
rte_prefetch0((txep + i)->mbuf);
if (!(txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT)) {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
txep->mbuf = NULL;
}
} else {
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
rte_pktmbuf_free_seg(txep->mbuf);
txep->mbuf = NULL;
}
}
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
if (txq->tx_next_dd >= txq->nb_tx_desc)
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
return txq->tx_rs_thresh;
}
#define I40E_TD_CMD (I40E_TX_DESC_CMD_ICRC |\
I40E_TX_DESC_CMD_EOP)
/* Populate 4 descriptors with data from 4 mbufs */
static inline void
tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t dma_addr;
uint32_t i;
for (i = 0; i < 4; i++, txdp++, pkts++) {
dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
txdp->cmd_type_offset_bsz =
i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
(*pkts)->data_len, 0);
}
}
/* Populate 1 descriptor with data from 1 mbuf */
static inline void
tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
{
uint64_t dma_addr;
dma_addr = RTE_MBUF_DATA_DMA_ADDR(*pkts);
txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
txdp->cmd_type_offset_bsz =
i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
(*pkts)->data_len, 0);
}
/* Fill hardware descriptor ring with mbuf data */
static inline void
i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
const int N_PER_LOOP = 4;
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
int mainpart, leftover;
int i, j;
mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
leftover = (nb_pkts & ((uint32_t) N_PER_LOOP_MASK));
for (i = 0; i < mainpart; i += N_PER_LOOP) {
for (j = 0; j < N_PER_LOOP; ++j) {
(txep + i + j)->mbuf = *(pkts + i + j);
}
tx4(txdp + i, pkts + i);
}
if (unlikely(leftover > 0)) {
for (i = 0; i < leftover; ++i) {
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
tx1(txdp + mainpart + i, pkts + mainpart + i);
}
}
}
static inline uint16_t
tx_xmit_pkts(struct i40e_tx_queue *txq,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
volatile struct i40e_tx_desc *txr = txq->tx_ring;
uint16_t n = 0;
/**
* Begin scanning the H/W ring for done descriptors when the number
* of available descriptors drops below tx_free_thresh. For each done
* descriptor, free the associated buffer.
*/
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
/* Use available descriptor only */
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(!nb_pkts))
return 0;
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
i40e_tx_fill_hw_ring(txq, tx_pkts, n);
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
}
/* Fill hardware descriptor ring with mbuf data */
i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
/* Determin if RS bit needs to be set */
if (txq->tx_tail > txq->tx_next_rs) {
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
if (txq->tx_next_rs >= txq->nb_tx_desc)
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
}
if (txq->tx_tail >= txq->nb_tx_desc)
txq->tx_tail = 0;
/* Update the tx tail register */
rte_wmb();
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
static uint16_t
i40e_xmit_pkts_simple(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
if (likely(nb_pkts <= I40E_TX_MAX_BURST))
return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
tx_pkts, nb_pkts);
while (nb_pkts) {
uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
I40E_TX_MAX_BURST);
ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
&tx_pkts[nb_tx], num);
nb_tx = (uint16_t)(nb_tx + ret);
nb_pkts = (uint16_t)(nb_pkts - ret);
if (ret < num)
break;
}
return nb_tx;
}
int
i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_vsi *vsi = I40E_DEV_PRIVATE_TO_VSI(dev->data->dev_private);
struct i40e_rx_queue *rxq;
int err = -1;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t q_base = vsi->base_queue;
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = i40e_alloc_rx_queue_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf\n");
return err;
}
rte_wmb();
/* Init the RX tail regieter. */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
err = i40e_switch_rx_queue(hw, rx_queue_id + q_base, TRUE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on\n",
rx_queue_id);
i40e_rx_queue_release_mbufs(rxq);
i40e_reset_rx_queue(rxq);
}
}
return err;
}
int
i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_vsi *vsi = I40E_DEV_PRIVATE_TO_VSI(dev->data->dev_private);
struct i40e_rx_queue *rxq;
int err;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t q_base = vsi->base_queue;
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = i40e_switch_rx_queue(hw, rx_queue_id + q_base, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off\n",
rx_queue_id);
return err;
}
i40e_rx_queue_release_mbufs(rxq);
i40e_reset_rx_queue(rxq);
}
return 0;
}
int
i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct i40e_vsi *vsi = I40E_DEV_PRIVATE_TO_VSI(dev->data->dev_private);
int err = -1;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t q_base = vsi->base_queue;
PMD_INIT_FUNC_TRACE();
if (tx_queue_id < dev->data->nb_tx_queues) {
err = i40e_switch_tx_queue(hw, tx_queue_id + q_base, TRUE);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on\n",
tx_queue_id);
}
return err;
}
int
i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct i40e_vsi *vsi = I40E_DEV_PRIVATE_TO_VSI(dev->data->dev_private);
struct i40e_tx_queue *txq;
int err;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t q_base = vsi->base_queue;
if (tx_queue_id < dev->data->nb_tx_queues) {
txq = dev->data->tx_queues[tx_queue_id];
err = i40e_switch_tx_queue(hw, tx_queue_id + q_base, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of\n",
tx_queue_id);
return err;
}
i40e_tx_queue_release_mbufs(txq);
i40e_reset_tx_queue(txq);
}
return 0;
}
int
i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct i40e_vsi *vsi = I40E_DEV_PRIVATE_TO_VSI(dev->data->dev_private);
struct i40e_rx_queue *rxq;
const struct rte_memzone *rz;
uint32_t ring_size;
uint16_t len;
int use_def_burst_func = 1;
if (!vsi || queue_idx >= vsi->nb_qps) {
PMD_DRV_LOG(ERR, "VSI not available or queue "
"index exceeds the maximum\n");
return I40E_ERR_PARAM;
}
if (((nb_desc * sizeof(union i40e_rx_desc)) % I40E_ALIGN) != 0 ||
(nb_desc > I40E_MAX_RING_DESC) ||
(nb_desc < I40E_MIN_RING_DESC)) {
PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
"invalid\n", nb_desc);
return I40E_ERR_PARAM;
}
/* Free memory if needed */
if (dev->data->rx_queues[queue_idx]) {
i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
dev->data->rx_queues[queue_idx] = NULL;
}
/* Allocate the rx queue data structure */
rxq = rte_zmalloc_socket("i40e rx queue",
sizeof(struct i40e_rx_queue),
CACHE_LINE_SIZE,
socket_id);
if (!rxq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"rx queue data structure\n");
return (-ENOMEM);
}
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
rxq->queue_id = queue_idx;
rxq->reg_idx = vsi->base_queue + queue_idx;
rxq->port_id = dev->data->port_id;
rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
0 : ETHER_CRC_LEN);
rxq->drop_en = rx_conf->rx_drop_en;
rxq->vsi = vsi;
rxq->start_rx_per_q = rx_conf->start_rx_per_q;
/* Allocate the maximun number of RX ring hardware descriptor. */
ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
rz = i40e_ring_dma_zone_reserve(dev,
"rx_ring",
queue_idx,
ring_size,
socket_id);
if (!rz) {
i40e_dev_rx_queue_release(rxq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX\n");
return (-ENOMEM);
}
/* Zero all the descriptors in the ring. */
memset(rz->addr, 0, ring_size);
#ifdef RTE_LIBRTE_XEN_DOM0
rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
#else
rxq->rx_ring_phys_addr = (uint64_t)rz->phys_addr;
#endif
rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
#else
len = nb_desc;
#endif
/* Allocate the software ring. */
rxq->sw_ring =
rte_zmalloc_socket("i40e rx sw ring",
sizeof(struct i40e_rx_entry) * len,
CACHE_LINE_SIZE,
socket_id);
if (!rxq->sw_ring) {
i40e_dev_rx_queue_release(rxq);
PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring\n");
return (-ENOMEM);
}
i40e_reset_rx_queue(rxq);
rxq->q_set = TRUE;
dev->data->rx_queues[queue_idx] = rxq;
use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
if (!use_def_burst_func && !dev->data->scattered_rx) {
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"satisfied. Rx Burst Bulk Alloc function will be "
"used on port=%d, queue=%d.\n",
rxq->port_id, rxq->queue_id);
dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
} else {
PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
"not satisfied, Scattered Rx is requested, "
"or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
"not enabled on port=%d, queue=%d.\n",
rxq->port_id, rxq->queue_id);
}
return 0;
}
void
i40e_dev_rx_queue_release(void *rxq)
{
struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
if (!q) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL\n");
return;
}
i40e_rx_queue_release_mbufs(q);
rte_free(q->sw_ring);
rte_free(q);
}
uint32_t
i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define I40E_RXQ_SCAN_INTERVAL 4
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_queue *rxq;
uint16_t desc = 0;
if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
PMD_DRV_LOG(ERR, "Invalid RX queue id %u\n", rx_queue_id);
return 0;
}
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
while ((desc < rxq->nb_rx_desc) &&
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
(1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
/**
* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
* too much.
*/
desc += I40E_RXQ_SCAN_INTERVAL;
rxdp += I40E_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
int
i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_queue *rxq = rx_queue;
uint16_t desc;
int ret;
if (unlikely(offset >= rxq->nb_rx_desc)) {
PMD_DRV_LOG(ERR, "Invalid RX queue id %u\n", offset);
return 0;
}
desc = rxq->rx_tail + offset;
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
rxdp = &(rxq->rx_ring[desc]);
ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
(1 << I40E_RX_DESC_STATUS_DD_SHIFT));
return ret;
}
int
i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
struct i40e_vsi *vsi = I40E_DEV_PRIVATE_TO_VSI(dev->data->dev_private);
struct i40e_tx_queue *txq;
const struct rte_memzone *tz;
uint32_t ring_size;
uint16_t tx_rs_thresh, tx_free_thresh;
if (!vsi || queue_idx >= vsi->nb_qps) {
PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
"exceeds the maximum\n", queue_idx);
return I40E_ERR_PARAM;
}
if (((nb_desc * sizeof(struct i40e_tx_desc)) % I40E_ALIGN) != 0 ||
(nb_desc > I40E_MAX_RING_DESC) ||
(nb_desc < I40E_MIN_RING_DESC)) {
PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
"invalid\n", nb_desc);
return I40E_ERR_PARAM;
}
/**
* The following two parameters control the setting of the RS bit on
* transmit descriptors. TX descriptors will have their RS bit set
* after txq->tx_rs_thresh descriptors have been used. The TX
* descriptor ring will be cleaned after txq->tx_free_thresh
* descriptors are used or if the number of descriptors required to
* transmit a packet is greater than the number of free TX descriptors.
*
* The following constraints must be satisfied:
* - tx_rs_thresh must be greater than 0.
* - tx_rs_thresh must be less than the size of the ring minus 2.
* - tx_rs_thresh must be less than or equal to tx_free_thresh.
* - tx_rs_thresh must be a divisor of the ring size.
* - tx_free_thresh must be greater than 0.
* - tx_free_thresh must be less than the size of the ring minus 3.
*
* One descriptor in the TX ring is used as a sentinel to avoid a H/W
* race condition, hence the maximum threshold constraints. When set
* to zero use default values.
*/
tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
if (tx_rs_thresh >= (nb_desc - 2)) {
RTE_LOG(ERR, PMD, "tx_rs_thresh must be less than the "
"number of TX descriptors minus 2. "
"(tx_rs_thresh=%u port=%d queue=%d)\n",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if (tx_free_thresh >= (nb_desc - 3)) {
RTE_LOG(ERR, PMD, "tx_rs_thresh must be less than the "
"tx_free_thresh must be less than the "
"number of TX descriptors minus 3. "
"(tx_free_thresh=%u port=%d queue=%d)\n",
(unsigned int)tx_free_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if (tx_rs_thresh > tx_free_thresh) {
RTE_LOG(ERR, PMD, "tx_rs_thresh must be less than or "
"equal to tx_free_thresh. (tx_free_thresh=%u"
" tx_rs_thresh=%u port=%d queue=%d)\n",
(unsigned int)tx_free_thresh,
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if ((nb_desc % tx_rs_thresh) != 0) {
RTE_LOG(ERR, PMD, "tx_rs_thresh must be a divisor of the "
"number of TX descriptors. (tx_rs_thresh=%u"
" port=%d queue=%d)\n",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
RTE_LOG(ERR, PMD, "TX WTHRESH must be set to 0 if "
"tx_rs_thresh is greater than 1. "
"(tx_rs_thresh=%u port=%d queue=%d)\n",
(unsigned int)tx_rs_thresh,
(int)dev->data->port_id,
(int)queue_idx);
return I40E_ERR_PARAM;
}
/* Free memory if needed. */
if (dev->data->tx_queues[queue_idx]) {
i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
dev->data->tx_queues[queue_idx] = NULL;
}
/* Allocate the TX queue data structure. */
txq = rte_zmalloc_socket("i40e tx queue",
sizeof(struct i40e_tx_queue),
CACHE_LINE_SIZE,
socket_id);
if (!txq) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"tx queue structure\n");
return (-ENOMEM);
}
/* Allocate TX hardware ring descriptors. */
ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
tz = i40e_ring_dma_zone_reserve(dev,
"tx_ring",
queue_idx,
ring_size,
socket_id);
if (!tz) {
i40e_dev_tx_queue_release(txq);
PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX\n");
return (-ENOMEM);
}
txq->nb_tx_desc = nb_desc;
txq->tx_rs_thresh = tx_rs_thresh;
txq->tx_free_thresh = tx_free_thresh;
txq->pthresh = tx_conf->tx_thresh.pthresh;
txq->hthresh = tx_conf->tx_thresh.hthresh;
txq->wthresh = tx_conf->tx_thresh.wthresh;
txq->queue_id = queue_idx;
txq->reg_idx = vsi->base_queue + queue_idx;
txq->port_id = dev->data->port_id;
txq->txq_flags = tx_conf->txq_flags;
txq->vsi = vsi;
txq->start_tx_per_q = tx_conf->start_tx_per_q;
#ifdef RTE_LIBRTE_XEN_DOM0
txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
#else
txq->tx_ring_phys_addr = (uint64_t)tz->phys_addr;
#endif
txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
/* Allocate software ring */
txq->sw_ring =
rte_zmalloc_socket("i40e tx sw ring",
sizeof(struct i40e_tx_entry) * nb_desc,
CACHE_LINE_SIZE,
socket_id);
if (!txq->sw_ring) {
i40e_dev_tx_queue_release(txq);
PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring\n");
return (-ENOMEM);
}
i40e_reset_tx_queue(txq);
txq->q_set = TRUE;
dev->data->tx_queues[queue_idx] = txq;
/* Use a simple TX queue without offloads or multi segs if possible */
if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS) &&
(txq->tx_rs_thresh >= I40E_TX_MAX_BURST)) {
PMD_INIT_LOG(INFO, "Using simple tx path\n");
dev->tx_pkt_burst = i40e_xmit_pkts_simple;
} else {
PMD_INIT_LOG(INFO, "Using full-featured tx path\n");
dev->tx_pkt_burst = i40e_xmit_pkts;
}
return 0;
}
void
i40e_dev_tx_queue_release(void *txq)
{
struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
if (!q) {
PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL\n");
return;
}
i40e_tx_queue_release_mbufs(q);
rte_free(q->sw_ring);
rte_free(q);
}
static const struct rte_memzone *
i40e_ring_dma_zone_reserve(struct rte_eth_dev *dev,
const char *ring_name,
uint16_t queue_id,
uint32_t ring_size,
int socket_id)
{
char z_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
snprintf(z_name, sizeof(z_name), "%s_%s_%d_%d",
dev->driver->pci_drv.name, ring_name,
dev->data->port_id, queue_id);
mz = rte_memzone_lookup(z_name);
if (mz)
return mz;
#ifdef RTE_LIBRTE_XEN_DOM0
return rte_memzone_reserve_bounded(z_name, ring_size,
socket_id, 0, I40E_ALIGN, RTE_PGSIZE_2M);
#else
return rte_memzone_reserve_aligned(z_name, ring_size,
socket_id, 0, I40E_ALIGN);
#endif
}
void
i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
{
uint16_t i;
if (!rxq || !rxq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL\n");
return;
}
for (i = 0; i < rxq->nb_rx_desc; i++) {
if (rxq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
rxq->sw_ring[i].mbuf = NULL;
}
}
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
if (rxq->rx_nb_avail == 0)
return;
for (i = 0; i < rxq->rx_nb_avail; i++) {
struct rte_mbuf *mbuf;
mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
rte_pktmbuf_free_seg(mbuf);
}
rxq->rx_nb_avail = 0;
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
}
void
i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
{
unsigned i;
uint16_t len;
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
else
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
len = rxq->nb_rx_desc;
for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
((volatile char *)rxq->rx_ring)[i] = 0;
#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
rxq->rx_nb_avail = 0;
rxq->rx_next_avail = 0;
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
rxq->rx_tail = 0;
rxq->nb_rx_hold = 0;
rxq->pkt_first_seg = NULL;
rxq->pkt_last_seg = NULL;
}
void
i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
{
uint16_t i;
if (!txq || !txq->sw_ring) {
PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL\n");
return;
}
for (i = 0; i < txq->nb_tx_desc; i++) {
if (txq->sw_ring[i].mbuf) {
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
txq->sw_ring[i].mbuf = NULL;
}
}
}
void
i40e_reset_tx_queue(struct i40e_tx_queue *txq)
{
struct i40e_tx_entry *txe;
uint16_t i, prev, size;
if (!txq) {
PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL\n");
return;
}
txe = txq->sw_ring;
size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
for (i = 0; i < size; i++)
((volatile char *)txq->tx_ring)[i] = 0;
prev = (uint16_t)(txq->nb_tx_desc - 1);
for (i = 0; i < txq->nb_tx_desc; i++) {
volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
txd[i].cmd_type_offset_bsz =
rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
txe[i].mbuf = NULL;
txe[i].last_id = i;
txe[prev].next_id = i;
prev = i;
}
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
txq->tx_tail = 0;
txq->nb_tx_used = 0;
txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
}
/* Init the TX queue in hardware */
int
i40e_tx_queue_init(struct i40e_tx_queue *txq)
{
enum i40e_status_code err = I40E_SUCCESS;
struct i40e_vsi *vsi = txq->vsi;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t pf_q = txq->reg_idx;
struct i40e_hmc_obj_txq tx_ctx;
uint32_t qtx_ctl;
/* clear the context structure first */
memset(&tx_ctx, 0, sizeof(tx_ctx));
tx_ctx.new_context = 1;
tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
tx_ctx.qlen = txq->nb_tx_desc;
tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[0]);
err = i40e_clear_lan_tx_queue_context(hw, pf_q);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context\n");
return err;
}
err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failure of set lan tx queue context\n");
return err;
}
/* Now associate this queue with this PCI function */
qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
I40E_QTX_CTL_PF_INDX_MASK);
I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
I40E_WRITE_FLUSH(hw);
txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
return err;
}
int
i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
{
struct i40e_rx_entry *rxe = rxq->sw_ring;
uint64_t dma_addr;
uint16_t i;
for (i = 0; i < rxq->nb_rx_desc; i++) {
volatile union i40e_rx_desc *rxd;
struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
if (unlikely(!mbuf)) {
PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX\n");
return -ENOMEM;
}
rte_mbuf_refcnt_set(mbuf, 1);
mbuf->next = NULL;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->port = rxq->port_id;
dma_addr =
rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR_DEFAULT(mbuf));
rxd = &rxq->rx_ring[i];
rxd->read.pkt_addr = dma_addr;
rxd->read.hdr_addr = dma_addr;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
rxd->read.rsvd1 = 0;
rxd->read.rsvd2 = 0;
#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
rxe[i].mbuf = mbuf;
}
return 0;
}
/*
* Calculate the buffer length, and check the jumbo frame
* and maximum packet length.
*/
static int
i40e_rx_queue_config(struct i40e_rx_queue *rxq)
{
struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
struct rte_eth_dev_data *data = pf->dev_data;
struct rte_pktmbuf_pool_private *mbp_priv =
rte_mempool_get_priv(rxq->mp);
uint16_t buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
uint16_t len;
switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
I40E_FLAG_HEADER_SPLIT_ENABLED)) {
case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
(1 << I40E_RXQ_CTX_HBUFF_SHIFT));
rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
rxq->hs_mode = i40e_header_split_enabled;
break;
case I40E_FLAG_HEADER_SPLIT_DISABLED:
default:
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN(buf_size,
(1 << I40E_RXQ_CTX_DBUFF_SHIFT));
rxq->hs_mode = i40e_header_split_none;
break;
}
len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
if (data->dev_conf.rxmode.jumbo_frame == 1) {
if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must "
"be larger than %u and smaller than %u,"
"as jumbo frame is enabled\n",
(uint32_t)ETHER_MAX_LEN,
(uint32_t)I40E_FRAME_SIZE_MAX);
return I40E_ERR_CONFIG;
}
} else {
if (rxq->max_pkt_len < ETHER_MIN_LEN ||
rxq->max_pkt_len > ETHER_MAX_LEN) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, "
"as jumbo frame is disabled\n",
(uint32_t)ETHER_MIN_LEN,
(uint32_t)ETHER_MAX_LEN);
return I40E_ERR_CONFIG;
}
}
return 0;
}
/* Init the RX queue in hardware */
int
i40e_rx_queue_init(struct i40e_rx_queue *rxq)
{
int err = I40E_SUCCESS;
struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
struct rte_eth_dev *dev = I40E_VSI_TO_ETH_DEV(rxq->vsi);
uint16_t pf_q = rxq->reg_idx;
uint16_t buf_size;
struct i40e_hmc_obj_rxq rx_ctx;
struct rte_pktmbuf_pool_private *mbp_priv;
err = i40e_rx_queue_config(rxq);
if (err < 0) {
PMD_DRV_LOG(ERR, "Failed to config RX queue\n");
return err;
}
/* Clear the context structure first */
memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
rx_ctx.qlen = rxq->nb_rx_desc;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
rx_ctx.dsize = 1;
#endif
rx_ctx.dtype = rxq->hs_mode;
if (rxq->hs_mode)
rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
else
rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
rx_ctx.rxmax = rxq->max_pkt_len;
rx_ctx.tphrdesc_ena = 1;
rx_ctx.tphwdesc_ena = 1;
rx_ctx.tphdata_ena = 1;
rx_ctx.tphhead_ena = 1;
rx_ctx.lrxqthresh = 2;
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
rx_ctx.l2tsel = 1;
rx_ctx.showiv = 1;
rx_ctx.prefena = 1;
err = i40e_clear_lan_rx_queue_context(hw, pf_q);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context\n");
return err;
}
err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context\n");
return err;
}
rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
mbp_priv = rte_mempool_get_priv(rxq->mp);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
/* Check if scattered RX needs to be used. */
if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
dev_data->scattered_rx = 1;
dev->rx_pkt_burst = i40e_recv_scattered_pkts;
}
/* Init the RX tail regieter. */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
return 0;
}
void
i40e_dev_clear_queues(struct rte_eth_dev *dev)
{
uint16_t i;
PMD_INIT_FUNC_TRACE();
for (i = 0; i < dev->data->nb_tx_queues; i++) {
i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
i40e_reset_tx_queue(dev->data->tx_queues[i]);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
i40e_reset_rx_queue(dev->data->rx_queues[i]);
}
}