numam-dpdk/drivers/net/mlx5/mlx5_txpp.c
Tal Shnaiderman 981746264e common/mlx5: wrap event channel functions per OS
Wrap the API to create/destroy event channel and to subscribe an event
with OS calls. In Linux those calls are implemented by glue functions
while in Windows they are not supported.

Signed-off-by: Tal Shnaiderman <talshn@nvidia.com>
Acked-by: Matan Azrad <matan@nvidia.com>
2021-01-08 16:03:07 +01:00

1387 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2020 Mellanox Technologies, Ltd
*/
#include <fcntl.h>
#include <stdint.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_interrupts.h>
#include <rte_alarm.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_eal_paging.h>
#include <mlx5_malloc.h>
#include "mlx5.h"
#include "mlx5_rxtx.h"
#include "mlx5_common_os.h"
static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t),
"Wrong timestamp CQE part size");
static const char * const mlx5_txpp_stat_names[] = {
"tx_pp_missed_interrupt_errors", /* Missed service interrupt. */
"tx_pp_rearm_queue_errors", /* Rearm Queue errors. */
"tx_pp_clock_queue_errors", /* Clock Queue errors. */
"tx_pp_timestamp_past_errors", /* Timestamp in the past. */
"tx_pp_timestamp_future_errors", /* Timestamp in the distant future. */
"tx_pp_jitter", /* Timestamp jitter (one Clock Queue completion). */
"tx_pp_wander", /* Timestamp wander (half of Clock Queue CQEs). */
"tx_pp_sync_lost", /* Scheduling synchronization lost. */
};
/* Destroy Event Queue Notification Channel. */
static void
mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh)
{
if (sh->txpp.echan) {
mlx5_os_devx_destroy_event_channel(sh->txpp.echan);
sh->txpp.echan = NULL;
}
}
/* Create Event Queue Notification Channel. */
static int
mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh)
{
MLX5_ASSERT(!sh->txpp.echan);
sh->txpp.echan = mlx5_os_devx_create_event_channel(sh->ctx,
MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA);
if (!sh->txpp.echan) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno);
return -rte_errno;
}
return 0;
}
static void
mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh)
{
#ifdef HAVE_MLX5DV_PP_ALLOC
if (sh->txpp.pp) {
mlx5_glue->dv_free_pp(sh->txpp.pp);
sh->txpp.pp = NULL;
sh->txpp.pp_id = 0;
}
#else
RTE_SET_USED(sh);
DRV_LOG(ERR, "Freeing pacing index is not supported.");
#endif
}
/* Allocate Packet Pacing index from kernel via mlx5dv call. */
static int
mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh)
{
#ifdef HAVE_MLX5DV_PP_ALLOC
uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)];
uint64_t rate;
MLX5_ASSERT(!sh->txpp.pp);
memset(&pp, 0, sizeof(pp));
rate = NS_PER_S / sh->txpp.tick;
if (rate * sh->txpp.tick != NS_PER_S)
DRV_LOG(WARNING, "Packet pacing frequency is not precise.");
if (sh->txpp.test) {
uint32_t len;
len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE,
(size_t)RTE_ETHER_MIN_LEN);
MLX5_SET(set_pp_rate_limit_context, &pp,
burst_upper_bound, len);
MLX5_SET(set_pp_rate_limit_context, &pp,
typical_packet_size, len);
/* Convert packets per second into kilobits. */
rate = (rate * len) / (1000ul / CHAR_BIT);
DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate);
}
MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate);
MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode,
sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE);
sh->txpp.pp = mlx5_glue->dv_alloc_pp
(sh->ctx, sizeof(pp), &pp,
MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX);
if (sh->txpp.pp == NULL) {
DRV_LOG(ERR, "Failed to allocate packet pacing index.");
rte_errno = errno;
return -errno;
}
if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) {
DRV_LOG(ERR, "Zero packet pacing index allocated.");
mlx5_txpp_free_pp_index(sh);
rte_errno = ENOTSUP;
return -ENOTSUP;
}
sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index;
return 0;
#else
RTE_SET_USED(sh);
DRV_LOG(ERR, "Allocating pacing index is not supported.");
rte_errno = ENOTSUP;
return -ENOTSUP;
#endif
}
static void
mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq)
{
if (wq->sq)
claim_zero(mlx5_devx_cmd_destroy(wq->sq));
if (wq->sq_umem)
claim_zero(mlx5_os_umem_dereg(wq->sq_umem));
if (wq->sq_buf)
mlx5_free((void *)(uintptr_t)wq->sq_buf);
if (wq->cq)
claim_zero(mlx5_devx_cmd_destroy(wq->cq));
if (wq->cq_umem)
claim_zero(mlx5_os_umem_dereg(wq->cq_umem));
if (wq->cq_buf)
mlx5_free((void *)(uintptr_t)wq->cq_buf);
memset(wq, 0, sizeof(*wq));
}
static void
mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
mlx5_txpp_destroy_send_queue(wq);
}
static void
mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
mlx5_txpp_destroy_send_queue(wq);
if (sh->txpp.tsa) {
mlx5_free(sh->txpp.tsa);
sh->txpp.tsa = NULL;
}
}
static void
mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
union {
uint32_t w32[2];
uint64_t w64;
} cs;
void *reg_addr;
wq->sq_ci = ci + 1;
cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32
(wq->wqes[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8);
cs.w32[1] = wq->wqes[ci & (wq->sq_size - 1)].ctrl[1];
/* Update SQ doorbell record with new SQ ci. */
rte_compiler_barrier();
*wq->sq_dbrec = rte_cpu_to_be_32(wq->sq_ci);
/* Make sure the doorbell record is updated. */
rte_wmb();
/* Write to doorbel register to start processing. */
reg_addr = mlx5_os_get_devx_uar_reg_addr(sh->tx_uar);
__mlx5_uar_write64_relaxed(cs.w64, reg_addr, NULL);
rte_wmb();
}
static void
mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
uint32_t i;
for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) {
cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK;
++cqe;
}
}
static void
mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
uint32_t i;
for (i = 0; i < wq->sq_size; i += 2) {
struct mlx5_wqe_cseg *cs;
struct mlx5_wqe_qseg *qs;
uint32_t index;
/* Build SEND_EN request with slave WQE index. */
cs = &wqe[i + 0].cseg;
cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0);
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
cs->flags = RTE_BE32(MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) &
((1 << MLX5_WQ_INDEX_WIDTH) - 1);
qs->max_index = rte_cpu_to_be_32(index);
qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id);
/* Build WAIT request with slave CQE index. */
cs = &wqe[i + 1].cseg;
cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0);
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) &
((1 << MLX5_CQ_INDEX_WIDTH) - 1);
qs->max_index = rte_cpu_to_be_32(index);
qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id);
}
}
/* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */
static int
mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_devx_create_sq_attr sq_attr = { 0 };
struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
struct mlx5_devx_cq_attr cq_attr = { 0 };
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
size_t page_size;
uint32_t umem_size, umem_dbrec;
int ret;
page_size = rte_mem_page_size();
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
return -ENOMEM;
}
/* Allocate memory buffer for CQEs and doorbell record. */
umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
page_size, sh->numa_node);
if (!wq->cq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
return -ENOMEM;
}
/* Register allocated buffer in user space with DevX. */
wq->cq_umem = mlx5_os_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->cq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->cq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
goto error;
}
/* Create completion queue object for Rearm Queue. */
cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
cq_attr.eqn = sh->eqn;
cq_attr.q_umem_valid = 1;
cq_attr.q_umem_offset = 0;
cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
cq_attr.db_umem_valid = 1;
cq_attr.db_umem_offset = umem_dbrec;
cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE);
cq_attr.log_page_size = rte_log2_u32(page_size);
wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
if (!wq->cq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create CQ for Rearm Queue.");
goto error;
}
wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
wq->cq_ci = 0;
wq->arm_sn = 0;
/* Mark all CQEs initially as invalid. */
mlx5_txpp_fill_cqe_rearm_queue(sh);
/*
* Allocate memory buffer for Send Queue WQEs.
* There should be no WQE leftovers in the cyclic queue.
*/
wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE;
MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
umem_size = MLX5_WQE_SIZE * wq->sq_size;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
page_size, sh->numa_node);
if (!wq->sq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
rte_errno = ENOMEM;
goto error;
}
/* Register allocated buffer in user space with DevX. */
wq->sq_umem = mlx5_os_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->sq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->sq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
goto error;
}
/* Create send queue object for Rearm Queue. */
sq_attr.state = MLX5_SQC_STATE_RST;
sq_attr.tis_lst_sz = 1;
sq_attr.tis_num = sh->tis->id;
sq_attr.cqn = wq->cq->id;
sq_attr.cd_master = 1;
sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
sq_attr.wq_attr.pd = sh->pdn;
sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
sq_attr.wq_attr.dbr_umem_valid = 1;
sq_attr.wq_attr.dbr_addr = umem_dbrec;
sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
sq_attr.wq_attr.wq_umem_valid = 1;
sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
sq_attr.wq_attr.wq_umem_offset = 0;
wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
if (!wq->sq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create SQ for Rearm Queue.");
goto error;
}
wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
MLX5_SND_DBR * sizeof(uint32_t));
/* Build the WQEs in the Send Queue before goto Ready state. */
mlx5_txpp_fill_wqe_rearm_queue(sh);
/* Change queue state to ready. */
msq_attr.sq_state = MLX5_SQC_STATE_RST;
msq_attr.state = MLX5_SQC_STATE_RDY;
ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
if (ret) {
DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue.");
goto error;
}
return 0;
error:
ret = -rte_errno;
mlx5_txpp_destroy_rearm_queue(sh);
rte_errno = -ret;
return ret;
}
static void
mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
struct mlx5_wqe_cseg *cs = &wqe->cseg;
uint32_t wqe_size, opcode, i;
uint8_t *dst;
/* For test purposes fill the WQ with SEND inline packet. */
if (sh->txpp.test) {
wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
MLX5_WQE_CSEG_SIZE +
2 * MLX5_WQE_ESEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE,
MLX5_WSEG_SIZE);
opcode = MLX5_OPCODE_SEND;
} else {
wqe_size = MLX5_WSEG_SIZE;
opcode = MLX5_OPCODE_NOP;
}
cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) |
(wqe_size / MLX5_WSEG_SIZE));
cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE);
if (sh->txpp.test) {
struct mlx5_wqe_eseg *es = &wqe->eseg;
struct rte_ether_hdr *eth_hdr;
struct rte_ipv4_hdr *ip_hdr;
struct rte_udp_hdr *udp_hdr;
/* Build the inline test packet pattern. */
MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX);
MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >=
(sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr)));
es->flags = 0;
es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
es->swp_offs = 0;
es->metadata = 0;
es->swp_flags = 0;
es->mss = 0;
es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE);
/* Build test packet L2 header (Ethernet). */
dst = (uint8_t *)&es->inline_data;
eth_hdr = (struct rte_ether_hdr *)dst;
rte_eth_random_addr(&eth_hdr->d_addr.addr_bytes[0]);
rte_eth_random_addr(&eth_hdr->s_addr.addr_bytes[0]);
eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
/* Build test packet L3 header (IP v4). */
dst += sizeof(struct rte_ether_hdr);
ip_hdr = (struct rte_ipv4_hdr *)dst;
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
ip_hdr->type_of_service = 0;
ip_hdr->fragment_offset = 0;
ip_hdr->time_to_live = 64;
ip_hdr->next_proto_id = IPPROTO_UDP;
ip_hdr->packet_id = 0;
ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
sizeof(struct rte_ether_hdr));
/* use RFC5735 / RFC2544 reserved network test addresses */
ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) |
(0 << 8) | 1);
ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) |
(0 << 8) | 2);
if (MLX5_TXPP_TEST_PKT_SIZE <
(sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr)))
goto wcopy;
/* Build test packet L4 header (UDP). */
dst += sizeof(struct rte_ipv4_hdr);
udp_hdr = (struct rte_udp_hdr *)dst;
udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */
udp_hdr->dst_port = RTE_BE16(9);
udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
sizeof(struct rte_ether_hdr) -
sizeof(struct rte_ipv4_hdr));
udp_hdr->dgram_cksum = 0;
/* Fill the test packet data. */
dst += sizeof(struct rte_udp_hdr);
for (i = sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
sizeof(struct rte_udp_hdr);
i < MLX5_TXPP_TEST_PKT_SIZE; i++)
*dst++ = (uint8_t)(i & 0xFF);
}
wcopy:
/* Duplicate the pattern to the next WQEs. */
dst = (uint8_t *)(uintptr_t)wq->sq_buf;
for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) {
dst += wqe_size;
rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size);
}
}
/* Creates the Clock Queue for packet pacing, returns zero on success. */
static int
mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_devx_create_sq_attr sq_attr = { 0 };
struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
struct mlx5_devx_cq_attr cq_attr = { 0 };
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
size_t page_size;
uint32_t umem_size, umem_dbrec;
int ret;
page_size = rte_mem_page_size();
if (page_size == (size_t)-1) {
DRV_LOG(ERR, "Failed to get mem page size");
return -ENOMEM;
}
sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
MLX5_TXPP_REARM_SQ_SIZE *
sizeof(struct mlx5_txpp_ts),
0, sh->numa_node);
if (!sh->txpp.tsa) {
DRV_LOG(ERR, "Failed to allocate memory for CQ stats.");
return -ENOMEM;
}
sh->txpp.ts_p = 0;
sh->txpp.ts_n = 0;
/* Allocate memory buffer for CQEs and doorbell record. */
umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
page_size, sh->numa_node);
if (!wq->cq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
return -ENOMEM;
}
/* Register allocated buffer in user space with DevX. */
wq->cq_umem = mlx5_os_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->cq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->cq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
goto error;
}
/* Create completion queue object for Clock Queue. */
cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
cq_attr.use_first_only = 1;
cq_attr.overrun_ignore = 1;
cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
cq_attr.eqn = sh->eqn;
cq_attr.q_umem_valid = 1;
cq_attr.q_umem_offset = 0;
cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
cq_attr.db_umem_valid = 1;
cq_attr.db_umem_offset = umem_dbrec;
cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE);
cq_attr.log_page_size = rte_log2_u32(page_size);
wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
if (!wq->cq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create CQ for Clock Queue.");
goto error;
}
wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
wq->cq_ci = 0;
/* Allocate memory buffer for Send Queue WQEs. */
if (sh->txpp.test) {
wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
MLX5_WQE_CSEG_SIZE +
2 * MLX5_WQE_ESEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE,
MLX5_WQE_SIZE) / MLX5_WQE_SIZE;
wq->sq_size *= MLX5_TXPP_CLKQ_SIZE;
} else {
wq->sq_size = MLX5_TXPP_CLKQ_SIZE;
}
/* There should not be WQE leftovers in the cyclic queue. */
MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
umem_size = MLX5_WQE_SIZE * wq->sq_size;
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
umem_size += MLX5_DBR_SIZE;
wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
page_size, sh->numa_node);
if (!wq->sq_buf) {
DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
rte_errno = ENOMEM;
goto error;
}
/* Register allocated buffer in user space with DevX. */
wq->sq_umem = mlx5_os_umem_reg(sh->ctx,
(void *)(uintptr_t)wq->sq_buf,
umem_size,
IBV_ACCESS_LOCAL_WRITE);
if (!wq->sq_umem) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
goto error;
}
/* Create send queue object for Clock Queue. */
if (sh->txpp.test) {
sq_attr.tis_lst_sz = 1;
sq_attr.tis_num = sh->tis->id;
sq_attr.non_wire = 0;
sq_attr.static_sq_wq = 1;
} else {
sq_attr.non_wire = 1;
sq_attr.static_sq_wq = 1;
}
sq_attr.state = MLX5_SQC_STATE_RST;
sq_attr.cqn = wq->cq->id;
sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id;
sq_attr.wq_attr.cd_slave = 1;
sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
sq_attr.wq_attr.pd = sh->pdn;
sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
sq_attr.wq_attr.dbr_umem_valid = 1;
sq_attr.wq_attr.dbr_addr = umem_dbrec;
sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
sq_attr.wq_attr.wq_umem_valid = 1;
sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
/* umem_offset must be zero for static_sq_wq queue. */
sq_attr.wq_attr.wq_umem_offset = 0;
wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
if (!wq->sq) {
rte_errno = errno;
DRV_LOG(ERR, "Failed to create SQ for Clock Queue.");
goto error;
}
wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
MLX5_SND_DBR * sizeof(uint32_t));
/* Build the WQEs in the Send Queue before goto Ready state. */
mlx5_txpp_fill_wqe_clock_queue(sh);
/* Change queue state to ready. */
msq_attr.sq_state = MLX5_SQC_STATE_RST;
msq_attr.state = MLX5_SQC_STATE_RDY;
wq->sq_ci = 0;
ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
if (ret) {
DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue.");
goto error;
}
return 0;
error:
ret = -rte_errno;
mlx5_txpp_destroy_clock_queue(sh);
rte_errno = -ret;
return ret;
}
/* Enable notification from the Rearm Queue CQ. */
static inline void
mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh)
{
void *base_addr;
struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue;
uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET;
uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci;
uint64_t db_be = rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq->id);
base_addr = mlx5_os_get_devx_uar_base_addr(sh->tx_uar);
uint32_t *addr = RTE_PTR_ADD(base_addr, MLX5_CQ_DOORBELL);
rte_compiler_barrier();
aq->cq_dbrec[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(db_hi);
rte_wmb();
#ifdef RTE_ARCH_64
*(uint64_t *)addr = db_be;
#else
*(uint32_t *)addr = db_be;
rte_io_wmb();
*((uint32_t *)addr + 1) = db_be >> 32;
#endif
aq->arm_sn++;
}
#if defined(RTE_ARCH_X86_64)
static inline int
mlx5_atomic128_compare_exchange(rte_int128_t *dst,
rte_int128_t *exp,
const rte_int128_t *src)
{
uint8_t res;
asm volatile (MPLOCKED
"cmpxchg16b %[dst];"
" sete %[res]"
: [dst] "=m" (dst->val[0]),
"=a" (exp->val[0]),
"=d" (exp->val[1]),
[res] "=r" (res)
: "b" (src->val[0]),
"c" (src->val[1]),
"a" (exp->val[0]),
"d" (exp->val[1]),
"m" (dst->val[0])
: "memory");
return res;
}
#endif
static inline void
mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts)
{
/*
* The only CQE of Clock Queue is being continuously
* update by hardware with soecified rate. We have to
* read timestump and WQE completion index atomically.
*/
#if defined(RTE_ARCH_X86_64)
rte_int128_t src;
memset(&src, 0, sizeof(src));
*ts = src;
/* if (*from == *ts) *from = *src else *ts = *from; */
mlx5_atomic128_compare_exchange(from, ts, &src);
#else
uint64_t *cqe = (uint64_t *)from;
/*
* Power architecture does not support 16B compare-and-swap.
* ARM implements it in software, code below is more relevant.
*/
for (;;) {
uint64_t tm, op;
uint64_t *ps;
rte_compiler_barrier();
tm = __atomic_load_n(cqe + 0, __ATOMIC_RELAXED);
op = __atomic_load_n(cqe + 1, __ATOMIC_RELAXED);
rte_compiler_barrier();
if (tm != __atomic_load_n(cqe + 0, __ATOMIC_RELAXED))
continue;
if (op != __atomic_load_n(cqe + 1, __ATOMIC_RELAXED))
continue;
ps = (uint64_t *)ts;
ps[0] = tm;
ps[1] = op;
return;
}
#endif
}
/* Stores timestamp in the cache structure to share data with datapath. */
static inline void
mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh,
uint64_t ts, uint64_t ci)
{
ci = ci << (64 - MLX5_CQ_INDEX_WIDTH);
ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH;
rte_compiler_barrier();
__atomic_store_n(&sh->txpp.ts.ts, ts, __ATOMIC_RELAXED);
__atomic_store_n(&sh->txpp.ts.ci_ts, ci, __ATOMIC_RELAXED);
rte_wmb();
}
/* Reads timestamp from Clock Queue CQE and stores in the cache. */
static inline void
mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
union {
rte_int128_t u128;
struct mlx5_cqe_ts cts;
} to;
uint64_t ts;
uint16_t ci;
mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
if (to.cts.op_own >> 4) {
DRV_LOG(DEBUG, "Clock Queue error sync lost.");
__atomic_fetch_add(&sh->txpp.err_clock_queue,
1, __ATOMIC_RELAXED);
sh->txpp.sync_lost = 1;
return;
}
ci = rte_be_to_cpu_16(to.cts.wqe_counter);
ts = rte_be_to_cpu_64(to.cts.timestamp);
ts = mlx5_txpp_convert_rx_ts(sh, ts);
wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX;
wq->sq_ci = ci;
mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci);
}
/* Waits for the first completion on Clock Queue to init timestamp. */
static inline void
mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
uint32_t wait;
sh->txpp.ts_p = 0;
sh->txpp.ts_n = 0;
for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) {
mlx5_txpp_update_timestamp(sh);
if (wq->sq_ci)
return;
/* Wait one millisecond and try again. */
rte_delay_us_sleep(US_PER_S / MS_PER_S);
}
DRV_LOG(ERR, "Unable to initialize timestamp.");
sh->txpp.sync_lost = 1;
}
#ifdef HAVE_IBV_DEVX_EVENT
/* Gather statistics for timestamp from Clock Queue CQE. */
static inline void
mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh)
{
/* Check whether we have a valid timestamp. */
if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n)
return;
MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE);
__atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ts,
sh->txpp.ts.ts, __ATOMIC_RELAXED);
__atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ci_ts,
sh->txpp.ts.ci_ts, __ATOMIC_RELAXED);
if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE)
sh->txpp.ts_p = 0;
if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE)
++sh->txpp.ts_n;
}
/* Handles Rearm Queue completions in periodic service. */
static __rte_always_inline void
mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh)
{
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
uint32_t cq_ci = wq->cq_ci;
bool error = false;
int ret;
do {
volatile struct mlx5_cqe *cqe;
cqe = &wq->cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)];
ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci);
switch (ret) {
case MLX5_CQE_STATUS_ERR:
error = true;
++cq_ci;
break;
case MLX5_CQE_STATUS_SW_OWN:
wq->sq_ci += 2;
++cq_ci;
break;
case MLX5_CQE_STATUS_HW_OWN:
break;
default:
MLX5_ASSERT(false);
break;
}
} while (ret != MLX5_CQE_STATUS_HW_OWN);
if (likely(cq_ci != wq->cq_ci)) {
/* Check whether we have missed interrupts. */
if (cq_ci - wq->cq_ci != 1) {
DRV_LOG(DEBUG, "Rearm Queue missed interrupt.");
__atomic_fetch_add(&sh->txpp.err_miss_int,
1, __ATOMIC_RELAXED);
/* Check sync lost on wqe index. */
if (cq_ci - wq->cq_ci >=
(((1UL << MLX5_WQ_INDEX_WIDTH) /
MLX5_TXPP_REARM) - 1))
error = 1;
}
/* Update doorbell record to notify hardware. */
rte_compiler_barrier();
*wq->cq_dbrec = rte_cpu_to_be_32(cq_ci);
rte_wmb();
wq->cq_ci = cq_ci;
/* Fire new requests to Rearm Queue. */
if (error) {
DRV_LOG(DEBUG, "Rearm Queue error sync lost.");
__atomic_fetch_add(&sh->txpp.err_rearm_queue,
1, __ATOMIC_RELAXED);
sh->txpp.sync_lost = 1;
}
}
}
/* Handles Clock Queue completions in periodic service. */
static __rte_always_inline void
mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh)
{
mlx5_txpp_update_timestamp(sh);
mlx5_txpp_gather_timestamp(sh);
}
#endif
/* Invoked periodically on Rearm Queue completions. */
void
mlx5_txpp_interrupt_handler(void *cb_arg)
{
#ifndef HAVE_IBV_DEVX_EVENT
RTE_SET_USED(cb_arg);
return;
#else
struct mlx5_dev_ctx_shared *sh = cb_arg;
union {
struct mlx5dv_devx_async_event_hdr event_resp;
uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128];
} out;
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
/* Process events in the loop. Only rearm completions are expected. */
while (mlx5_glue->devx_get_event
(sh->txpp.echan,
&out.event_resp,
sizeof(out.buf)) >=
(ssize_t)sizeof(out.event_resp.cookie)) {
mlx5_txpp_handle_rearm_queue(sh);
mlx5_txpp_handle_clock_queue(sh);
mlx5_txpp_cq_arm(sh);
mlx5_txpp_doorbell_rearm_queue
(sh, sh->txpp.rearm_queue.sq_ci - 1);
}
#endif /* HAVE_IBV_DEVX_ASYNC */
}
static void
mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh)
{
if (!sh->txpp.intr_handle.fd)
return;
mlx5_intr_callback_unregister(&sh->txpp.intr_handle,
mlx5_txpp_interrupt_handler, sh);
sh->txpp.intr_handle.fd = 0;
}
/* Attach interrupt handler and fires first request to Rearm Queue. */
static int
mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh)
{
uint16_t event_nums[1] = {0};
int ret;
int fd;
sh->txpp.err_miss_int = 0;
sh->txpp.err_rearm_queue = 0;
sh->txpp.err_clock_queue = 0;
sh->txpp.err_ts_past = 0;
sh->txpp.err_ts_future = 0;
/* Attach interrupt handler to process Rearm Queue completions. */
fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
ret = mlx5_os_set_nonblock_channel_fd(fd);
if (ret) {
DRV_LOG(ERR, "Failed to change event channel FD.");
rte_errno = errno;
return -rte_errno;
}
memset(&sh->txpp.intr_handle, 0, sizeof(sh->txpp.intr_handle));
fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
sh->txpp.intr_handle.fd = fd;
sh->txpp.intr_handle.type = RTE_INTR_HANDLE_EXT;
if (rte_intr_callback_register(&sh->txpp.intr_handle,
mlx5_txpp_interrupt_handler, sh)) {
sh->txpp.intr_handle.fd = 0;
DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno);
return -rte_errno;
}
/* Subscribe CQ event to the event channel controlled by the driver. */
ret = mlx5_os_devx_subscribe_devx_event(sh->txpp.echan,
sh->txpp.rearm_queue.cq->obj,
sizeof(event_nums),
event_nums, 0);
if (ret) {
DRV_LOG(ERR, "Failed to subscribe CQE event.");
rte_errno = errno;
return -errno;
}
/* Enable interrupts in the CQ. */
mlx5_txpp_cq_arm(sh);
/* Fire the first request on Rearm Queue. */
mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1);
mlx5_txpp_init_timestamp(sh);
return 0;
}
/*
* The routine initializes the packet pacing infrastructure:
* - allocates PP context
* - Clock CQ/SQ
* - Rearm CQ/SQ
* - attaches rearm interrupt handler
* - starts Clock Queue
*
* Returns 0 on success, negative otherwise
*/
static int
mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv)
{
int tx_pp = priv->config.tx_pp;
int ret;
/* Store the requested pacing parameters. */
sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp;
sh->txpp.test = !!(tx_pp < 0);
sh->txpp.skew = priv->config.tx_skew;
sh->txpp.freq = priv->config.hca_attr.dev_freq_khz;
ret = mlx5_txpp_create_event_channel(sh);
if (ret)
goto exit;
ret = mlx5_txpp_alloc_pp_index(sh);
if (ret)
goto exit;
ret = mlx5_txpp_create_clock_queue(sh);
if (ret)
goto exit;
ret = mlx5_txpp_create_rearm_queue(sh);
if (ret)
goto exit;
ret = mlx5_txpp_start_service(sh);
if (ret)
goto exit;
exit:
if (ret) {
mlx5_txpp_stop_service(sh);
mlx5_txpp_destroy_rearm_queue(sh);
mlx5_txpp_destroy_clock_queue(sh);
mlx5_txpp_free_pp_index(sh);
mlx5_txpp_destroy_event_channel(sh);
sh->txpp.tick = 0;
sh->txpp.test = 0;
sh->txpp.skew = 0;
}
return ret;
}
/*
* The routine destroys the packet pacing infrastructure:
* - detaches rearm interrupt handler
* - Rearm CQ/SQ
* - Clock CQ/SQ
* - PP context
*/
static void
mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh)
{
mlx5_txpp_stop_service(sh);
mlx5_txpp_destroy_rearm_queue(sh);
mlx5_txpp_destroy_clock_queue(sh);
mlx5_txpp_free_pp_index(sh);
mlx5_txpp_destroy_event_channel(sh);
sh->txpp.tick = 0;
sh->txpp.test = 0;
sh->txpp.skew = 0;
}
/**
* Creates and starts packet pacing infrastructure on specified device.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_txpp_start(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
int err = 0;
int ret;
if (!priv->config.tx_pp) {
/* Packet pacing is not requested for the device. */
MLX5_ASSERT(priv->txpp_en == 0);
return 0;
}
if (priv->txpp_en) {
/* Packet pacing is already enabled for the device. */
MLX5_ASSERT(sh->txpp.refcnt);
return 0;
}
if (priv->config.tx_pp > 0) {
ret = rte_mbuf_dynflag_lookup
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
if (ret < 0)
return 0;
}
ret = pthread_mutex_lock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
if (sh->txpp.refcnt) {
priv->txpp_en = 1;
++sh->txpp.refcnt;
} else {
err = mlx5_txpp_create(sh, priv);
if (!err) {
MLX5_ASSERT(sh->txpp.tick);
priv->txpp_en = 1;
sh->txpp.refcnt = 1;
} else {
rte_errno = -err;
}
}
ret = pthread_mutex_unlock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
return err;
}
/**
* Stops and destroys packet pacing infrastructure on specified device.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
void
mlx5_txpp_stop(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
int ret;
if (!priv->txpp_en) {
/* Packet pacing is already disabled for the device. */
return;
}
priv->txpp_en = 0;
ret = pthread_mutex_lock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
MLX5_ASSERT(sh->txpp.refcnt);
if (!sh->txpp.refcnt || --sh->txpp.refcnt)
return;
/* No references any more, do actual destroy. */
mlx5_txpp_destroy(sh);
ret = pthread_mutex_unlock(&sh->txpp.mutex);
MLX5_ASSERT(!ret);
RTE_SET_USED(ret);
}
/*
* Read the current clock counter of an Ethernet device
*
* This returns the current raw clock value of an Ethernet device. It is
* a raw amount of ticks, with no given time reference.
* The value returned here is from the same clock than the one
* filling timestamp field of Rx/Tx packets when using hardware timestamp
* offload. Therefore it can be used to compute a precise conversion of
* the device clock to the real time.
*
* @param dev
* Pointer to Ethernet device structure.
* @param clock
* Pointer to the uint64_t that holds the raw clock value.
*
* @return
* - 0: Success.
* - -ENOTSUP: The function is not supported in this mode. Requires
* packet pacing module configured and started (tx_pp devarg)
*/
int
mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
int ret;
if (sh->txpp.refcnt) {
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
union {
rte_int128_t u128;
struct mlx5_cqe_ts cts;
} to;
uint64_t ts;
mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
if (to.cts.op_own >> 4) {
DRV_LOG(DEBUG, "Clock Queue error sync lost.");
__atomic_fetch_add(&sh->txpp.err_clock_queue,
1, __ATOMIC_RELAXED);
sh->txpp.sync_lost = 1;
return -EIO;
}
ts = rte_be_to_cpu_64(to.cts.timestamp);
ts = mlx5_txpp_convert_rx_ts(sh, ts);
*timestamp = ts;
return 0;
}
/* Not supported in isolated mode - kernel does not see the CQEs. */
if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY)
return -ENOTSUP;
ret = mlx5_read_clock(dev, timestamp);
return ret;
}
/**
* DPDK callback to clear device extended statistics.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success and stats is reset, negative errno value otherwise and
* rte_errno is set.
*/
int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
__atomic_store_n(&sh->txpp.err_miss_int, 0, __ATOMIC_RELAXED);
__atomic_store_n(&sh->txpp.err_rearm_queue, 0, __ATOMIC_RELAXED);
__atomic_store_n(&sh->txpp.err_clock_queue, 0, __ATOMIC_RELAXED);
__atomic_store_n(&sh->txpp.err_ts_past, 0, __ATOMIC_RELAXED);
__atomic_store_n(&sh->txpp.err_ts_future, 0, __ATOMIC_RELAXED);
return 0;
}
/**
* Routine to retrieve names of extended device statistics
* for packet send scheduling. It appends the specific stats names
* after the parts filled by preceding modules (eth stats, etc.)
*
* @param dev
* Pointer to Ethernet device structure.
* @param[out] xstats_names
* Buffer to insert names into.
* @param n
* Number of names.
* @param n_used
* Number of names filled by preceding statistics modules.
*
* @return
* Number of xstats names.
*/
int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused,
struct rte_eth_xstat_name *xstats_names,
unsigned int n, unsigned int n_used)
{
unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
unsigned int i;
if (n >= n_used + n_txpp && xstats_names) {
for (i = 0; i < n_txpp; ++i) {
strncpy(xstats_names[i + n_used].name,
mlx5_txpp_stat_names[i],
RTE_ETH_XSTATS_NAME_SIZE);
xstats_names[i + n_used].name
[RTE_ETH_XSTATS_NAME_SIZE - 1] = 0;
}
}
return n_used + n_txpp;
}
static inline void
mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp,
struct mlx5_txpp_ts *tsa, uint16_t idx)
{
do {
uint64_t ts, ci;
ts = __atomic_load_n(&txpp->tsa[idx].ts, __ATOMIC_RELAXED);
ci = __atomic_load_n(&txpp->tsa[idx].ci_ts, __ATOMIC_RELAXED);
rte_compiler_barrier();
if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0)
continue;
if (__atomic_load_n(&txpp->tsa[idx].ts,
__ATOMIC_RELAXED) != ts)
continue;
if (__atomic_load_n(&txpp->tsa[idx].ci_ts,
__ATOMIC_RELAXED) != ci)
continue;
tsa->ts = ts;
tsa->ci_ts = ci;
return;
} while (true);
}
/*
* Jitter reflects the clock change between
* neighbours Clock Queue completions.
*/
static uint64_t
mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp)
{
struct mlx5_txpp_ts tsa0, tsa1;
int64_t dts, dci;
uint16_t ts_p;
if (txpp->ts_n < 2) {
/* No gathered enough reports yet. */
return 0;
}
do {
int ts_0, ts_1;
ts_p = txpp->ts_p;
rte_compiler_barrier();
ts_0 = ts_p - 2;
if (ts_0 < 0)
ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
ts_1 = ts_p - 1;
if (ts_1 < 0)
ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
rte_compiler_barrier();
} while (ts_p != txpp->ts_p);
/* We have two neighbor reports, calculate the jitter. */
dts = tsa1.ts - tsa0.ts;
dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) -
(tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH));
if (dci < 0)
dci += 1 << MLX5_CQ_INDEX_WIDTH;
dci *= txpp->tick;
return (dts > dci) ? dts - dci : dci - dts;
}
/*
* Wander reflects the long-term clock change
* over the entire length of all Clock Queue completions.
*/
static uint64_t
mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp)
{
struct mlx5_txpp_ts tsa0, tsa1;
int64_t dts, dci;
uint16_t ts_p;
if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) {
/* No gathered enough reports yet. */
return 0;
}
do {
int ts_0, ts_1;
ts_p = txpp->ts_p;
rte_compiler_barrier();
ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1;
if (ts_0 < 0)
ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
ts_1 = ts_p - 1;
if (ts_1 < 0)
ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
rte_compiler_barrier();
} while (ts_p != txpp->ts_p);
/* We have two neighbor reports, calculate the jitter. */
dts = tsa1.ts - tsa0.ts;
dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) -
(tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH));
dci += 1 << MLX5_CQ_INDEX_WIDTH;
dci *= txpp->tick;
return (dts > dci) ? dts - dci : dci - dts;
}
/**
* Routine to retrieve extended device statistics
* for packet send scheduling. It appends the specific statistics
* after the parts filled by preceding modules (eth stats, etc.)
*
* @param dev
* Pointer to Ethernet device.
* @param[out] stats
* Pointer to rte extended stats table.
* @param n
* The size of the stats table.
* @param n_used
* Number of stats filled by preceding statistics modules.
*
* @return
* Number of extended stats on success and stats is filled,
* negative on error and rte_errno is set.
*/
int
mlx5_txpp_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *stats,
unsigned int n, unsigned int n_used)
{
unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
if (n >= n_used + n_txpp && stats) {
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_ctx_shared *sh = priv->sh;
unsigned int i;
for (i = 0; i < n_txpp; ++i)
stats[n_used + i].id = n_used + i;
stats[n_used + 0].value =
__atomic_load_n(&sh->txpp.err_miss_int,
__ATOMIC_RELAXED);
stats[n_used + 1].value =
__atomic_load_n(&sh->txpp.err_rearm_queue,
__ATOMIC_RELAXED);
stats[n_used + 2].value =
__atomic_load_n(&sh->txpp.err_clock_queue,
__ATOMIC_RELAXED);
stats[n_used + 3].value =
__atomic_load_n(&sh->txpp.err_ts_past,
__ATOMIC_RELAXED);
stats[n_used + 4].value =
__atomic_load_n(&sh->txpp.err_ts_future,
__ATOMIC_RELAXED);
stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp);
stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp);
stats[n_used + 7].value = sh->txpp.sync_lost;
}
return n_used + n_txpp;
}