981746264e
Wrap the API to create/destroy event channel and to subscribe an event with OS calls. In Linux those calls are implemented by glue functions while in Windows they are not supported. Signed-off-by: Tal Shnaiderman <talshn@nvidia.com> Acked-by: Matan Azrad <matan@nvidia.com>
1387 lines
40 KiB
C
1387 lines
40 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2020 Mellanox Technologies, Ltd
|
|
*/
|
|
#include <fcntl.h>
|
|
#include <stdint.h>
|
|
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_alarm.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_eal_paging.h>
|
|
|
|
#include <mlx5_malloc.h>
|
|
|
|
#include "mlx5.h"
|
|
#include "mlx5_rxtx.h"
|
|
#include "mlx5_common_os.h"
|
|
|
|
static_assert(sizeof(struct mlx5_cqe_ts) == sizeof(rte_int128_t),
|
|
"Wrong timestamp CQE part size");
|
|
|
|
static const char * const mlx5_txpp_stat_names[] = {
|
|
"tx_pp_missed_interrupt_errors", /* Missed service interrupt. */
|
|
"tx_pp_rearm_queue_errors", /* Rearm Queue errors. */
|
|
"tx_pp_clock_queue_errors", /* Clock Queue errors. */
|
|
"tx_pp_timestamp_past_errors", /* Timestamp in the past. */
|
|
"tx_pp_timestamp_future_errors", /* Timestamp in the distant future. */
|
|
"tx_pp_jitter", /* Timestamp jitter (one Clock Queue completion). */
|
|
"tx_pp_wander", /* Timestamp wander (half of Clock Queue CQEs). */
|
|
"tx_pp_sync_lost", /* Scheduling synchronization lost. */
|
|
};
|
|
|
|
/* Destroy Event Queue Notification Channel. */
|
|
static void
|
|
mlx5_txpp_destroy_event_channel(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
if (sh->txpp.echan) {
|
|
mlx5_os_devx_destroy_event_channel(sh->txpp.echan);
|
|
sh->txpp.echan = NULL;
|
|
}
|
|
}
|
|
|
|
/* Create Event Queue Notification Channel. */
|
|
static int
|
|
mlx5_txpp_create_event_channel(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
MLX5_ASSERT(!sh->txpp.echan);
|
|
sh->txpp.echan = mlx5_os_devx_create_event_channel(sh->ctx,
|
|
MLX5DV_DEVX_CREATE_EVENT_CHANNEL_FLAGS_OMIT_EV_DATA);
|
|
if (!sh->txpp.echan) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to create event channel %d.", rte_errno);
|
|
return -rte_errno;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_free_pp_index(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
#ifdef HAVE_MLX5DV_PP_ALLOC
|
|
if (sh->txpp.pp) {
|
|
mlx5_glue->dv_free_pp(sh->txpp.pp);
|
|
sh->txpp.pp = NULL;
|
|
sh->txpp.pp_id = 0;
|
|
}
|
|
#else
|
|
RTE_SET_USED(sh);
|
|
DRV_LOG(ERR, "Freeing pacing index is not supported.");
|
|
#endif
|
|
}
|
|
|
|
/* Allocate Packet Pacing index from kernel via mlx5dv call. */
|
|
static int
|
|
mlx5_txpp_alloc_pp_index(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
#ifdef HAVE_MLX5DV_PP_ALLOC
|
|
uint32_t pp[MLX5_ST_SZ_DW(set_pp_rate_limit_context)];
|
|
uint64_t rate;
|
|
|
|
MLX5_ASSERT(!sh->txpp.pp);
|
|
memset(&pp, 0, sizeof(pp));
|
|
rate = NS_PER_S / sh->txpp.tick;
|
|
if (rate * sh->txpp.tick != NS_PER_S)
|
|
DRV_LOG(WARNING, "Packet pacing frequency is not precise.");
|
|
if (sh->txpp.test) {
|
|
uint32_t len;
|
|
|
|
len = RTE_MAX(MLX5_TXPP_TEST_PKT_SIZE,
|
|
(size_t)RTE_ETHER_MIN_LEN);
|
|
MLX5_SET(set_pp_rate_limit_context, &pp,
|
|
burst_upper_bound, len);
|
|
MLX5_SET(set_pp_rate_limit_context, &pp,
|
|
typical_packet_size, len);
|
|
/* Convert packets per second into kilobits. */
|
|
rate = (rate * len) / (1000ul / CHAR_BIT);
|
|
DRV_LOG(INFO, "Packet pacing rate set to %" PRIu64, rate);
|
|
}
|
|
MLX5_SET(set_pp_rate_limit_context, &pp, rate_limit, rate);
|
|
MLX5_SET(set_pp_rate_limit_context, &pp, rate_mode,
|
|
sh->txpp.test ? MLX5_DATA_RATE : MLX5_WQE_RATE);
|
|
sh->txpp.pp = mlx5_glue->dv_alloc_pp
|
|
(sh->ctx, sizeof(pp), &pp,
|
|
MLX5DV_PP_ALLOC_FLAGS_DEDICATED_INDEX);
|
|
if (sh->txpp.pp == NULL) {
|
|
DRV_LOG(ERR, "Failed to allocate packet pacing index.");
|
|
rte_errno = errno;
|
|
return -errno;
|
|
}
|
|
if (!((struct mlx5dv_pp *)sh->txpp.pp)->index) {
|
|
DRV_LOG(ERR, "Zero packet pacing index allocated.");
|
|
mlx5_txpp_free_pp_index(sh);
|
|
rte_errno = ENOTSUP;
|
|
return -ENOTSUP;
|
|
}
|
|
sh->txpp.pp_id = ((struct mlx5dv_pp *)(sh->txpp.pp))->index;
|
|
return 0;
|
|
#else
|
|
RTE_SET_USED(sh);
|
|
DRV_LOG(ERR, "Allocating pacing index is not supported.");
|
|
rte_errno = ENOTSUP;
|
|
return -ENOTSUP;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_destroy_send_queue(struct mlx5_txpp_wq *wq)
|
|
{
|
|
if (wq->sq)
|
|
claim_zero(mlx5_devx_cmd_destroy(wq->sq));
|
|
if (wq->sq_umem)
|
|
claim_zero(mlx5_os_umem_dereg(wq->sq_umem));
|
|
if (wq->sq_buf)
|
|
mlx5_free((void *)(uintptr_t)wq->sq_buf);
|
|
if (wq->cq)
|
|
claim_zero(mlx5_devx_cmd_destroy(wq->cq));
|
|
if (wq->cq_umem)
|
|
claim_zero(mlx5_os_umem_dereg(wq->cq_umem));
|
|
if (wq->cq_buf)
|
|
mlx5_free((void *)(uintptr_t)wq->cq_buf);
|
|
memset(wq, 0, sizeof(*wq));
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_destroy_rearm_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
|
|
|
|
mlx5_txpp_destroy_send_queue(wq);
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_destroy_clock_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
|
|
|
|
mlx5_txpp_destroy_send_queue(wq);
|
|
if (sh->txpp.tsa) {
|
|
mlx5_free(sh->txpp.tsa);
|
|
sh->txpp.tsa = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_doorbell_rearm_queue(struct mlx5_dev_ctx_shared *sh, uint16_t ci)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
|
|
union {
|
|
uint32_t w32[2];
|
|
uint64_t w64;
|
|
} cs;
|
|
void *reg_addr;
|
|
|
|
wq->sq_ci = ci + 1;
|
|
cs.w32[0] = rte_cpu_to_be_32(rte_be_to_cpu_32
|
|
(wq->wqes[ci & (wq->sq_size - 1)].ctrl[0]) | (ci - 1) << 8);
|
|
cs.w32[1] = wq->wqes[ci & (wq->sq_size - 1)].ctrl[1];
|
|
/* Update SQ doorbell record with new SQ ci. */
|
|
rte_compiler_barrier();
|
|
*wq->sq_dbrec = rte_cpu_to_be_32(wq->sq_ci);
|
|
/* Make sure the doorbell record is updated. */
|
|
rte_wmb();
|
|
/* Write to doorbel register to start processing. */
|
|
reg_addr = mlx5_os_get_devx_uar_reg_addr(sh->tx_uar);
|
|
__mlx5_uar_write64_relaxed(cs.w64, reg_addr, NULL);
|
|
rte_wmb();
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_fill_cqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
|
|
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < MLX5_TXPP_REARM_CQ_SIZE; i++) {
|
|
cqe->op_own = (MLX5_CQE_INVALID << 4) | MLX5_CQE_OWNER_MASK;
|
|
++cqe;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_fill_wqe_rearm_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
|
|
struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < wq->sq_size; i += 2) {
|
|
struct mlx5_wqe_cseg *cs;
|
|
struct mlx5_wqe_qseg *qs;
|
|
uint32_t index;
|
|
|
|
/* Build SEND_EN request with slave WQE index. */
|
|
cs = &wqe[i + 0].cseg;
|
|
cs->opcode = RTE_BE32(MLX5_OPCODE_SEND_EN | 0);
|
|
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
|
|
cs->flags = RTE_BE32(MLX5_COMP_ALWAYS <<
|
|
MLX5_COMP_MODE_OFFSET);
|
|
cs->misc = RTE_BE32(0);
|
|
qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
|
|
index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM) &
|
|
((1 << MLX5_WQ_INDEX_WIDTH) - 1);
|
|
qs->max_index = rte_cpu_to_be_32(index);
|
|
qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.sq->id);
|
|
/* Build WAIT request with slave CQE index. */
|
|
cs = &wqe[i + 1].cseg;
|
|
cs->opcode = RTE_BE32(MLX5_OPCODE_WAIT | 0);
|
|
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) | 2);
|
|
cs->flags = RTE_BE32(MLX5_COMP_ONLY_ERR <<
|
|
MLX5_COMP_MODE_OFFSET);
|
|
cs->misc = RTE_BE32(0);
|
|
qs = RTE_PTR_ADD(cs, sizeof(struct mlx5_wqe_cseg));
|
|
index = (i * MLX5_TXPP_REARM / 2 + MLX5_TXPP_REARM / 2) &
|
|
((1 << MLX5_CQ_INDEX_WIDTH) - 1);
|
|
qs->max_index = rte_cpu_to_be_32(index);
|
|
qs->qpn_cqn = rte_cpu_to_be_32(sh->txpp.clock_queue.cq->id);
|
|
}
|
|
}
|
|
|
|
/* Creates the Rearm Queue to fire the requests to Clock Queue in realtime. */
|
|
static int
|
|
mlx5_txpp_create_rearm_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_devx_create_sq_attr sq_attr = { 0 };
|
|
struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
|
|
struct mlx5_devx_cq_attr cq_attr = { 0 };
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
|
|
size_t page_size;
|
|
uint32_t umem_size, umem_dbrec;
|
|
int ret;
|
|
|
|
page_size = rte_mem_page_size();
|
|
if (page_size == (size_t)-1) {
|
|
DRV_LOG(ERR, "Failed to get mem page size");
|
|
return -ENOMEM;
|
|
}
|
|
/* Allocate memory buffer for CQEs and doorbell record. */
|
|
umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_REARM_CQ_SIZE;
|
|
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
|
|
umem_size += MLX5_DBR_SIZE;
|
|
wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
|
|
page_size, sh->numa_node);
|
|
if (!wq->cq_buf) {
|
|
DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
|
|
return -ENOMEM;
|
|
}
|
|
/* Register allocated buffer in user space with DevX. */
|
|
wq->cq_umem = mlx5_os_umem_reg(sh->ctx,
|
|
(void *)(uintptr_t)wq->cq_buf,
|
|
umem_size,
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
if (!wq->cq_umem) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
|
|
goto error;
|
|
}
|
|
/* Create completion queue object for Rearm Queue. */
|
|
cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
|
|
MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
|
|
cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
|
|
cq_attr.eqn = sh->eqn;
|
|
cq_attr.q_umem_valid = 1;
|
|
cq_attr.q_umem_offset = 0;
|
|
cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
|
|
cq_attr.db_umem_valid = 1;
|
|
cq_attr.db_umem_offset = umem_dbrec;
|
|
cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
|
|
cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_REARM_CQ_SIZE);
|
|
cq_attr.log_page_size = rte_log2_u32(page_size);
|
|
wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
|
|
if (!wq->cq) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to create CQ for Rearm Queue.");
|
|
goto error;
|
|
}
|
|
wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
|
|
wq->cq_ci = 0;
|
|
wq->arm_sn = 0;
|
|
/* Mark all CQEs initially as invalid. */
|
|
mlx5_txpp_fill_cqe_rearm_queue(sh);
|
|
/*
|
|
* Allocate memory buffer for Send Queue WQEs.
|
|
* There should be no WQE leftovers in the cyclic queue.
|
|
*/
|
|
wq->sq_size = MLX5_TXPP_REARM_SQ_SIZE;
|
|
MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
|
|
umem_size = MLX5_WQE_SIZE * wq->sq_size;
|
|
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
|
|
umem_size += MLX5_DBR_SIZE;
|
|
wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
|
|
page_size, sh->numa_node);
|
|
if (!wq->sq_buf) {
|
|
DRV_LOG(ERR, "Failed to allocate memory for Rearm Queue.");
|
|
rte_errno = ENOMEM;
|
|
goto error;
|
|
}
|
|
/* Register allocated buffer in user space with DevX. */
|
|
wq->sq_umem = mlx5_os_umem_reg(sh->ctx,
|
|
(void *)(uintptr_t)wq->sq_buf,
|
|
umem_size,
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
if (!wq->sq_umem) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to register umem for Rearm Queue.");
|
|
goto error;
|
|
}
|
|
/* Create send queue object for Rearm Queue. */
|
|
sq_attr.state = MLX5_SQC_STATE_RST;
|
|
sq_attr.tis_lst_sz = 1;
|
|
sq_attr.tis_num = sh->tis->id;
|
|
sq_attr.cqn = wq->cq->id;
|
|
sq_attr.cd_master = 1;
|
|
sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
|
|
sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
|
|
sq_attr.wq_attr.pd = sh->pdn;
|
|
sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
|
|
sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
|
|
sq_attr.wq_attr.dbr_umem_valid = 1;
|
|
sq_attr.wq_attr.dbr_addr = umem_dbrec;
|
|
sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
|
|
sq_attr.wq_attr.wq_umem_valid = 1;
|
|
sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
|
|
sq_attr.wq_attr.wq_umem_offset = 0;
|
|
wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
|
|
if (!wq->sq) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to create SQ for Rearm Queue.");
|
|
goto error;
|
|
}
|
|
wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
|
|
MLX5_SND_DBR * sizeof(uint32_t));
|
|
/* Build the WQEs in the Send Queue before goto Ready state. */
|
|
mlx5_txpp_fill_wqe_rearm_queue(sh);
|
|
/* Change queue state to ready. */
|
|
msq_attr.sq_state = MLX5_SQC_STATE_RST;
|
|
msq_attr.state = MLX5_SQC_STATE_RDY;
|
|
ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
|
|
if (ret) {
|
|
DRV_LOG(ERR, "Failed to set SQ ready state Rearm Queue.");
|
|
goto error;
|
|
}
|
|
return 0;
|
|
error:
|
|
ret = -rte_errno;
|
|
mlx5_txpp_destroy_rearm_queue(sh);
|
|
rte_errno = -ret;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_fill_wqe_clock_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
|
|
struct mlx5_wqe *wqe = (struct mlx5_wqe *)(uintptr_t)wq->wqes;
|
|
struct mlx5_wqe_cseg *cs = &wqe->cseg;
|
|
uint32_t wqe_size, opcode, i;
|
|
uint8_t *dst;
|
|
|
|
/* For test purposes fill the WQ with SEND inline packet. */
|
|
if (sh->txpp.test) {
|
|
wqe_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
|
|
MLX5_WQE_CSEG_SIZE +
|
|
2 * MLX5_WQE_ESEG_SIZE -
|
|
MLX5_ESEG_MIN_INLINE_SIZE,
|
|
MLX5_WSEG_SIZE);
|
|
opcode = MLX5_OPCODE_SEND;
|
|
} else {
|
|
wqe_size = MLX5_WSEG_SIZE;
|
|
opcode = MLX5_OPCODE_NOP;
|
|
}
|
|
cs->opcode = rte_cpu_to_be_32(opcode | 0); /* Index is ignored. */
|
|
cs->sq_ds = rte_cpu_to_be_32((wq->sq->id << 8) |
|
|
(wqe_size / MLX5_WSEG_SIZE));
|
|
cs->flags = RTE_BE32(MLX5_COMP_ALWAYS << MLX5_COMP_MODE_OFFSET);
|
|
cs->misc = RTE_BE32(0);
|
|
wqe_size = RTE_ALIGN(wqe_size, MLX5_WQE_SIZE);
|
|
if (sh->txpp.test) {
|
|
struct mlx5_wqe_eseg *es = &wqe->eseg;
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ip_hdr;
|
|
struct rte_udp_hdr *udp_hdr;
|
|
|
|
/* Build the inline test packet pattern. */
|
|
MLX5_ASSERT(wqe_size <= MLX5_WQE_SIZE_MAX);
|
|
MLX5_ASSERT(MLX5_TXPP_TEST_PKT_SIZE >=
|
|
(sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr)));
|
|
es->flags = 0;
|
|
es->cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
|
|
es->swp_offs = 0;
|
|
es->metadata = 0;
|
|
es->swp_flags = 0;
|
|
es->mss = 0;
|
|
es->inline_hdr_sz = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE);
|
|
/* Build test packet L2 header (Ethernet). */
|
|
dst = (uint8_t *)&es->inline_data;
|
|
eth_hdr = (struct rte_ether_hdr *)dst;
|
|
rte_eth_random_addr(ð_hdr->d_addr.addr_bytes[0]);
|
|
rte_eth_random_addr(ð_hdr->s_addr.addr_bytes[0]);
|
|
eth_hdr->ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
|
|
/* Build test packet L3 header (IP v4). */
|
|
dst += sizeof(struct rte_ether_hdr);
|
|
ip_hdr = (struct rte_ipv4_hdr *)dst;
|
|
ip_hdr->version_ihl = RTE_IPV4_VHL_DEF;
|
|
ip_hdr->type_of_service = 0;
|
|
ip_hdr->fragment_offset = 0;
|
|
ip_hdr->time_to_live = 64;
|
|
ip_hdr->next_proto_id = IPPROTO_UDP;
|
|
ip_hdr->packet_id = 0;
|
|
ip_hdr->total_length = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
|
|
sizeof(struct rte_ether_hdr));
|
|
/* use RFC5735 / RFC2544 reserved network test addresses */
|
|
ip_hdr->src_addr = RTE_BE32((198U << 24) | (18 << 16) |
|
|
(0 << 8) | 1);
|
|
ip_hdr->dst_addr = RTE_BE32((198U << 24) | (18 << 16) |
|
|
(0 << 8) | 2);
|
|
if (MLX5_TXPP_TEST_PKT_SIZE <
|
|
(sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(struct rte_udp_hdr)))
|
|
goto wcopy;
|
|
/* Build test packet L4 header (UDP). */
|
|
dst += sizeof(struct rte_ipv4_hdr);
|
|
udp_hdr = (struct rte_udp_hdr *)dst;
|
|
udp_hdr->src_port = RTE_BE16(9); /* RFC863 Discard. */
|
|
udp_hdr->dst_port = RTE_BE16(9);
|
|
udp_hdr->dgram_len = RTE_BE16(MLX5_TXPP_TEST_PKT_SIZE -
|
|
sizeof(struct rte_ether_hdr) -
|
|
sizeof(struct rte_ipv4_hdr));
|
|
udp_hdr->dgram_cksum = 0;
|
|
/* Fill the test packet data. */
|
|
dst += sizeof(struct rte_udp_hdr);
|
|
for (i = sizeof(struct rte_ether_hdr) +
|
|
sizeof(struct rte_ipv4_hdr) +
|
|
sizeof(struct rte_udp_hdr);
|
|
i < MLX5_TXPP_TEST_PKT_SIZE; i++)
|
|
*dst++ = (uint8_t)(i & 0xFF);
|
|
}
|
|
wcopy:
|
|
/* Duplicate the pattern to the next WQEs. */
|
|
dst = (uint8_t *)(uintptr_t)wq->sq_buf;
|
|
for (i = 1; i < MLX5_TXPP_CLKQ_SIZE; i++) {
|
|
dst += wqe_size;
|
|
rte_memcpy(dst, (void *)(uintptr_t)wq->sq_buf, wqe_size);
|
|
}
|
|
}
|
|
|
|
/* Creates the Clock Queue for packet pacing, returns zero on success. */
|
|
static int
|
|
mlx5_txpp_create_clock_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_devx_create_sq_attr sq_attr = { 0 };
|
|
struct mlx5_devx_modify_sq_attr msq_attr = { 0 };
|
|
struct mlx5_devx_cq_attr cq_attr = { 0 };
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
|
|
size_t page_size;
|
|
uint32_t umem_size, umem_dbrec;
|
|
int ret;
|
|
|
|
page_size = rte_mem_page_size();
|
|
if (page_size == (size_t)-1) {
|
|
DRV_LOG(ERR, "Failed to get mem page size");
|
|
return -ENOMEM;
|
|
}
|
|
sh->txpp.tsa = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
MLX5_TXPP_REARM_SQ_SIZE *
|
|
sizeof(struct mlx5_txpp_ts),
|
|
0, sh->numa_node);
|
|
if (!sh->txpp.tsa) {
|
|
DRV_LOG(ERR, "Failed to allocate memory for CQ stats.");
|
|
return -ENOMEM;
|
|
}
|
|
sh->txpp.ts_p = 0;
|
|
sh->txpp.ts_n = 0;
|
|
/* Allocate memory buffer for CQEs and doorbell record. */
|
|
umem_size = sizeof(struct mlx5_cqe) * MLX5_TXPP_CLKQ_SIZE;
|
|
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
|
|
umem_size += MLX5_DBR_SIZE;
|
|
wq->cq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
|
|
page_size, sh->numa_node);
|
|
if (!wq->cq_buf) {
|
|
DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
|
|
return -ENOMEM;
|
|
}
|
|
/* Register allocated buffer in user space with DevX. */
|
|
wq->cq_umem = mlx5_os_umem_reg(sh->ctx,
|
|
(void *)(uintptr_t)wq->cq_buf,
|
|
umem_size,
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
if (!wq->cq_umem) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
|
|
goto error;
|
|
}
|
|
/* Create completion queue object for Clock Queue. */
|
|
cq_attr.cqe_size = (sizeof(struct mlx5_cqe) == 128) ?
|
|
MLX5_CQE_SIZE_128B : MLX5_CQE_SIZE_64B;
|
|
cq_attr.use_first_only = 1;
|
|
cq_attr.overrun_ignore = 1;
|
|
cq_attr.uar_page_id = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
|
|
cq_attr.eqn = sh->eqn;
|
|
cq_attr.q_umem_valid = 1;
|
|
cq_attr.q_umem_offset = 0;
|
|
cq_attr.q_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
|
|
cq_attr.db_umem_valid = 1;
|
|
cq_attr.db_umem_offset = umem_dbrec;
|
|
cq_attr.db_umem_id = mlx5_os_get_umem_id(wq->cq_umem);
|
|
cq_attr.log_cq_size = rte_log2_u32(MLX5_TXPP_CLKQ_SIZE);
|
|
cq_attr.log_page_size = rte_log2_u32(page_size);
|
|
wq->cq = mlx5_devx_cmd_create_cq(sh->ctx, &cq_attr);
|
|
if (!wq->cq) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to create CQ for Clock Queue.");
|
|
goto error;
|
|
}
|
|
wq->cq_dbrec = RTE_PTR_ADD(wq->cq_buf, umem_dbrec);
|
|
wq->cq_ci = 0;
|
|
/* Allocate memory buffer for Send Queue WQEs. */
|
|
if (sh->txpp.test) {
|
|
wq->sq_size = RTE_ALIGN(MLX5_TXPP_TEST_PKT_SIZE +
|
|
MLX5_WQE_CSEG_SIZE +
|
|
2 * MLX5_WQE_ESEG_SIZE -
|
|
MLX5_ESEG_MIN_INLINE_SIZE,
|
|
MLX5_WQE_SIZE) / MLX5_WQE_SIZE;
|
|
wq->sq_size *= MLX5_TXPP_CLKQ_SIZE;
|
|
} else {
|
|
wq->sq_size = MLX5_TXPP_CLKQ_SIZE;
|
|
}
|
|
/* There should not be WQE leftovers in the cyclic queue. */
|
|
MLX5_ASSERT(wq->sq_size == (1 << log2above(wq->sq_size)));
|
|
umem_size = MLX5_WQE_SIZE * wq->sq_size;
|
|
umem_dbrec = RTE_ALIGN(umem_size, MLX5_DBR_SIZE);
|
|
umem_size += MLX5_DBR_SIZE;
|
|
wq->sq_buf = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO, umem_size,
|
|
page_size, sh->numa_node);
|
|
if (!wq->sq_buf) {
|
|
DRV_LOG(ERR, "Failed to allocate memory for Clock Queue.");
|
|
rte_errno = ENOMEM;
|
|
goto error;
|
|
}
|
|
/* Register allocated buffer in user space with DevX. */
|
|
wq->sq_umem = mlx5_os_umem_reg(sh->ctx,
|
|
(void *)(uintptr_t)wq->sq_buf,
|
|
umem_size,
|
|
IBV_ACCESS_LOCAL_WRITE);
|
|
if (!wq->sq_umem) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to register umem for Clock Queue.");
|
|
goto error;
|
|
}
|
|
/* Create send queue object for Clock Queue. */
|
|
if (sh->txpp.test) {
|
|
sq_attr.tis_lst_sz = 1;
|
|
sq_attr.tis_num = sh->tis->id;
|
|
sq_attr.non_wire = 0;
|
|
sq_attr.static_sq_wq = 1;
|
|
} else {
|
|
sq_attr.non_wire = 1;
|
|
sq_attr.static_sq_wq = 1;
|
|
}
|
|
sq_attr.state = MLX5_SQC_STATE_RST;
|
|
sq_attr.cqn = wq->cq->id;
|
|
sq_attr.packet_pacing_rate_limit_index = sh->txpp.pp_id;
|
|
sq_attr.wq_attr.cd_slave = 1;
|
|
sq_attr.wq_attr.uar_page = mlx5_os_get_devx_uar_page_id(sh->tx_uar);
|
|
sq_attr.wq_attr.wq_type = MLX5_WQ_TYPE_CYCLIC;
|
|
sq_attr.wq_attr.pd = sh->pdn;
|
|
sq_attr.wq_attr.log_wq_stride = rte_log2_u32(MLX5_WQE_SIZE);
|
|
sq_attr.wq_attr.log_wq_sz = rte_log2_u32(wq->sq_size);
|
|
sq_attr.wq_attr.dbr_umem_valid = 1;
|
|
sq_attr.wq_attr.dbr_addr = umem_dbrec;
|
|
sq_attr.wq_attr.dbr_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
|
|
sq_attr.wq_attr.wq_umem_valid = 1;
|
|
sq_attr.wq_attr.wq_umem_id = mlx5_os_get_umem_id(wq->sq_umem);
|
|
/* umem_offset must be zero for static_sq_wq queue. */
|
|
sq_attr.wq_attr.wq_umem_offset = 0;
|
|
wq->sq = mlx5_devx_cmd_create_sq(sh->ctx, &sq_attr);
|
|
if (!wq->sq) {
|
|
rte_errno = errno;
|
|
DRV_LOG(ERR, "Failed to create SQ for Clock Queue.");
|
|
goto error;
|
|
}
|
|
wq->sq_dbrec = RTE_PTR_ADD(wq->sq_buf, umem_dbrec +
|
|
MLX5_SND_DBR * sizeof(uint32_t));
|
|
/* Build the WQEs in the Send Queue before goto Ready state. */
|
|
mlx5_txpp_fill_wqe_clock_queue(sh);
|
|
/* Change queue state to ready. */
|
|
msq_attr.sq_state = MLX5_SQC_STATE_RST;
|
|
msq_attr.state = MLX5_SQC_STATE_RDY;
|
|
wq->sq_ci = 0;
|
|
ret = mlx5_devx_cmd_modify_sq(wq->sq, &msq_attr);
|
|
if (ret) {
|
|
DRV_LOG(ERR, "Failed to set SQ ready state Clock Queue.");
|
|
goto error;
|
|
}
|
|
return 0;
|
|
error:
|
|
ret = -rte_errno;
|
|
mlx5_txpp_destroy_clock_queue(sh);
|
|
rte_errno = -ret;
|
|
return ret;
|
|
}
|
|
|
|
/* Enable notification from the Rearm Queue CQ. */
|
|
static inline void
|
|
mlx5_txpp_cq_arm(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
void *base_addr;
|
|
|
|
struct mlx5_txpp_wq *aq = &sh->txpp.rearm_queue;
|
|
uint32_t arm_sn = aq->arm_sn << MLX5_CQ_SQN_OFFSET;
|
|
uint32_t db_hi = arm_sn | MLX5_CQ_DBR_CMD_ALL | aq->cq_ci;
|
|
uint64_t db_be = rte_cpu_to_be_64(((uint64_t)db_hi << 32) | aq->cq->id);
|
|
base_addr = mlx5_os_get_devx_uar_base_addr(sh->tx_uar);
|
|
uint32_t *addr = RTE_PTR_ADD(base_addr, MLX5_CQ_DOORBELL);
|
|
|
|
rte_compiler_barrier();
|
|
aq->cq_dbrec[MLX5_CQ_ARM_DB] = rte_cpu_to_be_32(db_hi);
|
|
rte_wmb();
|
|
#ifdef RTE_ARCH_64
|
|
*(uint64_t *)addr = db_be;
|
|
#else
|
|
*(uint32_t *)addr = db_be;
|
|
rte_io_wmb();
|
|
*((uint32_t *)addr + 1) = db_be >> 32;
|
|
#endif
|
|
aq->arm_sn++;
|
|
}
|
|
|
|
#if defined(RTE_ARCH_X86_64)
|
|
static inline int
|
|
mlx5_atomic128_compare_exchange(rte_int128_t *dst,
|
|
rte_int128_t *exp,
|
|
const rte_int128_t *src)
|
|
{
|
|
uint8_t res;
|
|
|
|
asm volatile (MPLOCKED
|
|
"cmpxchg16b %[dst];"
|
|
" sete %[res]"
|
|
: [dst] "=m" (dst->val[0]),
|
|
"=a" (exp->val[0]),
|
|
"=d" (exp->val[1]),
|
|
[res] "=r" (res)
|
|
: "b" (src->val[0]),
|
|
"c" (src->val[1]),
|
|
"a" (exp->val[0]),
|
|
"d" (exp->val[1]),
|
|
"m" (dst->val[0])
|
|
: "memory");
|
|
|
|
return res;
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
mlx5_atomic_read_cqe(rte_int128_t *from, rte_int128_t *ts)
|
|
{
|
|
/*
|
|
* The only CQE of Clock Queue is being continuously
|
|
* update by hardware with soecified rate. We have to
|
|
* read timestump and WQE completion index atomically.
|
|
*/
|
|
#if defined(RTE_ARCH_X86_64)
|
|
rte_int128_t src;
|
|
|
|
memset(&src, 0, sizeof(src));
|
|
*ts = src;
|
|
/* if (*from == *ts) *from = *src else *ts = *from; */
|
|
mlx5_atomic128_compare_exchange(from, ts, &src);
|
|
#else
|
|
uint64_t *cqe = (uint64_t *)from;
|
|
|
|
/*
|
|
* Power architecture does not support 16B compare-and-swap.
|
|
* ARM implements it in software, code below is more relevant.
|
|
*/
|
|
for (;;) {
|
|
uint64_t tm, op;
|
|
uint64_t *ps;
|
|
|
|
rte_compiler_barrier();
|
|
tm = __atomic_load_n(cqe + 0, __ATOMIC_RELAXED);
|
|
op = __atomic_load_n(cqe + 1, __ATOMIC_RELAXED);
|
|
rte_compiler_barrier();
|
|
if (tm != __atomic_load_n(cqe + 0, __ATOMIC_RELAXED))
|
|
continue;
|
|
if (op != __atomic_load_n(cqe + 1, __ATOMIC_RELAXED))
|
|
continue;
|
|
ps = (uint64_t *)ts;
|
|
ps[0] = tm;
|
|
ps[1] = op;
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Stores timestamp in the cache structure to share data with datapath. */
|
|
static inline void
|
|
mlx5_txpp_cache_timestamp(struct mlx5_dev_ctx_shared *sh,
|
|
uint64_t ts, uint64_t ci)
|
|
{
|
|
ci = ci << (64 - MLX5_CQ_INDEX_WIDTH);
|
|
ci |= (ts << MLX5_CQ_INDEX_WIDTH) >> MLX5_CQ_INDEX_WIDTH;
|
|
rte_compiler_barrier();
|
|
__atomic_store_n(&sh->txpp.ts.ts, ts, __ATOMIC_RELAXED);
|
|
__atomic_store_n(&sh->txpp.ts.ci_ts, ci, __ATOMIC_RELAXED);
|
|
rte_wmb();
|
|
}
|
|
|
|
/* Reads timestamp from Clock Queue CQE and stores in the cache. */
|
|
static inline void
|
|
mlx5_txpp_update_timestamp(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
|
|
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
|
|
union {
|
|
rte_int128_t u128;
|
|
struct mlx5_cqe_ts cts;
|
|
} to;
|
|
uint64_t ts;
|
|
uint16_t ci;
|
|
|
|
mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
|
|
if (to.cts.op_own >> 4) {
|
|
DRV_LOG(DEBUG, "Clock Queue error sync lost.");
|
|
__atomic_fetch_add(&sh->txpp.err_clock_queue,
|
|
1, __ATOMIC_RELAXED);
|
|
sh->txpp.sync_lost = 1;
|
|
return;
|
|
}
|
|
ci = rte_be_to_cpu_16(to.cts.wqe_counter);
|
|
ts = rte_be_to_cpu_64(to.cts.timestamp);
|
|
ts = mlx5_txpp_convert_rx_ts(sh, ts);
|
|
wq->cq_ci += (ci - wq->sq_ci) & UINT16_MAX;
|
|
wq->sq_ci = ci;
|
|
mlx5_txpp_cache_timestamp(sh, ts, wq->cq_ci);
|
|
}
|
|
|
|
/* Waits for the first completion on Clock Queue to init timestamp. */
|
|
static inline void
|
|
mlx5_txpp_init_timestamp(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
|
|
uint32_t wait;
|
|
|
|
sh->txpp.ts_p = 0;
|
|
sh->txpp.ts_n = 0;
|
|
for (wait = 0; wait < MLX5_TXPP_WAIT_INIT_TS; wait++) {
|
|
mlx5_txpp_update_timestamp(sh);
|
|
if (wq->sq_ci)
|
|
return;
|
|
/* Wait one millisecond and try again. */
|
|
rte_delay_us_sleep(US_PER_S / MS_PER_S);
|
|
}
|
|
DRV_LOG(ERR, "Unable to initialize timestamp.");
|
|
sh->txpp.sync_lost = 1;
|
|
}
|
|
|
|
#ifdef HAVE_IBV_DEVX_EVENT
|
|
/* Gather statistics for timestamp from Clock Queue CQE. */
|
|
static inline void
|
|
mlx5_txpp_gather_timestamp(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
/* Check whether we have a valid timestamp. */
|
|
if (!sh->txpp.clock_queue.sq_ci && !sh->txpp.ts_n)
|
|
return;
|
|
MLX5_ASSERT(sh->txpp.ts_p < MLX5_TXPP_REARM_SQ_SIZE);
|
|
__atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ts,
|
|
sh->txpp.ts.ts, __ATOMIC_RELAXED);
|
|
__atomic_store_n(&sh->txpp.tsa[sh->txpp.ts_p].ci_ts,
|
|
sh->txpp.ts.ci_ts, __ATOMIC_RELAXED);
|
|
if (++sh->txpp.ts_p >= MLX5_TXPP_REARM_SQ_SIZE)
|
|
sh->txpp.ts_p = 0;
|
|
if (sh->txpp.ts_n < MLX5_TXPP_REARM_SQ_SIZE)
|
|
++sh->txpp.ts_n;
|
|
}
|
|
|
|
/* Handles Rearm Queue completions in periodic service. */
|
|
static __rte_always_inline void
|
|
mlx5_txpp_handle_rearm_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.rearm_queue;
|
|
uint32_t cq_ci = wq->cq_ci;
|
|
bool error = false;
|
|
int ret;
|
|
|
|
do {
|
|
volatile struct mlx5_cqe *cqe;
|
|
|
|
cqe = &wq->cqes[cq_ci & (MLX5_TXPP_REARM_CQ_SIZE - 1)];
|
|
ret = check_cqe(cqe, MLX5_TXPP_REARM_CQ_SIZE, cq_ci);
|
|
switch (ret) {
|
|
case MLX5_CQE_STATUS_ERR:
|
|
error = true;
|
|
++cq_ci;
|
|
break;
|
|
case MLX5_CQE_STATUS_SW_OWN:
|
|
wq->sq_ci += 2;
|
|
++cq_ci;
|
|
break;
|
|
case MLX5_CQE_STATUS_HW_OWN:
|
|
break;
|
|
default:
|
|
MLX5_ASSERT(false);
|
|
break;
|
|
}
|
|
} while (ret != MLX5_CQE_STATUS_HW_OWN);
|
|
if (likely(cq_ci != wq->cq_ci)) {
|
|
/* Check whether we have missed interrupts. */
|
|
if (cq_ci - wq->cq_ci != 1) {
|
|
DRV_LOG(DEBUG, "Rearm Queue missed interrupt.");
|
|
__atomic_fetch_add(&sh->txpp.err_miss_int,
|
|
1, __ATOMIC_RELAXED);
|
|
/* Check sync lost on wqe index. */
|
|
if (cq_ci - wq->cq_ci >=
|
|
(((1UL << MLX5_WQ_INDEX_WIDTH) /
|
|
MLX5_TXPP_REARM) - 1))
|
|
error = 1;
|
|
}
|
|
/* Update doorbell record to notify hardware. */
|
|
rte_compiler_barrier();
|
|
*wq->cq_dbrec = rte_cpu_to_be_32(cq_ci);
|
|
rte_wmb();
|
|
wq->cq_ci = cq_ci;
|
|
/* Fire new requests to Rearm Queue. */
|
|
if (error) {
|
|
DRV_LOG(DEBUG, "Rearm Queue error sync lost.");
|
|
__atomic_fetch_add(&sh->txpp.err_rearm_queue,
|
|
1, __ATOMIC_RELAXED);
|
|
sh->txpp.sync_lost = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Handles Clock Queue completions in periodic service. */
|
|
static __rte_always_inline void
|
|
mlx5_txpp_handle_clock_queue(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
mlx5_txpp_update_timestamp(sh);
|
|
mlx5_txpp_gather_timestamp(sh);
|
|
}
|
|
#endif
|
|
|
|
/* Invoked periodically on Rearm Queue completions. */
|
|
void
|
|
mlx5_txpp_interrupt_handler(void *cb_arg)
|
|
{
|
|
#ifndef HAVE_IBV_DEVX_EVENT
|
|
RTE_SET_USED(cb_arg);
|
|
return;
|
|
#else
|
|
struct mlx5_dev_ctx_shared *sh = cb_arg;
|
|
union {
|
|
struct mlx5dv_devx_async_event_hdr event_resp;
|
|
uint8_t buf[sizeof(struct mlx5dv_devx_async_event_hdr) + 128];
|
|
} out;
|
|
|
|
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
/* Process events in the loop. Only rearm completions are expected. */
|
|
while (mlx5_glue->devx_get_event
|
|
(sh->txpp.echan,
|
|
&out.event_resp,
|
|
sizeof(out.buf)) >=
|
|
(ssize_t)sizeof(out.event_resp.cookie)) {
|
|
mlx5_txpp_handle_rearm_queue(sh);
|
|
mlx5_txpp_handle_clock_queue(sh);
|
|
mlx5_txpp_cq_arm(sh);
|
|
mlx5_txpp_doorbell_rearm_queue
|
|
(sh, sh->txpp.rearm_queue.sq_ci - 1);
|
|
}
|
|
#endif /* HAVE_IBV_DEVX_ASYNC */
|
|
}
|
|
|
|
static void
|
|
mlx5_txpp_stop_service(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
if (!sh->txpp.intr_handle.fd)
|
|
return;
|
|
mlx5_intr_callback_unregister(&sh->txpp.intr_handle,
|
|
mlx5_txpp_interrupt_handler, sh);
|
|
sh->txpp.intr_handle.fd = 0;
|
|
}
|
|
|
|
/* Attach interrupt handler and fires first request to Rearm Queue. */
|
|
static int
|
|
mlx5_txpp_start_service(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
uint16_t event_nums[1] = {0};
|
|
int ret;
|
|
int fd;
|
|
|
|
sh->txpp.err_miss_int = 0;
|
|
sh->txpp.err_rearm_queue = 0;
|
|
sh->txpp.err_clock_queue = 0;
|
|
sh->txpp.err_ts_past = 0;
|
|
sh->txpp.err_ts_future = 0;
|
|
/* Attach interrupt handler to process Rearm Queue completions. */
|
|
fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
|
|
ret = mlx5_os_set_nonblock_channel_fd(fd);
|
|
if (ret) {
|
|
DRV_LOG(ERR, "Failed to change event channel FD.");
|
|
rte_errno = errno;
|
|
return -rte_errno;
|
|
}
|
|
memset(&sh->txpp.intr_handle, 0, sizeof(sh->txpp.intr_handle));
|
|
fd = mlx5_os_get_devx_channel_fd(sh->txpp.echan);
|
|
sh->txpp.intr_handle.fd = fd;
|
|
sh->txpp.intr_handle.type = RTE_INTR_HANDLE_EXT;
|
|
if (rte_intr_callback_register(&sh->txpp.intr_handle,
|
|
mlx5_txpp_interrupt_handler, sh)) {
|
|
sh->txpp.intr_handle.fd = 0;
|
|
DRV_LOG(ERR, "Failed to register CQE interrupt %d.", rte_errno);
|
|
return -rte_errno;
|
|
}
|
|
/* Subscribe CQ event to the event channel controlled by the driver. */
|
|
ret = mlx5_os_devx_subscribe_devx_event(sh->txpp.echan,
|
|
sh->txpp.rearm_queue.cq->obj,
|
|
sizeof(event_nums),
|
|
event_nums, 0);
|
|
if (ret) {
|
|
DRV_LOG(ERR, "Failed to subscribe CQE event.");
|
|
rte_errno = errno;
|
|
return -errno;
|
|
}
|
|
/* Enable interrupts in the CQ. */
|
|
mlx5_txpp_cq_arm(sh);
|
|
/* Fire the first request on Rearm Queue. */
|
|
mlx5_txpp_doorbell_rearm_queue(sh, sh->txpp.rearm_queue.sq_size - 1);
|
|
mlx5_txpp_init_timestamp(sh);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The routine initializes the packet pacing infrastructure:
|
|
* - allocates PP context
|
|
* - Clock CQ/SQ
|
|
* - Rearm CQ/SQ
|
|
* - attaches rearm interrupt handler
|
|
* - starts Clock Queue
|
|
*
|
|
* Returns 0 on success, negative otherwise
|
|
*/
|
|
static int
|
|
mlx5_txpp_create(struct mlx5_dev_ctx_shared *sh, struct mlx5_priv *priv)
|
|
{
|
|
int tx_pp = priv->config.tx_pp;
|
|
int ret;
|
|
|
|
/* Store the requested pacing parameters. */
|
|
sh->txpp.tick = tx_pp >= 0 ? tx_pp : -tx_pp;
|
|
sh->txpp.test = !!(tx_pp < 0);
|
|
sh->txpp.skew = priv->config.tx_skew;
|
|
sh->txpp.freq = priv->config.hca_attr.dev_freq_khz;
|
|
ret = mlx5_txpp_create_event_channel(sh);
|
|
if (ret)
|
|
goto exit;
|
|
ret = mlx5_txpp_alloc_pp_index(sh);
|
|
if (ret)
|
|
goto exit;
|
|
ret = mlx5_txpp_create_clock_queue(sh);
|
|
if (ret)
|
|
goto exit;
|
|
ret = mlx5_txpp_create_rearm_queue(sh);
|
|
if (ret)
|
|
goto exit;
|
|
ret = mlx5_txpp_start_service(sh);
|
|
if (ret)
|
|
goto exit;
|
|
exit:
|
|
if (ret) {
|
|
mlx5_txpp_stop_service(sh);
|
|
mlx5_txpp_destroy_rearm_queue(sh);
|
|
mlx5_txpp_destroy_clock_queue(sh);
|
|
mlx5_txpp_free_pp_index(sh);
|
|
mlx5_txpp_destroy_event_channel(sh);
|
|
sh->txpp.tick = 0;
|
|
sh->txpp.test = 0;
|
|
sh->txpp.skew = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The routine destroys the packet pacing infrastructure:
|
|
* - detaches rearm interrupt handler
|
|
* - Rearm CQ/SQ
|
|
* - Clock CQ/SQ
|
|
* - PP context
|
|
*/
|
|
static void
|
|
mlx5_txpp_destroy(struct mlx5_dev_ctx_shared *sh)
|
|
{
|
|
mlx5_txpp_stop_service(sh);
|
|
mlx5_txpp_destroy_rearm_queue(sh);
|
|
mlx5_txpp_destroy_clock_queue(sh);
|
|
mlx5_txpp_free_pp_index(sh);
|
|
mlx5_txpp_destroy_event_channel(sh);
|
|
sh->txpp.tick = 0;
|
|
sh->txpp.test = 0;
|
|
sh->txpp.skew = 0;
|
|
}
|
|
|
|
/**
|
|
* Creates and starts packet pacing infrastructure on specified device.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_txpp_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_dev_ctx_shared *sh = priv->sh;
|
|
int err = 0;
|
|
int ret;
|
|
|
|
if (!priv->config.tx_pp) {
|
|
/* Packet pacing is not requested for the device. */
|
|
MLX5_ASSERT(priv->txpp_en == 0);
|
|
return 0;
|
|
}
|
|
if (priv->txpp_en) {
|
|
/* Packet pacing is already enabled for the device. */
|
|
MLX5_ASSERT(sh->txpp.refcnt);
|
|
return 0;
|
|
}
|
|
if (priv->config.tx_pp > 0) {
|
|
ret = rte_mbuf_dynflag_lookup
|
|
(RTE_MBUF_DYNFLAG_TX_TIMESTAMP_NAME, NULL);
|
|
if (ret < 0)
|
|
return 0;
|
|
}
|
|
ret = pthread_mutex_lock(&sh->txpp.mutex);
|
|
MLX5_ASSERT(!ret);
|
|
RTE_SET_USED(ret);
|
|
if (sh->txpp.refcnt) {
|
|
priv->txpp_en = 1;
|
|
++sh->txpp.refcnt;
|
|
} else {
|
|
err = mlx5_txpp_create(sh, priv);
|
|
if (!err) {
|
|
MLX5_ASSERT(sh->txpp.tick);
|
|
priv->txpp_en = 1;
|
|
sh->txpp.refcnt = 1;
|
|
} else {
|
|
rte_errno = -err;
|
|
}
|
|
}
|
|
ret = pthread_mutex_unlock(&sh->txpp.mutex);
|
|
MLX5_ASSERT(!ret);
|
|
RTE_SET_USED(ret);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* Stops and destroys packet pacing infrastructure on specified device.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device structure.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
void
|
|
mlx5_txpp_stop(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_dev_ctx_shared *sh = priv->sh;
|
|
int ret;
|
|
|
|
if (!priv->txpp_en) {
|
|
/* Packet pacing is already disabled for the device. */
|
|
return;
|
|
}
|
|
priv->txpp_en = 0;
|
|
ret = pthread_mutex_lock(&sh->txpp.mutex);
|
|
MLX5_ASSERT(!ret);
|
|
RTE_SET_USED(ret);
|
|
MLX5_ASSERT(sh->txpp.refcnt);
|
|
if (!sh->txpp.refcnt || --sh->txpp.refcnt)
|
|
return;
|
|
/* No references any more, do actual destroy. */
|
|
mlx5_txpp_destroy(sh);
|
|
ret = pthread_mutex_unlock(&sh->txpp.mutex);
|
|
MLX5_ASSERT(!ret);
|
|
RTE_SET_USED(ret);
|
|
}
|
|
|
|
/*
|
|
* Read the current clock counter of an Ethernet device
|
|
*
|
|
* This returns the current raw clock value of an Ethernet device. It is
|
|
* a raw amount of ticks, with no given time reference.
|
|
* The value returned here is from the same clock than the one
|
|
* filling timestamp field of Rx/Tx packets when using hardware timestamp
|
|
* offload. Therefore it can be used to compute a precise conversion of
|
|
* the device clock to the real time.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device structure.
|
|
* @param clock
|
|
* Pointer to the uint64_t that holds the raw clock value.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -ENOTSUP: The function is not supported in this mode. Requires
|
|
* packet pacing module configured and started (tx_pp devarg)
|
|
*/
|
|
int
|
|
mlx5_txpp_read_clock(struct rte_eth_dev *dev, uint64_t *timestamp)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_dev_ctx_shared *sh = priv->sh;
|
|
int ret;
|
|
|
|
if (sh->txpp.refcnt) {
|
|
struct mlx5_txpp_wq *wq = &sh->txpp.clock_queue;
|
|
struct mlx5_cqe *cqe = (struct mlx5_cqe *)(uintptr_t)wq->cqes;
|
|
union {
|
|
rte_int128_t u128;
|
|
struct mlx5_cqe_ts cts;
|
|
} to;
|
|
uint64_t ts;
|
|
|
|
mlx5_atomic_read_cqe((rte_int128_t *)&cqe->timestamp, &to.u128);
|
|
if (to.cts.op_own >> 4) {
|
|
DRV_LOG(DEBUG, "Clock Queue error sync lost.");
|
|
__atomic_fetch_add(&sh->txpp.err_clock_queue,
|
|
1, __ATOMIC_RELAXED);
|
|
sh->txpp.sync_lost = 1;
|
|
return -EIO;
|
|
}
|
|
ts = rte_be_to_cpu_64(to.cts.timestamp);
|
|
ts = mlx5_txpp_convert_rx_ts(sh, ts);
|
|
*timestamp = ts;
|
|
return 0;
|
|
}
|
|
/* Not supported in isolated mode - kernel does not see the CQEs. */
|
|
if (priv->isolated || rte_eal_process_type() != RTE_PROC_PRIMARY)
|
|
return -ENOTSUP;
|
|
ret = mlx5_read_clock(dev, timestamp);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* DPDK callback to clear device extended statistics.
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device structure.
|
|
*
|
|
* @return
|
|
* 0 on success and stats is reset, negative errno value otherwise and
|
|
* rte_errno is set.
|
|
*/
|
|
int mlx5_txpp_xstats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_dev_ctx_shared *sh = priv->sh;
|
|
|
|
__atomic_store_n(&sh->txpp.err_miss_int, 0, __ATOMIC_RELAXED);
|
|
__atomic_store_n(&sh->txpp.err_rearm_queue, 0, __ATOMIC_RELAXED);
|
|
__atomic_store_n(&sh->txpp.err_clock_queue, 0, __ATOMIC_RELAXED);
|
|
__atomic_store_n(&sh->txpp.err_ts_past, 0, __ATOMIC_RELAXED);
|
|
__atomic_store_n(&sh->txpp.err_ts_future, 0, __ATOMIC_RELAXED);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Routine to retrieve names of extended device statistics
|
|
* for packet send scheduling. It appends the specific stats names
|
|
* after the parts filled by preceding modules (eth stats, etc.)
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device structure.
|
|
* @param[out] xstats_names
|
|
* Buffer to insert names into.
|
|
* @param n
|
|
* Number of names.
|
|
* @param n_used
|
|
* Number of names filled by preceding statistics modules.
|
|
*
|
|
* @return
|
|
* Number of xstats names.
|
|
*/
|
|
int mlx5_txpp_xstats_get_names(struct rte_eth_dev *dev __rte_unused,
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
unsigned int n, unsigned int n_used)
|
|
{
|
|
unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
|
|
unsigned int i;
|
|
|
|
if (n >= n_used + n_txpp && xstats_names) {
|
|
for (i = 0; i < n_txpp; ++i) {
|
|
strncpy(xstats_names[i + n_used].name,
|
|
mlx5_txpp_stat_names[i],
|
|
RTE_ETH_XSTATS_NAME_SIZE);
|
|
xstats_names[i + n_used].name
|
|
[RTE_ETH_XSTATS_NAME_SIZE - 1] = 0;
|
|
}
|
|
}
|
|
return n_used + n_txpp;
|
|
}
|
|
|
|
static inline void
|
|
mlx5_txpp_read_tsa(struct mlx5_dev_txpp *txpp,
|
|
struct mlx5_txpp_ts *tsa, uint16_t idx)
|
|
{
|
|
do {
|
|
uint64_t ts, ci;
|
|
|
|
ts = __atomic_load_n(&txpp->tsa[idx].ts, __ATOMIC_RELAXED);
|
|
ci = __atomic_load_n(&txpp->tsa[idx].ci_ts, __ATOMIC_RELAXED);
|
|
rte_compiler_barrier();
|
|
if ((ci ^ ts) << MLX5_CQ_INDEX_WIDTH != 0)
|
|
continue;
|
|
if (__atomic_load_n(&txpp->tsa[idx].ts,
|
|
__ATOMIC_RELAXED) != ts)
|
|
continue;
|
|
if (__atomic_load_n(&txpp->tsa[idx].ci_ts,
|
|
__ATOMIC_RELAXED) != ci)
|
|
continue;
|
|
tsa->ts = ts;
|
|
tsa->ci_ts = ci;
|
|
return;
|
|
} while (true);
|
|
}
|
|
|
|
/*
|
|
* Jitter reflects the clock change between
|
|
* neighbours Clock Queue completions.
|
|
*/
|
|
static uint64_t
|
|
mlx5_txpp_xstats_jitter(struct mlx5_dev_txpp *txpp)
|
|
{
|
|
struct mlx5_txpp_ts tsa0, tsa1;
|
|
int64_t dts, dci;
|
|
uint16_t ts_p;
|
|
|
|
if (txpp->ts_n < 2) {
|
|
/* No gathered enough reports yet. */
|
|
return 0;
|
|
}
|
|
do {
|
|
int ts_0, ts_1;
|
|
|
|
ts_p = txpp->ts_p;
|
|
rte_compiler_barrier();
|
|
ts_0 = ts_p - 2;
|
|
if (ts_0 < 0)
|
|
ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
|
|
ts_1 = ts_p - 1;
|
|
if (ts_1 < 0)
|
|
ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
|
|
mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
|
|
mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
|
|
rte_compiler_barrier();
|
|
} while (ts_p != txpp->ts_p);
|
|
/* We have two neighbor reports, calculate the jitter. */
|
|
dts = tsa1.ts - tsa0.ts;
|
|
dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) -
|
|
(tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH));
|
|
if (dci < 0)
|
|
dci += 1 << MLX5_CQ_INDEX_WIDTH;
|
|
dci *= txpp->tick;
|
|
return (dts > dci) ? dts - dci : dci - dts;
|
|
}
|
|
|
|
/*
|
|
* Wander reflects the long-term clock change
|
|
* over the entire length of all Clock Queue completions.
|
|
*/
|
|
static uint64_t
|
|
mlx5_txpp_xstats_wander(struct mlx5_dev_txpp *txpp)
|
|
{
|
|
struct mlx5_txpp_ts tsa0, tsa1;
|
|
int64_t dts, dci;
|
|
uint16_t ts_p;
|
|
|
|
if (txpp->ts_n < MLX5_TXPP_REARM_SQ_SIZE) {
|
|
/* No gathered enough reports yet. */
|
|
return 0;
|
|
}
|
|
do {
|
|
int ts_0, ts_1;
|
|
|
|
ts_p = txpp->ts_p;
|
|
rte_compiler_barrier();
|
|
ts_0 = ts_p - MLX5_TXPP_REARM_SQ_SIZE / 2 - 1;
|
|
if (ts_0 < 0)
|
|
ts_0 += MLX5_TXPP_REARM_SQ_SIZE;
|
|
ts_1 = ts_p - 1;
|
|
if (ts_1 < 0)
|
|
ts_1 += MLX5_TXPP_REARM_SQ_SIZE;
|
|
mlx5_txpp_read_tsa(txpp, &tsa0, ts_0);
|
|
mlx5_txpp_read_tsa(txpp, &tsa1, ts_1);
|
|
rte_compiler_barrier();
|
|
} while (ts_p != txpp->ts_p);
|
|
/* We have two neighbor reports, calculate the jitter. */
|
|
dts = tsa1.ts - tsa0.ts;
|
|
dci = (tsa1.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH)) -
|
|
(tsa0.ci_ts >> (64 - MLX5_CQ_INDEX_WIDTH));
|
|
dci += 1 << MLX5_CQ_INDEX_WIDTH;
|
|
dci *= txpp->tick;
|
|
return (dts > dci) ? dts - dci : dci - dts;
|
|
}
|
|
|
|
/**
|
|
* Routine to retrieve extended device statistics
|
|
* for packet send scheduling. It appends the specific statistics
|
|
* after the parts filled by preceding modules (eth stats, etc.)
|
|
*
|
|
* @param dev
|
|
* Pointer to Ethernet device.
|
|
* @param[out] stats
|
|
* Pointer to rte extended stats table.
|
|
* @param n
|
|
* The size of the stats table.
|
|
* @param n_used
|
|
* Number of stats filled by preceding statistics modules.
|
|
*
|
|
* @return
|
|
* Number of extended stats on success and stats is filled,
|
|
* negative on error and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_txpp_xstats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_xstat *stats,
|
|
unsigned int n, unsigned int n_used)
|
|
{
|
|
unsigned int n_txpp = RTE_DIM(mlx5_txpp_stat_names);
|
|
|
|
if (n >= n_used + n_txpp && stats) {
|
|
struct mlx5_priv *priv = dev->data->dev_private;
|
|
struct mlx5_dev_ctx_shared *sh = priv->sh;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < n_txpp; ++i)
|
|
stats[n_used + i].id = n_used + i;
|
|
stats[n_used + 0].value =
|
|
__atomic_load_n(&sh->txpp.err_miss_int,
|
|
__ATOMIC_RELAXED);
|
|
stats[n_used + 1].value =
|
|
__atomic_load_n(&sh->txpp.err_rearm_queue,
|
|
__ATOMIC_RELAXED);
|
|
stats[n_used + 2].value =
|
|
__atomic_load_n(&sh->txpp.err_clock_queue,
|
|
__ATOMIC_RELAXED);
|
|
stats[n_used + 3].value =
|
|
__atomic_load_n(&sh->txpp.err_ts_past,
|
|
__ATOMIC_RELAXED);
|
|
stats[n_used + 4].value =
|
|
__atomic_load_n(&sh->txpp.err_ts_future,
|
|
__ATOMIC_RELAXED);
|
|
stats[n_used + 5].value = mlx5_txpp_xstats_jitter(&sh->txpp);
|
|
stats[n_used + 6].value = mlx5_txpp_xstats_wander(&sh->txpp);
|
|
stats[n_used + 7].value = sh->txpp.sync_lost;
|
|
}
|
|
return n_used + n_txpp;
|
|
}
|