numam-dpdk/drivers/net/nfp/nfpcore/nfp_rtsym.c
Alejandro Lucero c7e9729da6 net/nfp: support CPP
CPP refers to the internal NFP Command Push Pull bus. This patch allows
to create CPP commands from user space allowing to access any single
part of the chip.

This CPP interface is the base for having other functionalities like
mutexes when accessing specific chip components, chip resources management,
firmware upload or using the NSP, an embedded arm processor which can
perform tasks on demand.

NSP was the previous only way for doing things in the chip by the PMD,
where a NSPU interface was used for commands like firmware upload or
port link configuration. CPP interface supersedes NSPU, but it is still
possible to use NSP through CPP.

CPP interface adds a great flexibility for doing things like extended
stats or firmware debugging.

Signed-off-by: Alejandro Lucero <alejandro.lucero@netronome.com>
2018-04-14 00:40:21 +02:00

328 lines
7.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
/*
* nfp_rtsym.c
* Interface for accessing run-time symbol table
*/
#include <stdio.h>
#include <rte_byteorder.h>
#include "nfp_cpp.h"
#include "nfp_mip.h"
#include "nfp_rtsym.h"
#include "nfp6000/nfp6000.h"
/* These need to match the linker */
#define SYM_TGT_LMEM 0
#define SYM_TGT_EMU_CACHE 0x17
struct nfp_rtsym_entry {
uint8_t type;
uint8_t target;
uint8_t island;
uint8_t addr_hi;
uint32_t addr_lo;
uint16_t name;
uint8_t menum;
uint8_t size_hi;
uint32_t size_lo;
};
struct nfp_rtsym_table {
struct nfp_cpp *cpp;
int num;
char *strtab;
struct nfp_rtsym symtab[];
};
static int
nfp_meid(uint8_t island_id, uint8_t menum)
{
return (island_id & 0x3F) == island_id && menum < 12 ?
(island_id << 4) | (menum + 4) : -1;
}
static void
nfp_rtsym_sw_entry_init(struct nfp_rtsym_table *cache, uint32_t strtab_size,
struct nfp_rtsym *sw, struct nfp_rtsym_entry *fw)
{
sw->type = fw->type;
sw->name = cache->strtab + rte_le_to_cpu_16(fw->name) % strtab_size;
sw->addr = ((uint64_t)fw->addr_hi << 32) |
rte_le_to_cpu_32(fw->addr_lo);
sw->size = ((uint64_t)fw->size_hi << 32) |
rte_le_to_cpu_32(fw->size_lo);
#ifdef DEBUG
printf("rtsym_entry_init\n");
printf("\tname=%s, addr=%" PRIx64 ", size=%" PRIu64 ",target=%d\n",
sw->name, sw->addr, sw->size, sw->target);
#endif
switch (fw->target) {
case SYM_TGT_LMEM:
sw->target = NFP_RTSYM_TARGET_LMEM;
break;
case SYM_TGT_EMU_CACHE:
sw->target = NFP_RTSYM_TARGET_EMU_CACHE;
break;
default:
sw->target = fw->target;
break;
}
if (fw->menum != 0xff)
sw->domain = nfp_meid(fw->island, fw->menum);
else if (fw->island != 0xff)
sw->domain = fw->island;
else
sw->domain = -1;
}
struct nfp_rtsym_table *
nfp_rtsym_table_read(struct nfp_cpp *cpp)
{
struct nfp_rtsym_table *rtbl;
struct nfp_mip *mip;
mip = nfp_mip_open(cpp);
rtbl = __nfp_rtsym_table_read(cpp, mip);
nfp_mip_close(mip);
return rtbl;
}
/*
* This looks more complex than it should be. But we need to get the type for
* the ~ right in round_down (it needs to be as wide as the result!), and we
* want to evaluate the macro arguments just once each.
*/
#define __round_mask(x, y) ((__typeof__(x))((y) - 1))
#define round_up(x, y) \
(__extension__ ({ \
typeof(x) _x = (x); \
((((_x) - 1) | __round_mask(_x, y)) + 1); \
}))
#define round_down(x, y) \
(__extension__ ({ \
typeof(x) _x = (x); \
((_x) & ~__round_mask(_x, y)); \
}))
struct nfp_rtsym_table *
__nfp_rtsym_table_read(struct nfp_cpp *cpp, const struct nfp_mip *mip)
{
uint32_t strtab_addr, symtab_addr, strtab_size, symtab_size;
struct nfp_rtsym_entry *rtsymtab;
struct nfp_rtsym_table *cache;
const uint32_t dram =
NFP_CPP_ID(NFP_CPP_TARGET_MU, NFP_CPP_ACTION_RW, 0) |
NFP_ISL_EMEM0;
int err, n, size;
if (!mip)
return NULL;
nfp_mip_strtab(mip, &strtab_addr, &strtab_size);
nfp_mip_symtab(mip, &symtab_addr, &symtab_size);
if (!symtab_size || !strtab_size || symtab_size % sizeof(*rtsymtab))
return NULL;
/* Align to 64 bits */
symtab_size = round_up(symtab_size, 8);
strtab_size = round_up(strtab_size, 8);
rtsymtab = malloc(symtab_size);
if (!rtsymtab)
return NULL;
size = sizeof(*cache);
size += symtab_size / sizeof(*rtsymtab) * sizeof(struct nfp_rtsym);
size += strtab_size + 1;
cache = malloc(size);
if (!cache)
goto exit_free_rtsym_raw;
cache->cpp = cpp;
cache->num = symtab_size / sizeof(*rtsymtab);
cache->strtab = (void *)&cache->symtab[cache->num];
err = nfp_cpp_read(cpp, dram, symtab_addr, rtsymtab, symtab_size);
if (err != (int)symtab_size)
goto exit_free_cache;
err = nfp_cpp_read(cpp, dram, strtab_addr, cache->strtab, strtab_size);
if (err != (int)strtab_size)
goto exit_free_cache;
cache->strtab[strtab_size] = '\0';
for (n = 0; n < cache->num; n++)
nfp_rtsym_sw_entry_init(cache, strtab_size,
&cache->symtab[n], &rtsymtab[n]);
free(rtsymtab);
return cache;
exit_free_cache:
free(cache);
exit_free_rtsym_raw:
free(rtsymtab);
return NULL;
}
/*
* nfp_rtsym_count() - Get the number of RTSYM descriptors
* @rtbl: NFP RTsym table
*
* Return: Number of RTSYM descriptors
*/
int
nfp_rtsym_count(struct nfp_rtsym_table *rtbl)
{
if (!rtbl)
return -EINVAL;
return rtbl->num;
}
/*
* nfp_rtsym_get() - Get the Nth RTSYM descriptor
* @rtbl: NFP RTsym table
* @idx: Index (0-based) of the RTSYM descriptor
*
* Return: const pointer to a struct nfp_rtsym descriptor, or NULL
*/
const struct nfp_rtsym *
nfp_rtsym_get(struct nfp_rtsym_table *rtbl, int idx)
{
if (!rtbl)
return NULL;
if (idx >= rtbl->num)
return NULL;
return &rtbl->symtab[idx];
}
/*
* nfp_rtsym_lookup() - Return the RTSYM descriptor for a symbol name
* @rtbl: NFP RTsym table
* @name: Symbol name
*
* Return: const pointer to a struct nfp_rtsym descriptor, or NULL
*/
const struct nfp_rtsym *
nfp_rtsym_lookup(struct nfp_rtsym_table *rtbl, const char *name)
{
int n;
if (!rtbl)
return NULL;
for (n = 0; n < rtbl->num; n++)
if (strcmp(name, rtbl->symtab[n].name) == 0)
return &rtbl->symtab[n];
return NULL;
}
/*
* nfp_rtsym_read_le() - Read a simple unsigned scalar value from symbol
* @rtbl: NFP RTsym table
* @name: Symbol name
* @error: Poniter to error code (optional)
*
* Lookup a symbol, map, read it and return it's value. Value of the symbol
* will be interpreted as a simple little-endian unsigned value. Symbol can
* be 4 or 8 bytes in size.
*
* Return: value read, on error sets the error and returns ~0ULL.
*/
uint64_t
nfp_rtsym_read_le(struct nfp_rtsym_table *rtbl, const char *name, int *error)
{
const struct nfp_rtsym *sym;
uint32_t val32, id;
uint64_t val;
int err;
sym = nfp_rtsym_lookup(rtbl, name);
if (!sym) {
err = -ENOENT;
goto exit;
}
id = NFP_CPP_ISLAND_ID(sym->target, NFP_CPP_ACTION_RW, 0, sym->domain);
#ifdef DEBUG
printf("Reading symbol %s with size %" PRIu64 " at %" PRIx64 "\n",
name, sym->size, sym->addr);
#endif
switch (sym->size) {
case 4:
err = nfp_cpp_readl(rtbl->cpp, id, sym->addr, &val32);
val = val32;
break;
case 8:
err = nfp_cpp_readq(rtbl->cpp, id, sym->addr, &val);
break;
default:
printf("rtsym '%s' unsupported size: %" PRId64 "\n",
name, sym->size);
err = -EINVAL;
break;
}
if (err)
err = -EIO;
exit:
if (error)
*error = err;
if (err)
return ~0ULL;
return val;
}
uint8_t *
nfp_rtsym_map(struct nfp_rtsym_table *rtbl, const char *name,
unsigned int min_size, struct nfp_cpp_area **area)
{
const struct nfp_rtsym *sym;
uint8_t *mem;
#ifdef DEBUG
printf("mapping symbol %s\n", name);
#endif
sym = nfp_rtsym_lookup(rtbl, name);
if (!sym) {
printf("symbol lookup fails for %s\n", name);
return NULL;
}
if (sym->size < min_size) {
printf("Symbol %s too small (%" PRIu64 " < %u)\n", name,
sym->size, min_size);
return NULL;
}
mem = nfp_cpp_map_area(rtbl->cpp, sym->domain, sym->target, sym->addr,
sym->size, area);
if (!mem) {
printf("Failed to map symbol %s\n", name);
return NULL;
}
#ifdef DEBUG
printf("symbol %s with address %p\n", name, mem);
#endif
return mem;
}