04d43857ea
Definition of `rte_ether_addr` structure used a workaround allowing DPDK and Windows SDK headers to be used in the same file, because Windows SDK defines `s_addr` as a macro. Rename `s_addr` to `src_addr` and `d_addr` to `dst_addr` to avoid the conflict and remove the workaround. Deprecation notice: https://mails.dpdk.org/archives/dev/2021-July/215270.html Signed-off-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
194 lines
4.6 KiB
C
194 lines
4.6 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2014-2020 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <sys/queue.h>
|
|
#include <sys/stat.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_flow.h>
|
|
|
|
#include "macswap_common.h"
|
|
#include "testpmd.h"
|
|
|
|
|
|
static inline void
|
|
swap_mac(struct rte_ether_hdr *eth_hdr)
|
|
{
|
|
struct rte_ether_addr addr;
|
|
|
|
/* Swap dest and src mac addresses. */
|
|
rte_ether_addr_copy(ð_hdr->dst_addr, &addr);
|
|
rte_ether_addr_copy(ð_hdr->src_addr, ð_hdr->dst_addr);
|
|
rte_ether_addr_copy(&addr, ð_hdr->src_addr);
|
|
}
|
|
|
|
static inline void
|
|
swap_ipv4(struct rte_ipv4_hdr *ipv4_hdr)
|
|
{
|
|
rte_be32_t addr;
|
|
|
|
/* Swap dest and src ipv4 addresses. */
|
|
addr = ipv4_hdr->src_addr;
|
|
ipv4_hdr->src_addr = ipv4_hdr->dst_addr;
|
|
ipv4_hdr->dst_addr = addr;
|
|
}
|
|
|
|
static inline void
|
|
swap_ipv6(struct rte_ipv6_hdr *ipv6_hdr)
|
|
{
|
|
uint8_t addr[16];
|
|
|
|
/* Swap dest and src ipv6 addresses. */
|
|
memcpy(&addr, &ipv6_hdr->src_addr, 16);
|
|
memcpy(&ipv6_hdr->src_addr, &ipv6_hdr->dst_addr, 16);
|
|
memcpy(&ipv6_hdr->dst_addr, &addr, 16);
|
|
}
|
|
|
|
static inline void
|
|
swap_tcp(struct rte_tcp_hdr *tcp_hdr)
|
|
{
|
|
rte_be16_t port;
|
|
|
|
/* Swap dest and src tcp port. */
|
|
port = tcp_hdr->src_port;
|
|
tcp_hdr->src_port = tcp_hdr->dst_port;
|
|
tcp_hdr->dst_port = port;
|
|
}
|
|
|
|
static inline void
|
|
swap_udp(struct rte_udp_hdr *udp_hdr)
|
|
{
|
|
rte_be16_t port;
|
|
|
|
/* Swap dest and src udp port */
|
|
port = udp_hdr->src_port;
|
|
udp_hdr->src_port = udp_hdr->dst_port;
|
|
udp_hdr->dst_port = port;
|
|
}
|
|
|
|
/*
|
|
* 5 tuple swap forwarding mode: Swap the source and the destination of layers
|
|
* 2,3,4. Swaps source and destination for MAC, IPv4/IPv6, UDP/TCP.
|
|
* Parses each layer and swaps it. When the next layer doesn't match it stops.
|
|
*/
|
|
static void
|
|
pkt_burst_5tuple_swap(struct fwd_stream *fs)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
struct rte_port *txp;
|
|
struct rte_mbuf *mb;
|
|
uint16_t next_proto;
|
|
uint64_t ol_flags;
|
|
uint16_t proto;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_tx;
|
|
uint32_t retry;
|
|
|
|
int i;
|
|
union {
|
|
struct rte_ether_hdr *eth;
|
|
struct rte_vlan_hdr *vlan;
|
|
struct rte_ipv4_hdr *ipv4;
|
|
struct rte_ipv6_hdr *ipv6;
|
|
struct rte_tcp_hdr *tcp;
|
|
struct rte_udp_hdr *udp;
|
|
uint8_t *byte;
|
|
} h;
|
|
|
|
uint64_t start_tsc = 0;
|
|
|
|
get_start_cycles(&start_tsc);
|
|
|
|
/*
|
|
* Receive a burst of packets and forward them.
|
|
*/
|
|
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
|
|
nb_pkt_per_burst);
|
|
inc_rx_burst_stats(fs, nb_rx);
|
|
if (unlikely(nb_rx == 0))
|
|
return;
|
|
|
|
fs->rx_packets += nb_rx;
|
|
txp = &ports[fs->tx_port];
|
|
ol_flags = ol_flags_init(txp->dev_conf.txmode.offloads);
|
|
vlan_qinq_set(pkts_burst, nb_rx, ol_flags,
|
|
txp->tx_vlan_id, txp->tx_vlan_id_outer);
|
|
for (i = 0; i < nb_rx; i++) {
|
|
if (likely(i < nb_rx - 1))
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i+1],
|
|
void *));
|
|
mb = pkts_burst[i];
|
|
h.eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
|
|
proto = h.eth->ether_type;
|
|
swap_mac(h.eth);
|
|
mb->l2_len = sizeof(struct rte_ether_hdr);
|
|
h.eth++;
|
|
while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
|
|
proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
|
|
proto = h.vlan->eth_proto;
|
|
h.vlan++;
|
|
mb->l2_len += sizeof(struct rte_vlan_hdr);
|
|
}
|
|
if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
|
|
swap_ipv4(h.ipv4);
|
|
next_proto = h.ipv4->next_proto_id;
|
|
mb->l3_len = rte_ipv4_hdr_len(h.ipv4);
|
|
h.byte += mb->l3_len;
|
|
} else if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV6)) {
|
|
swap_ipv6(h.ipv6);
|
|
next_proto = h.ipv6->proto;
|
|
h.ipv6++;
|
|
mb->l3_len = sizeof(struct rte_ipv6_hdr);
|
|
} else {
|
|
mbuf_field_set(mb, ol_flags);
|
|
continue;
|
|
}
|
|
if (next_proto == IPPROTO_UDP) {
|
|
swap_udp(h.udp);
|
|
mb->l4_len = sizeof(struct rte_udp_hdr);
|
|
} else if (next_proto == IPPROTO_TCP) {
|
|
swap_tcp(h.tcp);
|
|
mb->l4_len = (h.tcp->data_off & 0xf0) >> 2;
|
|
}
|
|
mbuf_field_set(mb, ol_flags);
|
|
}
|
|
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
|
|
/*
|
|
* Retry if necessary
|
|
*/
|
|
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
|
|
retry = 0;
|
|
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
|
|
rte_delay_us(burst_tx_delay_time);
|
|
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
|
|
&pkts_burst[nb_tx], nb_rx - nb_tx);
|
|
}
|
|
}
|
|
fs->tx_packets += nb_tx;
|
|
inc_tx_burst_stats(fs, nb_tx);
|
|
if (unlikely(nb_tx < nb_rx)) {
|
|
fs->fwd_dropped += (nb_rx - nb_tx);
|
|
do {
|
|
rte_pktmbuf_free(pkts_burst[nb_tx]);
|
|
} while (++nb_tx < nb_rx);
|
|
}
|
|
get_end_cycles(fs, start_tsc);
|
|
}
|
|
|
|
struct fwd_engine five_tuple_swap_fwd_engine = {
|
|
.fwd_mode_name = "5tswap",
|
|
.port_fwd_begin = NULL,
|
|
.port_fwd_end = NULL,
|
|
.packet_fwd = pkt_burst_5tuple_swap,
|
|
};
|