01f3496695
The reorder library used sequence numbers stored in the deprecated field seqn. It is moved to a dynamic mbuf field in order to allow removal of seqn. Signed-off-by: David Marchand <david.marchand@redhat.com> Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
412 lines
11 KiB
C
412 lines
11 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
|
|
#include <rte_string_fns.h>
|
|
#include <rte_log.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mbuf_dyn.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_tailq.h>
|
|
|
|
#include "rte_reorder.h"
|
|
|
|
TAILQ_HEAD(rte_reorder_list, rte_tailq_entry);
|
|
|
|
static struct rte_tailq_elem rte_reorder_tailq = {
|
|
.name = "RTE_REORDER",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_reorder_tailq)
|
|
|
|
#define NO_FLAGS 0
|
|
#define RTE_REORDER_PREFIX "RO_"
|
|
#define RTE_REORDER_NAMESIZE 32
|
|
|
|
/* Macros for printing using RTE_LOG */
|
|
#define RTE_LOGTYPE_REORDER RTE_LOGTYPE_USER1
|
|
|
|
#define RTE_REORDER_SEQN_DYNFIELD_NAME "rte_reorder_seqn_dynfield"
|
|
int rte_reorder_seqn_dynfield_offset = -1;
|
|
|
|
/* A generic circular buffer */
|
|
struct cir_buffer {
|
|
unsigned int size; /**< Number of entries that can be stored */
|
|
unsigned int mask; /**< [buffer_size - 1]: used for wrap-around */
|
|
unsigned int head; /**< insertion point in buffer */
|
|
unsigned int tail; /**< extraction point in buffer */
|
|
struct rte_mbuf **entries;
|
|
} __rte_cache_aligned;
|
|
|
|
/* The reorder buffer data structure itself */
|
|
struct rte_reorder_buffer {
|
|
char name[RTE_REORDER_NAMESIZE];
|
|
uint32_t min_seqn; /**< Lowest seq. number that can be in the buffer */
|
|
unsigned int memsize; /**< memory area size of reorder buffer */
|
|
struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */
|
|
struct cir_buffer order_buf; /**< buffer used to reorder entries */
|
|
int is_initialized;
|
|
} __rte_cache_aligned;
|
|
|
|
static void
|
|
rte_reorder_free_mbufs(struct rte_reorder_buffer *b);
|
|
|
|
struct rte_reorder_buffer *
|
|
rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize,
|
|
const char *name, unsigned int size)
|
|
{
|
|
const unsigned int min_bufsize = sizeof(*b) +
|
|
(2 * size * sizeof(struct rte_mbuf *));
|
|
|
|
if (b == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer parameter:"
|
|
" NULL\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (!rte_is_power_of_2(size)) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
|
|
" - Not a power of 2\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (name == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
|
|
" NULL\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (bufsize < min_bufsize) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer memory size: %u, "
|
|
"minimum required: %u\n", bufsize, min_bufsize);
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
memset(b, 0, bufsize);
|
|
strlcpy(b->name, name, sizeof(b->name));
|
|
b->memsize = bufsize;
|
|
b->order_buf.size = b->ready_buf.size = size;
|
|
b->order_buf.mask = b->ready_buf.mask = size - 1;
|
|
b->ready_buf.entries = (void *)&b[1];
|
|
b->order_buf.entries = RTE_PTR_ADD(&b[1],
|
|
size * sizeof(b->ready_buf.entries[0]));
|
|
|
|
return b;
|
|
}
|
|
|
|
struct rte_reorder_buffer*
|
|
rte_reorder_create(const char *name, unsigned socket_id, unsigned int size)
|
|
{
|
|
struct rte_reorder_buffer *b = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_reorder_list *reorder_list;
|
|
const unsigned int bufsize = sizeof(struct rte_reorder_buffer) +
|
|
(2 * size * sizeof(struct rte_mbuf *));
|
|
static const struct rte_mbuf_dynfield reorder_seqn_dynfield_desc = {
|
|
.name = RTE_REORDER_SEQN_DYNFIELD_NAME,
|
|
.size = sizeof(rte_reorder_seqn_t),
|
|
.align = __alignof__(rte_reorder_seqn_t),
|
|
};
|
|
|
|
reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
|
|
|
|
/* Check user arguments. */
|
|
if (!rte_is_power_of_2(size)) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
|
|
" - Not a power of 2\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (name == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
|
|
" NULL\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
rte_reorder_seqn_dynfield_offset =
|
|
rte_mbuf_dynfield_register(&reorder_seqn_dynfield_desc);
|
|
if (rte_reorder_seqn_dynfield_offset < 0) {
|
|
RTE_LOG(ERR, REORDER, "Failed to register mbuf field for reorder sequence number\n");
|
|
rte_errno = ENOMEM;
|
|
return NULL;
|
|
}
|
|
|
|
rte_mcfg_tailq_write_lock();
|
|
|
|
/* guarantee there's no existing */
|
|
TAILQ_FOREACH(te, reorder_list, next) {
|
|
b = (struct rte_reorder_buffer *) te->data;
|
|
if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
if (te != NULL)
|
|
goto exit;
|
|
|
|
/* allocate tailq entry */
|
|
te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Failed to allocate tailq entry\n");
|
|
rte_errno = ENOMEM;
|
|
b = NULL;
|
|
goto exit;
|
|
}
|
|
|
|
/* Allocate memory to store the reorder buffer structure. */
|
|
b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id);
|
|
if (b == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Memzone allocation failed\n");
|
|
rte_errno = ENOMEM;
|
|
rte_free(te);
|
|
} else {
|
|
rte_reorder_init(b, bufsize, name, size);
|
|
te->data = (void *)b;
|
|
TAILQ_INSERT_TAIL(reorder_list, te, next);
|
|
}
|
|
|
|
exit:
|
|
rte_mcfg_tailq_write_unlock();
|
|
return b;
|
|
}
|
|
|
|
void
|
|
rte_reorder_reset(struct rte_reorder_buffer *b)
|
|
{
|
|
char name[RTE_REORDER_NAMESIZE];
|
|
|
|
rte_reorder_free_mbufs(b);
|
|
strlcpy(name, b->name, sizeof(name));
|
|
/* No error checking as current values should be valid */
|
|
rte_reorder_init(b, b->memsize, name, b->order_buf.size);
|
|
}
|
|
|
|
static void
|
|
rte_reorder_free_mbufs(struct rte_reorder_buffer *b)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Free up the mbufs of order buffer & ready buffer */
|
|
for (i = 0; i < b->order_buf.size; i++) {
|
|
if (b->order_buf.entries[i])
|
|
rte_pktmbuf_free(b->order_buf.entries[i]);
|
|
if (b->ready_buf.entries[i])
|
|
rte_pktmbuf_free(b->ready_buf.entries[i]);
|
|
}
|
|
}
|
|
|
|
void
|
|
rte_reorder_free(struct rte_reorder_buffer *b)
|
|
{
|
|
struct rte_reorder_list *reorder_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
/* Check user arguments. */
|
|
if (b == NULL)
|
|
return;
|
|
|
|
reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
|
|
|
|
rte_mcfg_tailq_write_lock();
|
|
|
|
/* find our tailq entry */
|
|
TAILQ_FOREACH(te, reorder_list, next) {
|
|
if (te->data == (void *) b)
|
|
break;
|
|
}
|
|
if (te == NULL) {
|
|
rte_mcfg_tailq_write_unlock();
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(reorder_list, te, next);
|
|
|
|
rte_mcfg_tailq_write_unlock();
|
|
|
|
rte_reorder_free_mbufs(b);
|
|
|
|
rte_free(b);
|
|
rte_free(te);
|
|
}
|
|
|
|
struct rte_reorder_buffer *
|
|
rte_reorder_find_existing(const char *name)
|
|
{
|
|
struct rte_reorder_buffer *b = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_reorder_list *reorder_list;
|
|
|
|
if (name == NULL) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
|
|
|
|
rte_mcfg_tailq_read_lock();
|
|
TAILQ_FOREACH(te, reorder_list, next) {
|
|
b = (struct rte_reorder_buffer *) te->data;
|
|
if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
rte_mcfg_tailq_read_unlock();
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static unsigned
|
|
rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n)
|
|
{
|
|
/*
|
|
* 1. Move all ready entries that fit to the ready_buf
|
|
* 2. check if we meet the minimum needed (n).
|
|
* 3. If not, then skip any gaps and keep moving.
|
|
* 4. If at any point the ready buffer is full, stop
|
|
* 5. Return the number of positions the order_buf head has moved
|
|
*/
|
|
|
|
struct cir_buffer *order_buf = &b->order_buf,
|
|
*ready_buf = &b->ready_buf;
|
|
|
|
unsigned int order_head_adv = 0;
|
|
|
|
/*
|
|
* move at least n packets to ready buffer, assuming ready buffer
|
|
* has room for those packets.
|
|
*/
|
|
while (order_head_adv < n &&
|
|
((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) {
|
|
|
|
/* if we are blocked waiting on a packet, skip it */
|
|
if (order_buf->entries[order_buf->head] == NULL) {
|
|
order_buf->head = (order_buf->head + 1) & order_buf->mask;
|
|
order_head_adv++;
|
|
}
|
|
|
|
/* Move all ready entries that fit to the ready_buf */
|
|
while (order_buf->entries[order_buf->head] != NULL) {
|
|
ready_buf->entries[ready_buf->head] =
|
|
order_buf->entries[order_buf->head];
|
|
|
|
order_buf->entries[order_buf->head] = NULL;
|
|
order_head_adv++;
|
|
|
|
order_buf->head = (order_buf->head + 1) & order_buf->mask;
|
|
|
|
if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail)
|
|
break;
|
|
|
|
ready_buf->head = (ready_buf->head + 1) & ready_buf->mask;
|
|
}
|
|
}
|
|
|
|
b->min_seqn += order_head_adv;
|
|
/* Return the number of positions the order_buf head has moved */
|
|
return order_head_adv;
|
|
}
|
|
|
|
int
|
|
rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf)
|
|
{
|
|
uint32_t offset, position;
|
|
struct cir_buffer *order_buf;
|
|
|
|
if (b == NULL || mbuf == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
order_buf = &b->order_buf;
|
|
if (!b->is_initialized) {
|
|
b->min_seqn = *rte_reorder_seqn(mbuf);
|
|
b->is_initialized = 1;
|
|
}
|
|
|
|
/*
|
|
* calculate the offset from the head pointer we need to go.
|
|
* The subtraction takes care of the sequence number wrapping.
|
|
* For example (using 16-bit for brevity):
|
|
* min_seqn = 0xFFFD
|
|
* mbuf_seqn = 0x0010
|
|
* offset = 0x0010 - 0xFFFD = 0x13
|
|
*/
|
|
offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
|
|
|
|
/*
|
|
* action to take depends on offset.
|
|
* offset < buffer->size: the mbuf fits within the current window of
|
|
* sequence numbers we can reorder. EXPECTED CASE.
|
|
* offset > buffer->size: the mbuf is outside the current window. There
|
|
* are a number of cases to consider:
|
|
* 1. The packet sequence is just outside the window, then we need
|
|
* to see about shifting the head pointer and taking any ready
|
|
* to return packets out of the ring. If there was a delayed
|
|
* or dropped packet preventing drains from shifting the window
|
|
* this case will skip over the dropped packet instead, and any
|
|
* packets dequeued here will be returned on the next drain call.
|
|
* 2. The packet sequence number is vastly outside our window, taken
|
|
* here as having offset greater than twice the buffer size. In
|
|
* this case, the packet is probably an old or late packet that
|
|
* was previously skipped, so just enqueue the packet for
|
|
* immediate return on the next drain call, or else return error.
|
|
*/
|
|
if (offset < b->order_buf.size) {
|
|
position = (order_buf->head + offset) & order_buf->mask;
|
|
order_buf->entries[position] = mbuf;
|
|
} else if (offset < 2 * b->order_buf.size) {
|
|
if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size)
|
|
< (offset + 1 - order_buf->size)) {
|
|
/* Put in handling for enqueue straight to output */
|
|
rte_errno = ENOSPC;
|
|
return -1;
|
|
}
|
|
offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
|
|
position = (order_buf->head + offset) & order_buf->mask;
|
|
order_buf->entries[position] = mbuf;
|
|
} else {
|
|
/* Put in handling for enqueue straight to output */
|
|
rte_errno = ERANGE;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned int
|
|
rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs,
|
|
unsigned max_mbufs)
|
|
{
|
|
unsigned int drain_cnt = 0;
|
|
|
|
struct cir_buffer *order_buf = &b->order_buf,
|
|
*ready_buf = &b->ready_buf;
|
|
|
|
/* Try to fetch requested number of mbufs from ready buffer */
|
|
while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) {
|
|
mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail];
|
|
ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask;
|
|
}
|
|
|
|
/*
|
|
* If requested number of buffers not fetched from ready buffer, fetch
|
|
* remaining buffers from order buffer
|
|
*/
|
|
while ((drain_cnt < max_mbufs) &&
|
|
(order_buf->entries[order_buf->head] != NULL)) {
|
|
mbufs[drain_cnt++] = order_buf->entries[order_buf->head];
|
|
order_buf->entries[order_buf->head] = NULL;
|
|
b->min_seqn++;
|
|
order_buf->head = (order_buf->head + 1) & order_buf->mask;
|
|
}
|
|
|
|
return drain_cnt;
|
|
}
|