numam-dpdk/drivers/net/cnxk/cn9k_rx.h
Rakesh Kudurumalla 68c48ab318 net/cnxk: add SoC specific PTP timestamp read
Timestamp resolution for an incoming and outgoing packets
is different for CN10k and CN9K. Added SoC specific
callback to retrieve timestamp in correct format
when read by application.

Signed-off-by: Rakesh Kudurumalla <rkudurumalla@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2022-02-24 11:04:49 +01:00

1097 lines
40 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#ifndef __CN9K_RX_H__
#define __CN9K_RX_H__
#include <rte_ether.h>
#include <rte_vect.h>
#include <cnxk_ethdev.h>
#define NIX_RX_OFFLOAD_NONE (0)
#define NIX_RX_OFFLOAD_RSS_F BIT(0)
#define NIX_RX_OFFLOAD_PTYPE_F BIT(1)
#define NIX_RX_OFFLOAD_CHECKSUM_F BIT(2)
#define NIX_RX_OFFLOAD_MARK_UPDATE_F BIT(3)
#define NIX_RX_OFFLOAD_TSTAMP_F BIT(4)
#define NIX_RX_OFFLOAD_VLAN_STRIP_F BIT(5)
#define NIX_RX_OFFLOAD_SECURITY_F BIT(6)
#define NIX_RX_OFFLOAD_MAX (NIX_RX_OFFLOAD_SECURITY_F << 1)
/* Flags to control cqe_to_mbuf conversion function.
* Defining it from backwards to denote its been
* not used as offload flags to pick function
*/
#define NIX_RX_MULTI_SEG_F BIT(14)
#define CPT_RX_WQE_F BIT(15)
#define CNXK_NIX_CQ_ENTRY_SZ 128
#define NIX_DESCS_PER_LOOP 4
#define CQE_CAST(x) ((struct nix_cqe_hdr_s *)(x))
#define CQE_SZ(x) ((x) * CNXK_NIX_CQ_ENTRY_SZ)
#define IPSEC_SQ_LO_IDX 4
#define IPSEC_SQ_HI_IDX 8
union mbuf_initializer {
struct {
uint16_t data_off;
uint16_t refcnt;
uint16_t nb_segs;
uint16_t port;
} fields;
uint64_t value;
};
static __rte_always_inline uint64_t
nix_clear_data_off(uint64_t oldval)
{
union mbuf_initializer mbuf_init = {.value = oldval};
mbuf_init.fields.data_off = 0;
return mbuf_init.value;
}
static __rte_always_inline struct rte_mbuf *
nix_get_mbuf_from_cqe(void *cq, const uint64_t data_off)
{
rte_iova_t buff;
/* Skip CQE, NIX_RX_PARSE_S and SG HDR(9 DWORDs) and peek buff addr */
buff = *((rte_iova_t *)((uint64_t *)cq + 9));
return (struct rte_mbuf *)(buff - data_off);
}
static __rte_always_inline uint32_t
nix_ptype_get(const void *const lookup_mem, const uint64_t in)
{
const uint16_t *const ptype = lookup_mem;
const uint16_t lh_lg_lf = (in & 0xFFF0000000000000) >> 52;
const uint16_t tu_l2 = ptype[(in & 0x000FFFF000000000) >> 36];
const uint16_t il4_tu = ptype[PTYPE_NON_TUNNEL_ARRAY_SZ + lh_lg_lf];
return (il4_tu << PTYPE_NON_TUNNEL_WIDTH) | tu_l2;
}
static __rte_always_inline uint32_t
nix_rx_olflags_get(const void *const lookup_mem, const uint64_t in)
{
const uint32_t *const ol_flags =
(const uint32_t *)((const uint8_t *)lookup_mem +
PTYPE_ARRAY_SZ);
return ol_flags[(in & 0xfff00000) >> 20];
}
static inline uint64_t
nix_update_match_id(const uint16_t match_id, uint64_t ol_flags,
struct rte_mbuf *mbuf)
{
/* There is no separate bit to check match_id
* is valid or not? and no flag to identify it is an
* RTE_FLOW_ACTION_TYPE_FLAG vs RTE_FLOW_ACTION_TYPE_MARK
* action. The former case addressed through 0 being invalid
* value and inc/dec match_id pair when MARK is activated.
* The later case addressed through defining
* CNXK_FLOW_MARK_DEFAULT as value for
* RTE_FLOW_ACTION_TYPE_MARK.
* This would translate to not use
* CNXK_FLOW_ACTION_FLAG_DEFAULT - 1 and
* CNXK_FLOW_ACTION_FLAG_DEFAULT for match_id.
* i.e valid mark_id's are from
* 0 to CNXK_FLOW_ACTION_FLAG_DEFAULT - 2
*/
if (likely(match_id)) {
ol_flags |= RTE_MBUF_F_RX_FDIR;
if (match_id != CNXK_FLOW_ACTION_FLAG_DEFAULT) {
ol_flags |= RTE_MBUF_F_RX_FDIR_ID;
mbuf->hash.fdir.hi = match_id - 1;
}
}
return ol_flags;
}
static __rte_always_inline void
nix_cqe_xtract_mseg(const union nix_rx_parse_u *rx, struct rte_mbuf *mbuf,
uint64_t rearm, const uint16_t flags)
{
const rte_iova_t *iova_list;
struct rte_mbuf *head;
const rte_iova_t *eol;
uint8_t nb_segs;
uint64_t sg;
sg = *(const uint64_t *)(rx + 1);
nb_segs = (sg >> 48) & 0x3;
if (nb_segs == 1) {
mbuf->next = NULL;
return;
}
mbuf->pkt_len = (rx->pkt_lenm1 + 1) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ?
CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->data_len = (sg & 0xFFFF) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ?
CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->nb_segs = nb_segs;
sg = sg >> 16;
eol = ((const rte_iova_t *)(rx + 1) +
((rx->cn9k.desc_sizem1 + 1) << 1));
/* Skip SG_S and first IOVA*/
iova_list = ((const rte_iova_t *)(rx + 1)) + 2;
nb_segs--;
rearm = rearm & ~0xFFFF;
head = mbuf;
while (nb_segs) {
mbuf->next = ((struct rte_mbuf *)*iova_list) - 1;
mbuf = mbuf->next;
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
mbuf->data_len = sg & 0xFFFF;
sg = sg >> 16;
*(uint64_t *)(&mbuf->rearm_data) = rearm;
nb_segs--;
iova_list++;
if (!nb_segs && (iova_list + 1 < eol)) {
sg = *(const uint64_t *)(iova_list);
nb_segs = (sg >> 48) & 0x3;
head->nb_segs += nb_segs;
iova_list = (const rte_iova_t *)(iova_list + 1);
}
}
mbuf->next = NULL;
}
static inline int
ipsec_antireplay_check(struct roc_onf_ipsec_inb_sa *sa,
struct cn9k_inb_priv_data *priv, uintptr_t data,
uint32_t win_sz)
{
struct cnxk_on_ipsec_ar *ar = &priv->ar;
uint64_t seq_in_sa;
uint32_t seqh = 0;
uint32_t seql;
uint64_t seq;
uint8_t esn;
int rc;
esn = sa->ctl.esn_en;
seql = rte_be_to_cpu_32(*((uint32_t *)(data + IPSEC_SQ_LO_IDX)));
if (!esn) {
seq = (uint64_t)seql;
} else {
seqh = rte_be_to_cpu_32(*((uint32_t *)(data +
IPSEC_SQ_HI_IDX)));
seq = ((uint64_t)seqh << 32) | seql;
}
if (unlikely(seq == 0))
return -1;
rte_spinlock_lock(&ar->lock);
rc = cnxk_on_anti_replay_check(seq, ar, win_sz);
if (esn && !rc) {
seq_in_sa = ((uint64_t)rte_be_to_cpu_32(sa->esn_hi) << 32) |
rte_be_to_cpu_32(sa->esn_low);
if (seq > seq_in_sa) {
sa->esn_low = rte_cpu_to_be_32(seql);
sa->esn_hi = rte_cpu_to_be_32(seqh);
}
}
rte_spinlock_unlock(&ar->lock);
return rc;
}
static inline uint64_t
nix_rx_sec_mbuf_err_update(const union nix_rx_parse_u *rx, uint16_t res,
uint64_t *rearm_val, uint16_t *len)
{
uint8_t uc_cc = res >> 8;
uint8_t cc = res & 0xFF;
uint64_t data_off;
uint64_t ol_flags;
uint16_t m_len;
if (unlikely(cc != CPT_COMP_GOOD))
return RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
data_off = *rearm_val & (BIT_ULL(16) - 1);
m_len = rx->cn9k.pkt_lenm1 + 1;
switch (uc_cc) {
case ROC_IE_ON_UCC_IP_PAYLOAD_TYPE_ERR:
case ROC_IE_ON_UCC_AUTH_ERR:
case ROC_IE_ON_UCC_PADDING_INVALID:
/* Adjust data offset to start at copied L2 */
data_off += ROC_ONF_IPSEC_INB_SPI_SEQ_SZ +
ROC_ONF_IPSEC_INB_MAX_L2_SZ;
ol_flags = RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
break;
case ROC_IE_ON_UCC_CTX_INVALID:
case ROC_IE_ON_UCC_SPI_MISMATCH:
case ROC_IE_ON_UCC_SA_MISMATCH:
/* Return as normal packet */
ol_flags = 0;
break;
default:
/* Return as error packet after updating packet lengths */
ol_flags = RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
break;
}
*len = m_len;
*rearm_val = *rearm_val & ~(BIT_ULL(16) - 1);
*rearm_val |= data_off;
return ol_flags;
}
static __rte_always_inline uint64_t
nix_rx_sec_mbuf_update(const struct nix_cqe_hdr_s *cq, struct rte_mbuf *m,
uintptr_t sa_base, uint64_t *rearm_val, uint16_t *len)
{
uintptr_t res_sg0 = ((uintptr_t)cq + ROC_ONF_IPSEC_INB_RES_OFF - 8);
const union nix_rx_parse_u *rx =
(const union nix_rx_parse_u *)((const uint64_t *)cq + 1);
struct cn9k_inb_priv_data *sa_priv;
struct roc_onf_ipsec_inb_sa *sa;
uint8_t lcptr = rx->lcptr;
struct rte_ipv4_hdr *ipv4;
uint16_t data_off, res;
uint32_t spi, win_sz;
uint32_t spi_mask;
uintptr_t data;
__uint128_t dw;
uint8_t sa_w;
res = *(uint64_t *)(res_sg0 + 8);
data_off = *rearm_val & (BIT_ULL(16) - 1);
data = (uintptr_t)m->buf_addr;
data += data_off;
rte_prefetch0((void *)data);
if (unlikely(res != (CPT_COMP_GOOD | ROC_IE_ON_UCC_SUCCESS << 8)))
return nix_rx_sec_mbuf_err_update(rx, res, rearm_val, len);
data += lcptr;
/* 20 bits of tag would have the SPI */
spi = cq->tag & CNXK_ETHDEV_SPI_TAG_MASK;
/* Get SA */
sa_w = sa_base & (ROC_NIX_INL_SA_BASE_ALIGN - 1);
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
spi_mask = (1ULL << sa_w) - 1;
sa = roc_nix_inl_onf_ipsec_inb_sa(sa_base, spi & spi_mask);
/* Update dynamic field with userdata */
sa_priv = roc_nix_inl_onf_ipsec_inb_sa_sw_rsvd(sa);
dw = *(__uint128_t *)sa_priv;
*rte_security_dynfield(m) = (uint64_t)dw;
/* Check if anti-replay is enabled */
win_sz = (uint32_t)(dw >> 64);
if (win_sz) {
if (ipsec_antireplay_check(sa, sa_priv, data, win_sz) < 0)
return RTE_MBUF_F_RX_SEC_OFFLOAD | RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
}
/* Get total length from IPv4 header. We can assume only IPv4 */
ipv4 = (struct rte_ipv4_hdr *)(data + ROC_ONF_IPSEC_INB_SPI_SEQ_SZ +
ROC_ONF_IPSEC_INB_MAX_L2_SZ);
/* Update data offset */
data_off += (ROC_ONF_IPSEC_INB_SPI_SEQ_SZ +
ROC_ONF_IPSEC_INB_MAX_L2_SZ);
*rearm_val = *rearm_val & ~(BIT_ULL(16) - 1);
*rearm_val |= data_off;
*len = rte_be_to_cpu_16(ipv4->total_length) + lcptr;
return RTE_MBUF_F_RX_SEC_OFFLOAD;
}
static __rte_always_inline void
cn9k_nix_cqe_to_mbuf(const struct nix_cqe_hdr_s *cq, const uint32_t tag,
struct rte_mbuf *mbuf, const void *lookup_mem,
uint64_t val, const uint16_t flag)
{
const union nix_rx_parse_u *rx =
(const union nix_rx_parse_u *)((const uint64_t *)cq + 1);
uint16_t len = rx->cn9k.pkt_lenm1 + 1;
const uint64_t w1 = *(const uint64_t *)rx;
uint32_t packet_type;
uint64_t ol_flags = 0;
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
if (flag & NIX_RX_OFFLOAD_PTYPE_F)
packet_type = nix_ptype_get(lookup_mem, w1);
else
packet_type = 0;
if ((flag & NIX_RX_OFFLOAD_SECURITY_F) &&
cq->cqe_type == NIX_XQE_TYPE_RX_IPSECH) {
uint16_t port = val >> 48;
uintptr_t sa_base;
/* Get SA Base from lookup mem */
sa_base = cnxk_nix_sa_base_get(port, lookup_mem);
ol_flags |= nix_rx_sec_mbuf_update(cq, mbuf, sa_base, &val,
&len);
/* Only Tunnel inner IPv4 is supported */
packet_type = (packet_type &
~(RTE_PTYPE_L3_MASK | RTE_PTYPE_TUNNEL_MASK));
packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
mbuf->packet_type = packet_type;
goto skip_parse;
}
if (flag & NIX_RX_OFFLOAD_PTYPE_F)
mbuf->packet_type = packet_type;
if (flag & NIX_RX_OFFLOAD_RSS_F) {
mbuf->hash.rss = tag;
ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
}
if (flag & NIX_RX_OFFLOAD_CHECKSUM_F)
ol_flags |= nix_rx_olflags_get(lookup_mem, w1);
skip_parse:
if (flag & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
if (rx->cn9k.vtag0_gone) {
ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
mbuf->vlan_tci = rx->cn9k.vtag0_tci;
}
if (rx->cn9k.vtag1_gone) {
ol_flags |= RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = rx->cn9k.vtag1_tci;
}
}
if (flag & NIX_RX_OFFLOAD_MARK_UPDATE_F)
ol_flags =
nix_update_match_id(rx->cn9k.match_id, ol_flags, mbuf);
mbuf->ol_flags = ol_flags;
*(uint64_t *)(&mbuf->rearm_data) = val;
mbuf->pkt_len = len;
mbuf->data_len = len;
if (flag & NIX_RX_MULTI_SEG_F)
/*
* For multi segment packets, mbuf length correction according
* to Rx timestamp length will be handled later during
* timestamp data process.
* Hence, flag argument is not required.
*/
nix_cqe_xtract_mseg(rx, mbuf, val, 0);
else
mbuf->next = NULL;
}
static inline uint16_t
nix_rx_nb_pkts(struct cn9k_eth_rxq *rxq, const uint64_t wdata,
const uint16_t pkts, const uint32_t qmask)
{
uint32_t available = rxq->available;
/* Update the available count if cached value is not enough */
if (unlikely(available < pkts)) {
uint64_t reg, head, tail;
/* Use LDADDA version to avoid reorder */
reg = roc_atomic64_add_sync(wdata, rxq->cq_status);
/* CQ_OP_STATUS operation error */
if (reg & BIT_ULL(NIX_CQ_OP_STAT_OP_ERR) ||
reg & BIT_ULL(NIX_CQ_OP_STAT_CQ_ERR))
return 0;
tail = reg & 0xFFFFF;
head = (reg >> 20) & 0xFFFFF;
if (tail < head)
available = tail - head + qmask + 1;
else
available = tail - head;
rxq->available = available;
}
return RTE_MIN(pkts, available);
}
static __rte_always_inline void
cn9k_nix_mbuf_to_tstamp(struct rte_mbuf *mbuf,
struct cnxk_timesync_info *tstamp,
const uint8_t ts_enable, uint64_t *tstamp_ptr)
{
if (ts_enable) {
mbuf->pkt_len -= CNXK_NIX_TIMESYNC_RX_OFFSET;
mbuf->data_len -= CNXK_NIX_TIMESYNC_RX_OFFSET;
/* Reading the rx timestamp inserted by CGX, viz at
* starting of the packet data.
*/
*cnxk_nix_timestamp_dynfield(mbuf, tstamp) =
rte_be_to_cpu_64(*tstamp_ptr);
/* RTE_MBUF_F_RX_IEEE1588_TMST flag needs to be set only in case
* PTP packets are received.
*/
if (mbuf->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC) {
tstamp->rx_tstamp =
*cnxk_nix_timestamp_dynfield(mbuf, tstamp);
tstamp->rx_ready = 1;
mbuf->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP |
RTE_MBUF_F_RX_IEEE1588_TMST |
tstamp->rx_tstamp_dynflag;
}
}
}
static __rte_always_inline uint16_t
cn9k_nix_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts,
const uint16_t flags)
{
struct cn9k_eth_rxq *rxq = rx_queue;
const uint64_t mbuf_init = rxq->mbuf_initializer;
const void *lookup_mem = rxq->lookup_mem;
const uint64_t data_off = rxq->data_off;
const uintptr_t desc = rxq->desc;
const uint64_t wdata = rxq->wdata;
const uint32_t qmask = rxq->qmask;
uint16_t packets = 0, nb_pkts;
uint32_t head = rxq->head;
struct nix_cqe_hdr_s *cq;
struct rte_mbuf *mbuf;
nb_pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
while (packets < nb_pkts) {
/* Prefetch N desc ahead */
rte_prefetch_non_temporal(
(void *)(desc + (CQE_SZ((head + 2) & qmask))));
cq = (struct nix_cqe_hdr_s *)(desc + CQE_SZ(head));
mbuf = nix_get_mbuf_from_cqe(cq, data_off);
cn9k_nix_cqe_to_mbuf(cq, cq->tag, mbuf, lookup_mem, mbuf_init,
flags);
cn9k_nix_mbuf_to_tstamp(mbuf, rxq->tstamp,
(flags & NIX_RX_OFFLOAD_TSTAMP_F),
(uint64_t *)((uint8_t *)mbuf
+ data_off));
rx_pkts[packets++] = mbuf;
roc_prefetch_store_keep(mbuf);
head++;
head &= qmask;
}
rxq->head = head;
rxq->available -= nb_pkts;
/* Free all the CQs that we've processed */
plt_write64((wdata | nb_pkts), rxq->cq_door);
return nb_pkts;
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline uint64_t
nix_vlan_update(const uint64_t w2, uint64_t ol_flags, uint8x16_t *f)
{
if (w2 & BIT_ULL(21) /* vtag0_gone */) {
ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
*f = vsetq_lane_u16((uint16_t)(w2 >> 32), *f, 5);
}
return ol_flags;
}
static __rte_always_inline uint64_t
nix_qinq_update(const uint64_t w2, uint64_t ol_flags, struct rte_mbuf *mbuf)
{
if (w2 & BIT_ULL(23) /* vtag1_gone */) {
ol_flags |= RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = (uint16_t)(w2 >> 48);
}
return ol_flags;
}
static __rte_always_inline uint16_t
cn9k_nix_recv_pkts_vector(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t pkts, const uint16_t flags)
{
struct cn9k_eth_rxq *rxq = rx_queue;
uint16_t packets = 0;
uint64x2_t cq0_w8, cq1_w8, cq2_w8, cq3_w8, mbuf01, mbuf23;
const uint64_t mbuf_initializer = rxq->mbuf_initializer;
const uint64x2_t data_off = vdupq_n_u64(rxq->data_off);
uint64_t ol_flags0, ol_flags1, ol_flags2, ol_flags3;
uint64x2_t rearm0 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm1 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm2 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm3 = vdupq_n_u64(mbuf_initializer);
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3;
const uint16_t *lookup_mem = rxq->lookup_mem;
const uint32_t qmask = rxq->qmask;
const uint64_t wdata = rxq->wdata;
const uintptr_t desc = rxq->desc;
uint8x16_t f0, f1, f2, f3;
uint32_t head = rxq->head;
uint16_t pkts_left;
pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
pkts_left = pkts & (NIX_DESCS_PER_LOOP - 1);
/* Packets has to be floor-aligned to NIX_DESCS_PER_LOOP */
pkts = RTE_ALIGN_FLOOR(pkts, NIX_DESCS_PER_LOOP);
while (packets < pkts) {
/* Exit loop if head is about to wrap and become unaligned */
if (((head + NIX_DESCS_PER_LOOP - 1) & qmask) <
NIX_DESCS_PER_LOOP) {
pkts_left += (pkts - packets);
break;
}
const uintptr_t cq0 = desc + CQE_SZ(head);
/* Prefetch N desc ahead */
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(8)));
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(9)));
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(10)));
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(11)));
/* Get NIX_RX_SG_S for size and buffer pointer */
cq0_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(0) + 64));
cq1_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(1) + 64));
cq2_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(2) + 64));
cq3_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(3) + 64));
/* Extract mbuf from NIX_RX_SG_S */
mbuf01 = vzip2q_u64(cq0_w8, cq1_w8);
mbuf23 = vzip2q_u64(cq2_w8, cq3_w8);
mbuf01 = vqsubq_u64(mbuf01, data_off);
mbuf23 = vqsubq_u64(mbuf23, data_off);
/* Move mbufs to scalar registers for future use */
mbuf0 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 0);
mbuf1 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 1);
mbuf2 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 0);
mbuf3 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 1);
/* Mask to get packet len from NIX_RX_SG_S */
const uint8x16_t shuf_msk = {
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
0, 1, /* octet 1~0, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
0, 1, /* octet 1~0, 16 bits data_len */
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/* Form the rx_descriptor_fields1 with pkt_len and data_len */
f0 = vqtbl1q_u8(cq0_w8, shuf_msk);
f1 = vqtbl1q_u8(cq1_w8, shuf_msk);
f2 = vqtbl1q_u8(cq2_w8, shuf_msk);
f3 = vqtbl1q_u8(cq3_w8, shuf_msk);
/* Load CQE word0 and word 1 */
uint64_t cq0_w0 = ((uint64_t *)(cq0 + CQE_SZ(0)))[0];
uint64_t cq0_w1 = ((uint64_t *)(cq0 + CQE_SZ(0)))[1];
uint64_t cq1_w0 = ((uint64_t *)(cq0 + CQE_SZ(1)))[0];
uint64_t cq1_w1 = ((uint64_t *)(cq0 + CQE_SZ(1)))[1];
uint64_t cq2_w0 = ((uint64_t *)(cq0 + CQE_SZ(2)))[0];
uint64_t cq2_w1 = ((uint64_t *)(cq0 + CQE_SZ(2)))[1];
uint64_t cq3_w0 = ((uint64_t *)(cq0 + CQE_SZ(3)))[0];
uint64_t cq3_w1 = ((uint64_t *)(cq0 + CQE_SZ(3)))[1];
if (flags & NIX_RX_OFFLOAD_RSS_F) {
/* Fill rss in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(cq0_w0, f0, 3);
f1 = vsetq_lane_u32(cq1_w0, f1, 3);
f2 = vsetq_lane_u32(cq2_w0, f2, 3);
f3 = vsetq_lane_u32(cq3_w0, f3, 3);
ol_flags0 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags1 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags2 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags3 = RTE_MBUF_F_RX_RSS_HASH;
} else {
ol_flags0 = 0;
ol_flags1 = 0;
ol_flags2 = 0;
ol_flags3 = 0;
}
if (flags & NIX_RX_OFFLOAD_PTYPE_F) {
/* Fill packet_type in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq0_w1),
f0, 0);
f1 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq1_w1),
f1, 0);
f2 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq2_w1),
f2, 0);
f3 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq3_w1),
f3, 0);
}
if (flags & NIX_RX_OFFLOAD_CHECKSUM_F) {
ol_flags0 |= nix_rx_olflags_get(lookup_mem, cq0_w1);
ol_flags1 |= nix_rx_olflags_get(lookup_mem, cq1_w1);
ol_flags2 |= nix_rx_olflags_get(lookup_mem, cq2_w1);
ol_flags3 |= nix_rx_olflags_get(lookup_mem, cq3_w1);
}
if (flags & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
uint64_t cq0_w2 = *(uint64_t *)(cq0 + CQE_SZ(0) + 16);
uint64_t cq1_w2 = *(uint64_t *)(cq0 + CQE_SZ(1) + 16);
uint64_t cq2_w2 = *(uint64_t *)(cq0 + CQE_SZ(2) + 16);
uint64_t cq3_w2 = *(uint64_t *)(cq0 + CQE_SZ(3) + 16);
ol_flags0 = nix_vlan_update(cq0_w2, ol_flags0, &f0);
ol_flags1 = nix_vlan_update(cq1_w2, ol_flags1, &f1);
ol_flags2 = nix_vlan_update(cq2_w2, ol_flags2, &f2);
ol_flags3 = nix_vlan_update(cq3_w2, ol_flags3, &f3);
ol_flags0 = nix_qinq_update(cq0_w2, ol_flags0, mbuf0);
ol_flags1 = nix_qinq_update(cq1_w2, ol_flags1, mbuf1);
ol_flags2 = nix_qinq_update(cq2_w2, ol_flags2, mbuf2);
ol_flags3 = nix_qinq_update(cq3_w2, ol_flags3, mbuf3);
}
if (flags & NIX_RX_OFFLOAD_MARK_UPDATE_F) {
ol_flags0 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(0) + 38), ol_flags0,
mbuf0);
ol_flags1 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(1) + 38), ol_flags1,
mbuf1);
ol_flags2 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(2) + 38), ol_flags2,
mbuf2);
ol_flags3 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(3) + 38), ol_flags3,
mbuf3);
}
if (flags & NIX_RX_OFFLOAD_TSTAMP_F) {
const uint16x8_t len_off = {
0, /* ptype 0:15 */
0, /* ptype 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* pktlen 0:15*/
0, /* pktlen 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* datalen 0:15 */
0,
0,
0};
const uint32x4_t ptype = {RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC};
const uint64_t ts_olf = RTE_MBUF_F_RX_IEEE1588_PTP |
RTE_MBUF_F_RX_IEEE1588_TMST |
rxq->tstamp->rx_tstamp_dynflag;
const uint32x4_t and_mask = {0x1, 0x2, 0x4, 0x8};
uint64x2_t ts01, ts23, mask;
uint64_t ts[4];
uint8_t res;
/* Subtract timesync length from total pkt length. */
f0 = vsubq_u16(f0, len_off);
f1 = vsubq_u16(f1, len_off);
f2 = vsubq_u16(f2, len_off);
f3 = vsubq_u16(f3, len_off);
/* Get the address of actual timestamp. */
ts01 = vaddq_u64(mbuf01, data_off);
ts23 = vaddq_u64(mbuf23, data_off);
/* Load timestamp from address. */
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
0),
ts01, 0);
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
1),
ts01, 1);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
0),
ts23, 0);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
1),
ts23, 1);
/* Convert from be to cpu byteorder. */
ts01 = vrev64q_u8(ts01);
ts23 = vrev64q_u8(ts23);
/* Store timestamp into scalar for later use. */
ts[0] = vgetq_lane_u64(ts01, 0);
ts[1] = vgetq_lane_u64(ts01, 1);
ts[2] = vgetq_lane_u64(ts23, 0);
ts[3] = vgetq_lane_u64(ts23, 1);
/* Store timestamp into dynfield. */
*cnxk_nix_timestamp_dynfield(mbuf0, rxq->tstamp) =
ts[0];
*cnxk_nix_timestamp_dynfield(mbuf1, rxq->tstamp) =
ts[1];
*cnxk_nix_timestamp_dynfield(mbuf2, rxq->tstamp) =
ts[2];
*cnxk_nix_timestamp_dynfield(mbuf3, rxq->tstamp) =
ts[3];
/* Generate ptype mask to filter L2 ether timesync */
mask = vdupq_n_u32(vgetq_lane_u32(f0, 0));
mask = vsetq_lane_u32(vgetq_lane_u32(f1, 0), mask, 1);
mask = vsetq_lane_u32(vgetq_lane_u32(f2, 0), mask, 2);
mask = vsetq_lane_u32(vgetq_lane_u32(f3, 0), mask, 3);
/* Match against L2 ether timesync. */
mask = vceqq_u32(mask, ptype);
/* Convert from vector from scalar mask */
res = vaddvq_u32(vandq_u32(mask, and_mask));
res &= 0xF;
if (res) {
/* Fill in the ol_flags for any packets that
* matched.
*/
ol_flags0 |= ((res & 0x1) ? ts_olf : 0);
ol_flags1 |= ((res & 0x2) ? ts_olf : 0);
ol_flags2 |= ((res & 0x4) ? ts_olf : 0);
ol_flags3 |= ((res & 0x8) ? ts_olf : 0);
/* Update Rxq timestamp with the latest
* timestamp.
*/
rxq->tstamp->rx_ready = 1;
rxq->tstamp->rx_tstamp =
ts[31 - __builtin_clz(res)];
}
}
/* Form rearm_data with ol_flags */
rearm0 = vsetq_lane_u64(ol_flags0, rearm0, 1);
rearm1 = vsetq_lane_u64(ol_flags1, rearm1, 1);
rearm2 = vsetq_lane_u64(ol_flags2, rearm2, 1);
rearm3 = vsetq_lane_u64(ol_flags3, rearm3, 1);
/* Update rx_descriptor_fields1 */
vst1q_u64((uint64_t *)mbuf0->rx_descriptor_fields1, f0);
vst1q_u64((uint64_t *)mbuf1->rx_descriptor_fields1, f1);
vst1q_u64((uint64_t *)mbuf2->rx_descriptor_fields1, f2);
vst1q_u64((uint64_t *)mbuf3->rx_descriptor_fields1, f3);
/* Update rearm_data */
vst1q_u64((uint64_t *)mbuf0->rearm_data, rearm0);
vst1q_u64((uint64_t *)mbuf1->rearm_data, rearm1);
vst1q_u64((uint64_t *)mbuf2->rearm_data, rearm2);
vst1q_u64((uint64_t *)mbuf3->rearm_data, rearm3);
if (flags & NIX_RX_MULTI_SEG_F) {
/* Multi segment is enable build mseg list for
* individual mbufs in scalar mode.
*/
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(0) + 8), mbuf0,
mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(1) + 8), mbuf1,
mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(2) + 8), mbuf2,
mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(3) + 8), mbuf3,
mbuf_initializer, flags);
} else {
/* Update that no more segments */
mbuf0->next = NULL;
mbuf1->next = NULL;
mbuf2->next = NULL;
mbuf3->next = NULL;
}
/* Store the mbufs to rx_pkts */
vst1q_u64((uint64_t *)&rx_pkts[packets], mbuf01);
vst1q_u64((uint64_t *)&rx_pkts[packets + 2], mbuf23);
/* Prefetch mbufs */
roc_prefetch_store_keep(mbuf0);
roc_prefetch_store_keep(mbuf1);
roc_prefetch_store_keep(mbuf2);
roc_prefetch_store_keep(mbuf3);
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
RTE_MEMPOOL_CHECK_COOKIES(mbuf0->pool, (void **)&mbuf0, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf1->pool, (void **)&mbuf1, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf2->pool, (void **)&mbuf2, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf3->pool, (void **)&mbuf3, 1, 1);
/* Advance head pointer and packets */
head += NIX_DESCS_PER_LOOP;
head &= qmask;
packets += NIX_DESCS_PER_LOOP;
}
rxq->head = head;
rxq->available -= packets;
rte_io_wmb();
/* Free all the CQs that we've processed */
plt_write64((rxq->wdata | packets), rxq->cq_door);
if (unlikely(pkts_left))
packets += cn9k_nix_recv_pkts(rx_queue, &rx_pkts[packets],
pkts_left, flags);
return packets;
}
#else
static inline uint16_t
cn9k_nix_recv_pkts_vector(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t pkts, const uint16_t flags)
{
RTE_SET_USED(rx_queue);
RTE_SET_USED(rx_pkts);
RTE_SET_USED(pkts);
RTE_SET_USED(flags);
return 0;
}
#endif
#define RSS_F NIX_RX_OFFLOAD_RSS_F
#define PTYPE_F NIX_RX_OFFLOAD_PTYPE_F
#define CKSUM_F NIX_RX_OFFLOAD_CHECKSUM_F
#define MARK_F NIX_RX_OFFLOAD_MARK_UPDATE_F
#define TS_F NIX_RX_OFFLOAD_TSTAMP_F
#define RX_VLAN_F NIX_RX_OFFLOAD_VLAN_STRIP_F
#define R_SEC_F NIX_RX_OFFLOAD_SECURITY_F
/* [R_SEC_F] [RX_VLAN_F] [TS] [MARK] [CKSUM] [PTYPE] [RSS] */
#define NIX_RX_FASTPATH_MODES_0_15 \
R(no_offload, NIX_RX_OFFLOAD_NONE) \
R(rss, RSS_F) \
R(ptype, PTYPE_F) \
R(ptype_rss, PTYPE_F | RSS_F) \
R(cksum, CKSUM_F) \
R(cksum_rss, CKSUM_F | RSS_F) \
R(cksum_ptype, CKSUM_F | PTYPE_F) \
R(cksum_ptype_rss, CKSUM_F | PTYPE_F | RSS_F) \
R(mark, MARK_F) \
R(mark_rss, MARK_F | RSS_F) \
R(mark_ptype, MARK_F | PTYPE_F) \
R(mark_ptype_rss, MARK_F | PTYPE_F | RSS_F) \
R(mark_cksum, MARK_F | CKSUM_F) \
R(mark_cksum_rss, MARK_F | CKSUM_F | RSS_F) \
R(mark_cksum_ptype, MARK_F | CKSUM_F | PTYPE_F) \
R(mark_cksum_ptype_rss, MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_16_31 \
R(ts, TS_F) \
R(ts_rss, TS_F | RSS_F) \
R(ts_ptype, TS_F | PTYPE_F) \
R(ts_ptype_rss, TS_F | PTYPE_F | RSS_F) \
R(ts_cksum, TS_F | CKSUM_F) \
R(ts_cksum_rss, TS_F | CKSUM_F | RSS_F) \
R(ts_cksum_ptype, TS_F | CKSUM_F | PTYPE_F) \
R(ts_cksum_ptype_rss, TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(ts_mark, TS_F | MARK_F) \
R(ts_mark_rss, TS_F | MARK_F | RSS_F) \
R(ts_mark_ptype, TS_F | MARK_F | PTYPE_F) \
R(ts_mark_ptype_rss, TS_F | MARK_F | PTYPE_F | RSS_F) \
R(ts_mark_cksum, TS_F | MARK_F | CKSUM_F) \
R(ts_mark_cksum_rss, TS_F | MARK_F | CKSUM_F | RSS_F) \
R(ts_mark_cksum_ptype, TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(ts_mark_cksum_ptype_rss, TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_32_47 \
R(vlan, RX_VLAN_F) \
R(vlan_rss, RX_VLAN_F | RSS_F) \
R(vlan_ptype, RX_VLAN_F | PTYPE_F) \
R(vlan_ptype_rss, RX_VLAN_F | PTYPE_F | RSS_F) \
R(vlan_cksum, RX_VLAN_F | CKSUM_F) \
R(vlan_cksum_rss, RX_VLAN_F | CKSUM_F | RSS_F) \
R(vlan_cksum_ptype, RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(vlan_cksum_ptype_rss, RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_mark, RX_VLAN_F | MARK_F) \
R(vlan_mark_rss, RX_VLAN_F | MARK_F | RSS_F) \
R(vlan_mark_ptype, RX_VLAN_F | MARK_F | PTYPE_F) \
R(vlan_mark_ptype_rss, RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_mark_cksum, RX_VLAN_F | MARK_F | CKSUM_F) \
R(vlan_mark_cksum_rss, RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_mark_cksum_ptype, RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_mark_cksum_ptype_rss, \
RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_48_63 \
R(vlan_ts, RX_VLAN_F | TS_F) \
R(vlan_ts_rss, RX_VLAN_F | TS_F | RSS_F) \
R(vlan_ts_ptype, RX_VLAN_F | TS_F | PTYPE_F) \
R(vlan_ts_ptype_rss, RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(vlan_ts_cksum, RX_VLAN_F | TS_F | CKSUM_F) \
R(vlan_ts_cksum_rss, RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(vlan_ts_cksum_ptype, RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_cksum_ptype_rss, \
RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark, RX_VLAN_F | TS_F | MARK_F) \
R(vlan_ts_mark_rss, RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(vlan_ts_mark_ptype, RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(vlan_ts_mark_ptype_rss, RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark_cksum, RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(vlan_ts_mark_cksum_rss, RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_ts_mark_cksum_ptype, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_mark_cksum_ptype_rss, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_64_79 \
R(sec, R_SEC_F) \
R(sec_rss, R_SEC_F | RSS_F) \
R(sec_ptype, R_SEC_F | PTYPE_F) \
R(sec_ptype_rss, R_SEC_F | PTYPE_F | RSS_F) \
R(sec_cksum, R_SEC_F | CKSUM_F) \
R(sec_cksum_rss, R_SEC_F | CKSUM_F | RSS_F) \
R(sec_cksum_ptype, R_SEC_F | CKSUM_F | PTYPE_F) \
R(sec_cksum_ptype_rss, R_SEC_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_mark, R_SEC_F | MARK_F) \
R(sec_mark_rss, R_SEC_F | MARK_F | RSS_F) \
R(sec_mark_ptype, R_SEC_F | MARK_F | PTYPE_F) \
R(sec_mark_ptype_rss, R_SEC_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_mark_cksum, R_SEC_F | MARK_F | CKSUM_F) \
R(sec_mark_cksum_rss, R_SEC_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_mark_cksum_ptype, R_SEC_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_mark_cksum_ptype_rss, \
R_SEC_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_80_95 \
R(sec_ts, R_SEC_F | TS_F) \
R(sec_ts_rss, R_SEC_F | TS_F | RSS_F) \
R(sec_ts_ptype, R_SEC_F | TS_F | PTYPE_F) \
R(sec_ts_ptype_rss, R_SEC_F | TS_F | PTYPE_F | RSS_F) \
R(sec_ts_cksum, R_SEC_F | TS_F | CKSUM_F) \
R(sec_ts_cksum_rss, R_SEC_F | TS_F | CKSUM_F | RSS_F) \
R(sec_ts_cksum_ptype, R_SEC_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_ts_cksum_ptype_rss, R_SEC_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_ts_mark, R_SEC_F | TS_F | MARK_F) \
R(sec_ts_mark_rss, R_SEC_F | TS_F | MARK_F | RSS_F) \
R(sec_ts_mark_ptype, R_SEC_F | TS_F | MARK_F | PTYPE_F) \
R(sec_ts_mark_ptype_rss, R_SEC_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_ts_mark_cksum, R_SEC_F | TS_F | MARK_F | CKSUM_F) \
R(sec_ts_mark_cksum_rss, R_SEC_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_ts_mark_cksum_ptype, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_ts_mark_cksum_ptype_rss, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_96_111 \
R(sec_vlan, R_SEC_F | RX_VLAN_F) \
R(sec_vlan_rss, R_SEC_F | RX_VLAN_F | RSS_F) \
R(sec_vlan_ptype, R_SEC_F | RX_VLAN_F | PTYPE_F) \
R(sec_vlan_ptype_rss, R_SEC_F | RX_VLAN_F | PTYPE_F | RSS_F) \
R(sec_vlan_cksum, R_SEC_F | RX_VLAN_F | CKSUM_F) \
R(sec_vlan_cksum_rss, R_SEC_F | RX_VLAN_F | CKSUM_F | RSS_F) \
R(sec_vlan_cksum_ptype, R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark, R_SEC_F | RX_VLAN_F | MARK_F) \
R(sec_vlan_mark_rss, R_SEC_F | RX_VLAN_F | MARK_F | RSS_F) \
R(sec_vlan_mark_ptype, R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F) \
R(sec_vlan_mark_ptype_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark_cksum, R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F) \
R(sec_vlan_mark_cksum_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_mark_cksum_ptype, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_mark_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_112_127 \
R(sec_vlan_ts, R_SEC_F | RX_VLAN_F | TS_F) \
R(sec_vlan_ts_rss, R_SEC_F | RX_VLAN_F | TS_F | RSS_F) \
R(sec_vlan_ts_ptype, R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F) \
R(sec_vlan_ts_ptype_rss, R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_cksum, R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F) \
R(sec_vlan_ts_cksum_rss, R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_cksum_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark, R_SEC_F | RX_VLAN_F | TS_F | MARK_F) \
R(sec_vlan_ts_mark_rss, R_SEC_F | RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(sec_vlan_ts_mark_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(sec_vlan_ts_mark_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark_cksum, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(sec_vlan_ts_mark_cksum_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_mark_cksum_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_mark_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES \
NIX_RX_FASTPATH_MODES_0_15 \
NIX_RX_FASTPATH_MODES_16_31 \
NIX_RX_FASTPATH_MODES_32_47 \
NIX_RX_FASTPATH_MODES_48_63 \
NIX_RX_FASTPATH_MODES_64_79 \
NIX_RX_FASTPATH_MODES_80_95 \
NIX_RX_FASTPATH_MODES_96_111 \
NIX_RX_FASTPATH_MODES_112_127
#define R(name, flags) \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_vec_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_vec_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts);
NIX_RX_FASTPATH_MODES
#undef R
#define NIX_RX_RECV(fn, flags) \
uint16_t __rte_noinline __rte_hot fn( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts) \
{ \
return cn9k_nix_recv_pkts(rx_queue, rx_pkts, pkts, (flags)); \
}
#define NIX_RX_RECV_MSEG(fn, flags) NIX_RX_RECV(fn, flags | NIX_RX_MULTI_SEG_F)
#define NIX_RX_RECV_VEC(fn, flags) \
uint16_t __rte_noinline __rte_hot fn( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts) \
{ \
return cn9k_nix_recv_pkts_vector(rx_queue, rx_pkts, pkts, \
(flags)); \
}
#define NIX_RX_RECV_VEC_MSEG(fn, flags) \
NIX_RX_RECV_VEC(fn, flags | NIX_RX_MULTI_SEG_F)
#endif /* __CN9K_RX_H__ */